Abstract

Real-time dual-band optical orthogonal frequency-division multiplexing (OOFDM) transceivers incorporating digital-to-analog and analog-to-digital converters operating at sampling speeds as low as 4GS/s and field-programmable gate-array-based digital signal processing clocked at only 100 MHz are employed to explore the maximum achievable transmission performance of electro-absorption modulated laser-based multimode fiber (MMF) systems subject to conventional optical launching. Making use of adaptive subcarrier bit and subcarrier/subband power loading, record-high 20.125Gb/s transmission over 800 m OM2 MMF of real-time dual-band OOFDM signals is experimentally demonstrated, for the first time, with an optical power penalty as low as 1 dB. In addition, extensive experimental explorations of dual-band OOFDM capacity versus reach performance are also undertaken over the aforementioned systems consisting of different MMF types and lengths. It is shown that 20.125Gb/s over 100 m and 19.625Gb/s over 1000 m OOFDM transmissions are obtainable in OM2-only MMF systems and that 20Gb/s over 100 m and 19.375Gb/s over 1000 m OOFDM transmissions are achievable in OM1-only MMF systems. Furthermore, in various OM1 and OM2 MMF systems, minimum optical power penalties of <1dB are observed for MMF transmission distances ranging from 300 to 800 m. Experimental results indicate that >19Gb/s over 1000 m transmission of dual-band OOFDM signals are practically feasible in any legacy MMF systems.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Dove, “Proposed 5 criteria responses,” presented at IEEE 802.3 Next Generation 40 Gb/s and 100 Gb/s Optical Ethernet Study Group, San Diego, CA, July 2012.
  2. H. Azgomi, “Enabling enterprise 10 gigabit Ethernet deployment with long reach multimode optics,” Cisco White Paper, June 2007.
  3. R. Rabinovich, “40  Gb/s and 100  Gb/s Ethernet short-reach optical and copper host board channel design,” IEEE Commun. Mag., vol.  50, no. 4, pp. 129–133, Apr. 2012.
    [CrossRef]
  4. R. E. Freund, C. A. Bunge, N. N. Ledentsov, D. Molin, C. Caspar, “High-speed transmission in multimode fibers,” J. Lightwave Technol., vol.  28, no. 4, pp. 569–586, Feb. 2010.
    [CrossRef]
  5. D. H. Sim, Y. Takushima, Y. C. Chung, “High-speed multimode fiber transmission by using mode-field matched center-launching technique,” J. Lightwave Technol. vol.  27, no. 8, pp. 1018–1026, Apr. 2009.
    [CrossRef]
  6. A. Amphawan, “Holographic mode-selective launch for bandwidth enhancement in multimode fiber,” Opt. Express, vol.  19, no. 10, pp. 9056–9065, May 2011.
    [CrossRef]
  7. A. Okamoto, K. Aoki, Y. Wakayama, D. Soma, T. Oda, “Multi-excitation of spatial modes using single spatial light modulator for mode division multiplexing,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Los Angeles, CA, March4–8, 2012, paper JW2A.38.
  8. C. Yu, J. Liou, Y. Chiu, H. Taga, “Mode multiplexer for multimode transmission in multimode fibers,” Opt. Express, vol.  19, no. 13, pp. 12673–12678, June 2011.
    [CrossRef]
  9. M. Salsi, C. Koebele, G. Charlet, S. Bigo, “Mode division multiplexed transmission with a weakly-coupled few-mode fiber,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Los Angeles, CA, March4–8, 2012, paper OTu2C.5.
  10. X. Q. Jin, J. M. Tang, P. S. Spencer, K. A. Shore, “Optimization of adaptively modulated optical OFDM modems for multimode fiber-based local area networks,” J. Opt. Netw., vol.  7, no. 3, pp. 198–214, Mar. 2008.
    [CrossRef]
  11. X. Q. Jin, J. M. Tang, K. Qiu, P. S. Spencer, “Statistical investigations of the transmission performance of adaptively modulated optical OFDM signals in multimode fibre links,” J. Lightwave Technol., vol  26, no. 18, pp. 3216–3224, Sept. 2008.
    [CrossRef]
  12. E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, J. M. Tang, “Directly modulated VCSEL-based real-time 11.25  Gb/s optical OFDM transmission over 2000 m legacy MMFs,” IEEE Photon. J., vol.  4, no. 1, pp. 143–154, Feb. 2012.
    [CrossRef]
  13. R. P. Giddings, E. Hugues-Salas, J. M. Tang, “Experimental demonstration of record high 19.125  Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express vol.  20, no. 18, pp. 20666–20679, Aug. 2012.
    [CrossRef]
  14. E. Hugues-Salas, R. P. Giddings, J. M. Tang, “First experimental demonstration of real-time adaptive transmission of 20  Gb/s dual-band optical OFDM signals over 500 m OM2 MMFs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Anaheim, CA, March17–21, 2013, paper OTh3A.1.
  15. X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J., vol.  3, no. 3, pp. 500–511, June 2011.
    [CrossRef]
  16. I. Gasulla, J. Capmany, “Modal noise impact in radio over fibre multimode fibre links,” Opt. Express, vol.  16, no. 1, pp. 121–126, Jan. 2008.
    [CrossRef]
  17. E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, J. M. Tang, “REAM intensity modulator-enabled 10  Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express, vol.  20, no. 19, pp. 21089–21100, Aug. 2012.
    [CrossRef]

2012 (4)

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, J. M. Tang, “Directly modulated VCSEL-based real-time 11.25  Gb/s optical OFDM transmission over 2000 m legacy MMFs,” IEEE Photon. J., vol.  4, no. 1, pp. 143–154, Feb. 2012.
[CrossRef]

R. P. Giddings, E. Hugues-Salas, J. M. Tang, “Experimental demonstration of record high 19.125  Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express vol.  20, no. 18, pp. 20666–20679, Aug. 2012.
[CrossRef]

R. Rabinovich, “40  Gb/s and 100  Gb/s Ethernet short-reach optical and copper host board channel design,” IEEE Commun. Mag., vol.  50, no. 4, pp. 129–133, Apr. 2012.
[CrossRef]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, J. M. Tang, “REAM intensity modulator-enabled 10  Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express, vol.  20, no. 19, pp. 21089–21100, Aug. 2012.
[CrossRef]

2011 (3)

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J., vol.  3, no. 3, pp. 500–511, June 2011.
[CrossRef]

A. Amphawan, “Holographic mode-selective launch for bandwidth enhancement in multimode fiber,” Opt. Express, vol.  19, no. 10, pp. 9056–9065, May 2011.
[CrossRef]

C. Yu, J. Liou, Y. Chiu, H. Taga, “Mode multiplexer for multimode transmission in multimode fibers,” Opt. Express, vol.  19, no. 13, pp. 12673–12678, June 2011.
[CrossRef]

2010 (1)

R. E. Freund, C. A. Bunge, N. N. Ledentsov, D. Molin, C. Caspar, “High-speed transmission in multimode fibers,” J. Lightwave Technol., vol.  28, no. 4, pp. 569–586, Feb. 2010.
[CrossRef]

2009 (1)

2008 (3)

X. Q. Jin, J. M. Tang, P. S. Spencer, K. A. Shore, “Optimization of adaptively modulated optical OFDM modems for multimode fiber-based local area networks,” J. Opt. Netw., vol.  7, no. 3, pp. 198–214, Mar. 2008.
[CrossRef]

X. Q. Jin, J. M. Tang, K. Qiu, P. S. Spencer, “Statistical investigations of the transmission performance of adaptively modulated optical OFDM signals in multimode fibre links,” J. Lightwave Technol., vol  26, no. 18, pp. 3216–3224, Sept. 2008.
[CrossRef]

I. Gasulla, J. Capmany, “Modal noise impact in radio over fibre multimode fibre links,” Opt. Express, vol.  16, no. 1, pp. 121–126, Jan. 2008.
[CrossRef]

Amphawan, A.

A. Amphawan, “Holographic mode-selective launch for bandwidth enhancement in multimode fiber,” Opt. Express, vol.  19, no. 10, pp. 9056–9065, May 2011.
[CrossRef]

Aoki, K.

A. Okamoto, K. Aoki, Y. Wakayama, D. Soma, T. Oda, “Multi-excitation of spatial modes using single spatial light modulator for mode division multiplexing,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Los Angeles, CA, March4–8, 2012, paper JW2A.38.

Azgomi, H.

H. Azgomi, “Enabling enterprise 10 gigabit Ethernet deployment with long reach multimode optics,” Cisco White Paper, June 2007.

Bigo, S.

M. Salsi, C. Koebele, G. Charlet, S. Bigo, “Mode division multiplexed transmission with a weakly-coupled few-mode fiber,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Los Angeles, CA, March4–8, 2012, paper OTu2C.5.

Bunge, C. A.

R. E. Freund, C. A. Bunge, N. N. Ledentsov, D. Molin, C. Caspar, “High-speed transmission in multimode fibers,” J. Lightwave Technol., vol.  28, no. 4, pp. 569–586, Feb. 2010.
[CrossRef]

Capmany, J.

Caspar, C.

R. E. Freund, C. A. Bunge, N. N. Ledentsov, D. Molin, C. Caspar, “High-speed transmission in multimode fibers,” J. Lightwave Technol., vol.  28, no. 4, pp. 569–586, Feb. 2010.
[CrossRef]

Charlet, G.

M. Salsi, C. Koebele, G. Charlet, S. Bigo, “Mode division multiplexed transmission with a weakly-coupled few-mode fiber,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Los Angeles, CA, March4–8, 2012, paper OTu2C.5.

Chiu, Y.

Chung, Y. C.

Dove, D.

D. Dove, “Proposed 5 criteria responses,” presented at IEEE 802.3 Next Generation 40 Gb/s and 100 Gb/s Optical Ethernet Study Group, San Diego, CA, July 2012.

Freund, R. E.

R. E. Freund, C. A. Bunge, N. N. Ledentsov, D. Molin, C. Caspar, “High-speed transmission in multimode fibers,” J. Lightwave Technol., vol.  28, no. 4, pp. 569–586, Feb. 2010.
[CrossRef]

Gasulla, I.

Giddings, R. P.

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, J. M. Tang, “REAM intensity modulator-enabled 10  Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express, vol.  20, no. 19, pp. 21089–21100, Aug. 2012.
[CrossRef]

R. P. Giddings, E. Hugues-Salas, J. M. Tang, “Experimental demonstration of record high 19.125  Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express vol.  20, no. 18, pp. 20666–20679, Aug. 2012.
[CrossRef]

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, J. M. Tang, “Directly modulated VCSEL-based real-time 11.25  Gb/s optical OFDM transmission over 2000 m legacy MMFs,” IEEE Photon. J., vol.  4, no. 1, pp. 143–154, Feb. 2012.
[CrossRef]

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J., vol.  3, no. 3, pp. 500–511, June 2011.
[CrossRef]

E. Hugues-Salas, R. P. Giddings, J. M. Tang, “First experimental demonstration of real-time adaptive transmission of 20  Gb/s dual-band optical OFDM signals over 500 m OM2 MMFs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Anaheim, CA, March17–21, 2013, paper OTh3A.1.

Hong, Y.

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, J. M. Tang, “Directly modulated VCSEL-based real-time 11.25  Gb/s optical OFDM transmission over 2000 m legacy MMFs,” IEEE Photon. J., vol.  4, no. 1, pp. 143–154, Feb. 2012.
[CrossRef]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, J. M. Tang, “REAM intensity modulator-enabled 10  Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express, vol.  20, no. 19, pp. 21089–21100, Aug. 2012.
[CrossRef]

Hugues-Salas, E.

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, J. M. Tang, “REAM intensity modulator-enabled 10  Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express, vol.  20, no. 19, pp. 21089–21100, Aug. 2012.
[CrossRef]

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, J. M. Tang, “Directly modulated VCSEL-based real-time 11.25  Gb/s optical OFDM transmission over 2000 m legacy MMFs,” IEEE Photon. J., vol.  4, no. 1, pp. 143–154, Feb. 2012.
[CrossRef]

R. P. Giddings, E. Hugues-Salas, J. M. Tang, “Experimental demonstration of record high 19.125  Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express vol.  20, no. 18, pp. 20666–20679, Aug. 2012.
[CrossRef]

E. Hugues-Salas, R. P. Giddings, J. M. Tang, “First experimental demonstration of real-time adaptive transmission of 20  Gb/s dual-band optical OFDM signals over 500 m OM2 MMFs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Anaheim, CA, March17–21, 2013, paper OTh3A.1.

Jin, X. Q.

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, J. M. Tang, “Directly modulated VCSEL-based real-time 11.25  Gb/s optical OFDM transmission over 2000 m legacy MMFs,” IEEE Photon. J., vol.  4, no. 1, pp. 143–154, Feb. 2012.
[CrossRef]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, J. M. Tang, “REAM intensity modulator-enabled 10  Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express, vol.  20, no. 19, pp. 21089–21100, Aug. 2012.
[CrossRef]

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J., vol.  3, no. 3, pp. 500–511, June 2011.
[CrossRef]

X. Q. Jin, J. M. Tang, K. Qiu, P. S. Spencer, “Statistical investigations of the transmission performance of adaptively modulated optical OFDM signals in multimode fibre links,” J. Lightwave Technol., vol  26, no. 18, pp. 3216–3224, Sept. 2008.
[CrossRef]

X. Q. Jin, J. M. Tang, P. S. Spencer, K. A. Shore, “Optimization of adaptively modulated optical OFDM modems for multimode fiber-based local area networks,” J. Opt. Netw., vol.  7, no. 3, pp. 198–214, Mar. 2008.
[CrossRef]

Koebele, C.

M. Salsi, C. Koebele, G. Charlet, S. Bigo, “Mode division multiplexed transmission with a weakly-coupled few-mode fiber,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Los Angeles, CA, March4–8, 2012, paper OTu2C.5.

Ledentsov, N. N.

R. E. Freund, C. A. Bunge, N. N. Ledentsov, D. Molin, C. Caspar, “High-speed transmission in multimode fibers,” J. Lightwave Technol., vol.  28, no. 4, pp. 569–586, Feb. 2010.
[CrossRef]

Liou, J.

Mansoor, S.

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, J. M. Tang, “Directly modulated VCSEL-based real-time 11.25  Gb/s optical OFDM transmission over 2000 m legacy MMFs,” IEEE Photon. J., vol.  4, no. 1, pp. 143–154, Feb. 2012.
[CrossRef]

Molin, D.

R. E. Freund, C. A. Bunge, N. N. Ledentsov, D. Molin, C. Caspar, “High-speed transmission in multimode fibers,” J. Lightwave Technol., vol.  28, no. 4, pp. 569–586, Feb. 2010.
[CrossRef]

Oda, T.

A. Okamoto, K. Aoki, Y. Wakayama, D. Soma, T. Oda, “Multi-excitation of spatial modes using single spatial light modulator for mode division multiplexing,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Los Angeles, CA, March4–8, 2012, paper JW2A.38.

Okamoto, A.

A. Okamoto, K. Aoki, Y. Wakayama, D. Soma, T. Oda, “Multi-excitation of spatial modes using single spatial light modulator for mode division multiplexing,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Los Angeles, CA, March4–8, 2012, paper JW2A.38.

Qiu, K.

X. Q. Jin, J. M. Tang, K. Qiu, P. S. Spencer, “Statistical investigations of the transmission performance of adaptively modulated optical OFDM signals in multimode fibre links,” J. Lightwave Technol., vol  26, no. 18, pp. 3216–3224, Sept. 2008.
[CrossRef]

Quinlan, T.

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, J. M. Tang, “REAM intensity modulator-enabled 10  Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express, vol.  20, no. 19, pp. 21089–21100, Aug. 2012.
[CrossRef]

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J., vol.  3, no. 3, pp. 500–511, June 2011.
[CrossRef]

Rabinovich, R.

R. Rabinovich, “40  Gb/s and 100  Gb/s Ethernet short-reach optical and copper host board channel design,” IEEE Commun. Mag., vol.  50, no. 4, pp. 129–133, Apr. 2012.
[CrossRef]

Salsi, M.

M. Salsi, C. Koebele, G. Charlet, S. Bigo, “Mode division multiplexed transmission with a weakly-coupled few-mode fiber,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Los Angeles, CA, March4–8, 2012, paper OTu2C.5.

Shore, K. A.

X. Q. Jin, J. M. Tang, P. S. Spencer, K. A. Shore, “Optimization of adaptively modulated optical OFDM modems for multimode fiber-based local area networks,” J. Opt. Netw., vol.  7, no. 3, pp. 198–214, Mar. 2008.
[CrossRef]

Sim, D. H.

Soma, D.

A. Okamoto, K. Aoki, Y. Wakayama, D. Soma, T. Oda, “Multi-excitation of spatial modes using single spatial light modulator for mode division multiplexing,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Los Angeles, CA, March4–8, 2012, paper JW2A.38.

Spencer, P. S.

X. Q. Jin, J. M. Tang, P. S. Spencer, K. A. Shore, “Optimization of adaptively modulated optical OFDM modems for multimode fiber-based local area networks,” J. Opt. Netw., vol.  7, no. 3, pp. 198–214, Mar. 2008.
[CrossRef]

X. Q. Jin, J. M. Tang, K. Qiu, P. S. Spencer, “Statistical investigations of the transmission performance of adaptively modulated optical OFDM signals in multimode fibre links,” J. Lightwave Technol., vol  26, no. 18, pp. 3216–3224, Sept. 2008.
[CrossRef]

Taga, H.

Takushima, Y.

Tang, J. M.

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, J. M. Tang, “REAM intensity modulator-enabled 10  Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express, vol.  20, no. 19, pp. 21089–21100, Aug. 2012.
[CrossRef]

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, J. M. Tang, “Directly modulated VCSEL-based real-time 11.25  Gb/s optical OFDM transmission over 2000 m legacy MMFs,” IEEE Photon. J., vol.  4, no. 1, pp. 143–154, Feb. 2012.
[CrossRef]

R. P. Giddings, E. Hugues-Salas, J. M. Tang, “Experimental demonstration of record high 19.125  Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express vol.  20, no. 18, pp. 20666–20679, Aug. 2012.
[CrossRef]

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J., vol.  3, no. 3, pp. 500–511, June 2011.
[CrossRef]

X. Q. Jin, J. M. Tang, K. Qiu, P. S. Spencer, “Statistical investigations of the transmission performance of adaptively modulated optical OFDM signals in multimode fibre links,” J. Lightwave Technol., vol  26, no. 18, pp. 3216–3224, Sept. 2008.
[CrossRef]

X. Q. Jin, J. M. Tang, P. S. Spencer, K. A. Shore, “Optimization of adaptively modulated optical OFDM modems for multimode fiber-based local area networks,” J. Opt. Netw., vol.  7, no. 3, pp. 198–214, Mar. 2008.
[CrossRef]

E. Hugues-Salas, R. P. Giddings, J. M. Tang, “First experimental demonstration of real-time adaptive transmission of 20  Gb/s dual-band optical OFDM signals over 500 m OM2 MMFs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Anaheim, CA, March17–21, 2013, paper OTh3A.1.

Villafranca, A.

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, J. M. Tang, “Directly modulated VCSEL-based real-time 11.25  Gb/s optical OFDM transmission over 2000 m legacy MMFs,” IEEE Photon. J., vol.  4, no. 1, pp. 143–154, Feb. 2012.
[CrossRef]

Wakayama, Y.

A. Okamoto, K. Aoki, Y. Wakayama, D. Soma, T. Oda, “Multi-excitation of spatial modes using single spatial light modulator for mode division multiplexing,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Los Angeles, CA, March4–8, 2012, paper JW2A.38.

Walker, S.

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, J. M. Tang, “REAM intensity modulator-enabled 10  Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express, vol.  20, no. 19, pp. 21089–21100, Aug. 2012.
[CrossRef]

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J., vol.  3, no. 3, pp. 500–511, June 2011.
[CrossRef]

Wei, J. L.

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J., vol.  3, no. 3, pp. 500–511, June 2011.
[CrossRef]

Yu, C.

IEEE Commun. Mag. (1)

R. Rabinovich, “40  Gb/s and 100  Gb/s Ethernet short-reach optical and copper host board channel design,” IEEE Commun. Mag., vol.  50, no. 4, pp. 129–133, Apr. 2012.
[CrossRef]

IEEE Photon. J. (2)

E. Hugues-Salas, X. Q. Jin, R. P. Giddings, Y. Hong, S. Mansoor, A. Villafranca, J. M. Tang, “Directly modulated VCSEL-based real-time 11.25  Gb/s optical OFDM transmission over 2000 m legacy MMFs,” IEEE Photon. J., vol.  4, no. 1, pp. 143–154, Feb. 2012.
[CrossRef]

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photon. J., vol.  3, no. 3, pp. 500–511, June 2011.
[CrossRef]

J. Lightwave Technol. (2)

X. Q. Jin, J. M. Tang, K. Qiu, P. S. Spencer, “Statistical investigations of the transmission performance of adaptively modulated optical OFDM signals in multimode fibre links,” J. Lightwave Technol., vol  26, no. 18, pp. 3216–3224, Sept. 2008.
[CrossRef]

R. E. Freund, C. A. Bunge, N. N. Ledentsov, D. Molin, C. Caspar, “High-speed transmission in multimode fibers,” J. Lightwave Technol., vol.  28, no. 4, pp. 569–586, Feb. 2010.
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Netw. (1)

X. Q. Jin, J. M. Tang, P. S. Spencer, K. A. Shore, “Optimization of adaptively modulated optical OFDM modems for multimode fiber-based local area networks,” J. Opt. Netw., vol.  7, no. 3, pp. 198–214, Mar. 2008.
[CrossRef]

Opt. Express (3)

R. P. Giddings, E. Hugues-Salas, J. M. Tang, “Experimental demonstration of record high 19.125  Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express vol.  20, no. 18, pp. 20666–20679, Aug. 2012.
[CrossRef]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, J. M. Tang, “REAM intensity modulator-enabled 10  Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express, vol.  20, no. 19, pp. 21089–21100, Aug. 2012.
[CrossRef]

A. Amphawan, “Holographic mode-selective launch for bandwidth enhancement in multimode fiber,” Opt. Express, vol.  19, no. 10, pp. 9056–9065, May 2011.
[CrossRef]

Opt. Express (2)

Other (5)

E. Hugues-Salas, R. P. Giddings, J. M. Tang, “First experimental demonstration of real-time adaptive transmission of 20  Gb/s dual-band optical OFDM signals over 500 m OM2 MMFs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Anaheim, CA, March17–21, 2013, paper OTh3A.1.

M. Salsi, C. Koebele, G. Charlet, S. Bigo, “Mode division multiplexed transmission with a weakly-coupled few-mode fiber,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Los Angeles, CA, March4–8, 2012, paper OTu2C.5.

D. Dove, “Proposed 5 criteria responses,” presented at IEEE 802.3 Next Generation 40 Gb/s and 100 Gb/s Optical Ethernet Study Group, San Diego, CA, July 2012.

H. Azgomi, “Enabling enterprise 10 gigabit Ethernet deployment with long reach multimode optics,” Cisco White Paper, June 2007.

A. Okamoto, K. Aoki, Y. Wakayama, D. Soma, T. Oda, “Multi-excitation of spatial modes using single spatial light modulator for mode division multiplexing,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Los Angeles, CA, March4–8, 2012, paper JW2A.38.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Experimental system setup for considered end-to-end real-time dual-band OOFDM MMF systems.

Fig. 2.
Fig. 2.

Adaptively loaded optimum subcarrier bit allocation profile for two OFDM subbands for 20.125 Gb / s over 800 m OM2 MMF systems.

Fig. 3.
Fig. 3.

Relative transmitted and received subcarrier powers and normalized system frequency responses for both subbands.

Fig. 4.
Fig. 4.

(a) Measured baseband and passband BER performances as a function of ROP for 20.125 Gb / s OBTB and 800 m OM2 MMF. (b) Corresponding BER performances of the baseband (passband) with passband (baseband) being switched off for the 800 m OM2 MMF system.

Fig. 5.
Fig. 5.

Typical subcarrier error distribution for the 20.125 Gb / s over 800 m dual-band OOFDM OM2 MMF system (BB: baseband, PB: passband).

Fig. 6.
Fig. 6.

Representative received subcarrier constellations before channel equalization for the baseband and passband after 20.125 Gb / s dual-band OOFDM transmission over the 800 m OM2 MMF system (BB: baseband, PB: passband).

Fig. 7.
Fig. 7.

Measured system frequency responses for OM1 MMF systems of different lengths including 100, 300, 500, 800, and 1000 m.

Fig. 8.
Fig. 8.

Measured system frequency responses for OM2 MMF systems of different lengths including 100, 300, 500, 800, and 1000 m.

Fig. 9.
Fig. 9.

Adaptively loaded optimum subcarrier bit allocation profiles for the baseband subband for transmission over 100, 300, 500, 800, and 1000 m OM1 MMFs.

Fig. 10.
Fig. 10.

Relative transmitted and received subcarrier powers for the baseband subband for transmission over 100, 300, 500, 800, and 1000 m OM1 MMFs.

Fig. 11.
Fig. 11.

BER performances as a function of ROP for (a) baseband OBTB and 100–1000 m OM1 MMFs, and (b) passband OBTB and 100–1000 m OM1 MMFs.

Fig. 12.
Fig. 12.

BER performances as a function of ROP for (a) baseband OBTB and 100–1000 m OM2 MMFs, and (b) passband OBTB and 100–1000 m OM2 MMFs.

Fig. 13.
Fig. 13.

MMF length-dependent power penalties for different subbands and MMF types (OM1 and OM2).

Fig. 14.
Fig. 14.

Capacity versus reach performances of dual-band OOFDM signals over MMF systems consisting of different MMF types.

Tables (2)

Tables Icon

TABLE I Transceiver and System Parameters

Tables Icon

TABLE II Maximum Capacity Versus Reach Performances for Different MMF Types