Abstract

Extensive research has been carried out on the performance investigation of two-dimensional wavelength hopping/time spreading optical code division multiple access (OCDMA) codes, which are based on picosecond multiwavelength pulses under the influence of temperature variations resulting from changing environmental conditions. Equations have been derived to theoretically evaluate the extent to which such temperature changes will degrade the overall OCDMA system performance. To mitigate these negative effects on the OCDMA system, several steps have been introduced to improve the code robustness. System design improvements have then been investigated. We also found they would help to improve the spectral efficiency.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol., vol. 12, no. 8, pp. 1338–1342, Aug.1994.
    [CrossRef]
  2. T. Kato, Y. Koyano, and M. Nishimura, “Temperature dependence of chromatic dispersion in various types of optical fiber,” Opt. Lett., vol. 25, pp. 1156–1158, 2000.
    [CrossRef] [PubMed]
  3. E. K. H. Ng, G. E. Weichenberg, and E. H. Sargent, “Dispersion in multi-wavelength optical code division multiple access systems: Impact and remedies,” IEEE Trans. Commun., vol. 50, no. 11, pp. 1811–1816, Nov.2002.
    [CrossRef]
  4. H. C. Ji, J. H. Lee, and Y. C. Chung, “System outage probability due to dispersion variation caused by seasonal and regional temperature variations,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2005, OME79.
  5. C.-S. Brès, I. Glesk, and P. R. Prucnal, “Demonstration of a transparent router for wavelength-hopping time-spreading optical CDMA,” Opt. Commun., vol. 254, pp. 58–66, 2005.
    [CrossRef]
  6. C.-S. Brès, Y.-K. Huang, I. Glesk, and P. R. Prucnal, “Scalable asynchronous incoherent optical CDMA,” J. Opt. Netw., vol. 6, no. 6, pp. 599–615, June2007.
    [CrossRef]
  7. V. Baby, C.-S. Brès, L. Xu, I. Glesk, and P. R. Prucnal, “Demonstration of differentiated service provisioning with 4-node 253 Gchip/s fast frequency hopping time spreading OCDMA,” Electron. Lett., vol. 40, no. 12, pp. 755–756, 2006.
    [CrossRef]
  8. N. Minato, H. Tami, H. Iwamura, S. Kutsuzawa, S. Kobayashi, K. Sasaki, and A. Nishiki, “Demonstration of 10 Gbit/s-based time-spreading and wavelength-hopping optical-code-division-multiplexing using fiber-Bragg-grating en/decoder,” IEICE Trans. Commun., vol. E88-B, no. 10, pp. 3848–3854, Oct.2005.
    [CrossRef]
  9. V. Jyoti and R. S. Kaler, “Design and implementation of 2-dimensional wavelength/time codes for OCDMA,” Optik: Int. J. Light Electron. Opt., vol. 122, no. 10, pp. 851–857, 2010.
    [CrossRef]
  10. G.-C. Yang and W. C. Kwong, Prime Codes With Applications to CDMA Optical and Wireless Networks. Artech House, Norwood, MA, 2002.
  11. P. R. Prucnal, Optical CDMA: Fundamentals and Applications. Taylor & Francis Books, New York, 2006.
  12. C.-H. Hsieh, G.-C. Yang, C.-Y. Chang, and W. C. Kwong, “Multilevel prime codes for optical CDMA systems,” J. Opt. Commun. Netw., vol. 1, no. 7, pp. 600–607, Dec.2009.
    [CrossRef]
  13. A. Walter and G. S. Schaefer, “Chromatic dispersion variations in ultra-long-haul transmission systems arising from seasonal soil temperature variations,” in Optical Fiber Communication Conf. and Exhibit (OFC 2002), 2002, pp. 332–333.
  14. V. Baby, C.-S. Bres, I. Glesk, L. Xu, and P. R. Prucnal, “Wavelength aware receiver for enhanced 2D OCDMA system performance,” Electron. Lett., vol. 40, no. 6, pp. 385–387, Mar.2004.
    [CrossRef]
  15. C.-S. Bres, Y.-K. Huang, D. Rand, I. Glesk, P. R. Prucnal, T. M. Bazan, C. Michie, D. Harle, and I. Andonovic, “On the experimental characterization of beat noise in 2-D time-spreading wavelength-hopping OCDMA systems,” IEEE Photon. Technol. Lett., vol. 18, no. 21, pp. 2314–2316, Nov.2006.
    [CrossRef]
  16. X. Wang and K. Kitayama, “Analysis of beat noise in coherent and incoherent time-spreading OCDMA,” J. Lightwave Technol., vol. 22, no. 10, pp. 2226–2235, Oct.2004.
    [CrossRef]
  17. M. Rochette and L. A. Rusch, “Spectral efficiency of OCDMA systems with coherent pulsed sources,” J. Lightwave Technol., vol. 23, no. 3, pp. 1033–1038, Mar.2005.
    [CrossRef]

2010 (1)

V. Jyoti and R. S. Kaler, “Design and implementation of 2-dimensional wavelength/time codes for OCDMA,” Optik: Int. J. Light Electron. Opt., vol. 122, no. 10, pp. 851–857, 2010.
[CrossRef]

2009 (1)

2007 (1)

2006 (2)

C.-S. Bres, Y.-K. Huang, D. Rand, I. Glesk, P. R. Prucnal, T. M. Bazan, C. Michie, D. Harle, and I. Andonovic, “On the experimental characterization of beat noise in 2-D time-spreading wavelength-hopping OCDMA systems,” IEEE Photon. Technol. Lett., vol. 18, no. 21, pp. 2314–2316, Nov.2006.
[CrossRef]

V. Baby, C.-S. Brès, L. Xu, I. Glesk, and P. R. Prucnal, “Demonstration of differentiated service provisioning with 4-node 253 Gchip/s fast frequency hopping time spreading OCDMA,” Electron. Lett., vol. 40, no. 12, pp. 755–756, 2006.
[CrossRef]

2005 (3)

N. Minato, H. Tami, H. Iwamura, S. Kutsuzawa, S. Kobayashi, K. Sasaki, and A. Nishiki, “Demonstration of 10 Gbit/s-based time-spreading and wavelength-hopping optical-code-division-multiplexing using fiber-Bragg-grating en/decoder,” IEICE Trans. Commun., vol. E88-B, no. 10, pp. 3848–3854, Oct.2005.
[CrossRef]

M. Rochette and L. A. Rusch, “Spectral efficiency of OCDMA systems with coherent pulsed sources,” J. Lightwave Technol., vol. 23, no. 3, pp. 1033–1038, Mar.2005.
[CrossRef]

C.-S. Brès, I. Glesk, and P. R. Prucnal, “Demonstration of a transparent router for wavelength-hopping time-spreading optical CDMA,” Opt. Commun., vol. 254, pp. 58–66, 2005.
[CrossRef]

2004 (2)

X. Wang and K. Kitayama, “Analysis of beat noise in coherent and incoherent time-spreading OCDMA,” J. Lightwave Technol., vol. 22, no. 10, pp. 2226–2235, Oct.2004.
[CrossRef]

V. Baby, C.-S. Bres, I. Glesk, L. Xu, and P. R. Prucnal, “Wavelength aware receiver for enhanced 2D OCDMA system performance,” Electron. Lett., vol. 40, no. 6, pp. 385–387, Mar.2004.
[CrossRef]

2002 (1)

E. K. H. Ng, G. E. Weichenberg, and E. H. Sargent, “Dispersion in multi-wavelength optical code division multiple access systems: Impact and remedies,” IEEE Trans. Commun., vol. 50, no. 11, pp. 1811–1816, Nov.2002.
[CrossRef]

2000 (1)

1994 (1)

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol., vol. 12, no. 8, pp. 1338–1342, Aug.1994.
[CrossRef]

Andonovic, I.

C.-S. Bres, Y.-K. Huang, D. Rand, I. Glesk, P. R. Prucnal, T. M. Bazan, C. Michie, D. Harle, and I. Andonovic, “On the experimental characterization of beat noise in 2-D time-spreading wavelength-hopping OCDMA systems,” IEEE Photon. Technol. Lett., vol. 18, no. 21, pp. 2314–2316, Nov.2006.
[CrossRef]

Baby, V.

V. Baby, C.-S. Brès, L. Xu, I. Glesk, and P. R. Prucnal, “Demonstration of differentiated service provisioning with 4-node 253 Gchip/s fast frequency hopping time spreading OCDMA,” Electron. Lett., vol. 40, no. 12, pp. 755–756, 2006.
[CrossRef]

V. Baby, C.-S. Bres, I. Glesk, L. Xu, and P. R. Prucnal, “Wavelength aware receiver for enhanced 2D OCDMA system performance,” Electron. Lett., vol. 40, no. 6, pp. 385–387, Mar.2004.
[CrossRef]

Bazan, T. M.

C.-S. Bres, Y.-K. Huang, D. Rand, I. Glesk, P. R. Prucnal, T. M. Bazan, C. Michie, D. Harle, and I. Andonovic, “On the experimental characterization of beat noise in 2-D time-spreading wavelength-hopping OCDMA systems,” IEEE Photon. Technol. Lett., vol. 18, no. 21, pp. 2314–2316, Nov.2006.
[CrossRef]

Bres, C.-S.

C.-S. Bres, Y.-K. Huang, D. Rand, I. Glesk, P. R. Prucnal, T. M. Bazan, C. Michie, D. Harle, and I. Andonovic, “On the experimental characterization of beat noise in 2-D time-spreading wavelength-hopping OCDMA systems,” IEEE Photon. Technol. Lett., vol. 18, no. 21, pp. 2314–2316, Nov.2006.
[CrossRef]

V. Baby, C.-S. Bres, I. Glesk, L. Xu, and P. R. Prucnal, “Wavelength aware receiver for enhanced 2D OCDMA system performance,” Electron. Lett., vol. 40, no. 6, pp. 385–387, Mar.2004.
[CrossRef]

Brès, C.-S.

C.-S. Brès, Y.-K. Huang, I. Glesk, and P. R. Prucnal, “Scalable asynchronous incoherent optical CDMA,” J. Opt. Netw., vol. 6, no. 6, pp. 599–615, June2007.
[CrossRef]

V. Baby, C.-S. Brès, L. Xu, I. Glesk, and P. R. Prucnal, “Demonstration of differentiated service provisioning with 4-node 253 Gchip/s fast frequency hopping time spreading OCDMA,” Electron. Lett., vol. 40, no. 12, pp. 755–756, 2006.
[CrossRef]

C.-S. Brès, I. Glesk, and P. R. Prucnal, “Demonstration of a transparent router for wavelength-hopping time-spreading optical CDMA,” Opt. Commun., vol. 254, pp. 58–66, 2005.
[CrossRef]

Chang, C.-Y.

Chung, Y. C.

H. C. Ji, J. H. Lee, and Y. C. Chung, “System outage probability due to dispersion variation caused by seasonal and regional temperature variations,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2005, OME79.

Endo, M.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol., vol. 12, no. 8, pp. 1338–1342, Aug.1994.
[CrossRef]

Ghosh, G.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol., vol. 12, no. 8, pp. 1338–1342, Aug.1994.
[CrossRef]

Glesk, I.

C.-S. Brès, Y.-K. Huang, I. Glesk, and P. R. Prucnal, “Scalable asynchronous incoherent optical CDMA,” J. Opt. Netw., vol. 6, no. 6, pp. 599–615, June2007.
[CrossRef]

C.-S. Bres, Y.-K. Huang, D. Rand, I. Glesk, P. R. Prucnal, T. M. Bazan, C. Michie, D. Harle, and I. Andonovic, “On the experimental characterization of beat noise in 2-D time-spreading wavelength-hopping OCDMA systems,” IEEE Photon. Technol. Lett., vol. 18, no. 21, pp. 2314–2316, Nov.2006.
[CrossRef]

V. Baby, C.-S. Brès, L. Xu, I. Glesk, and P. R. Prucnal, “Demonstration of differentiated service provisioning with 4-node 253 Gchip/s fast frequency hopping time spreading OCDMA,” Electron. Lett., vol. 40, no. 12, pp. 755–756, 2006.
[CrossRef]

C.-S. Brès, I. Glesk, and P. R. Prucnal, “Demonstration of a transparent router for wavelength-hopping time-spreading optical CDMA,” Opt. Commun., vol. 254, pp. 58–66, 2005.
[CrossRef]

V. Baby, C.-S. Bres, I. Glesk, L. Xu, and P. R. Prucnal, “Wavelength aware receiver for enhanced 2D OCDMA system performance,” Electron. Lett., vol. 40, no. 6, pp. 385–387, Mar.2004.
[CrossRef]

Harle, D.

C.-S. Bres, Y.-K. Huang, D. Rand, I. Glesk, P. R. Prucnal, T. M. Bazan, C. Michie, D. Harle, and I. Andonovic, “On the experimental characterization of beat noise in 2-D time-spreading wavelength-hopping OCDMA systems,” IEEE Photon. Technol. Lett., vol. 18, no. 21, pp. 2314–2316, Nov.2006.
[CrossRef]

Hsieh, C.-H.

Huang, Y.-K.

C.-S. Brès, Y.-K. Huang, I. Glesk, and P. R. Prucnal, “Scalable asynchronous incoherent optical CDMA,” J. Opt. Netw., vol. 6, no. 6, pp. 599–615, June2007.
[CrossRef]

C.-S. Bres, Y.-K. Huang, D. Rand, I. Glesk, P. R. Prucnal, T. M. Bazan, C. Michie, D. Harle, and I. Andonovic, “On the experimental characterization of beat noise in 2-D time-spreading wavelength-hopping OCDMA systems,” IEEE Photon. Technol. Lett., vol. 18, no. 21, pp. 2314–2316, Nov.2006.
[CrossRef]

Iwamura, H.

N. Minato, H. Tami, H. Iwamura, S. Kutsuzawa, S. Kobayashi, K. Sasaki, and A. Nishiki, “Demonstration of 10 Gbit/s-based time-spreading and wavelength-hopping optical-code-division-multiplexing using fiber-Bragg-grating en/decoder,” IEICE Trans. Commun., vol. E88-B, no. 10, pp. 3848–3854, Oct.2005.
[CrossRef]

Iwasaki, T.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol., vol. 12, no. 8, pp. 1338–1342, Aug.1994.
[CrossRef]

Ji, H. C.

H. C. Ji, J. H. Lee, and Y. C. Chung, “System outage probability due to dispersion variation caused by seasonal and regional temperature variations,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2005, OME79.

Jyoti, V.

V. Jyoti and R. S. Kaler, “Design and implementation of 2-dimensional wavelength/time codes for OCDMA,” Optik: Int. J. Light Electron. Opt., vol. 122, no. 10, pp. 851–857, 2010.
[CrossRef]

Kaler, R. S.

V. Jyoti and R. S. Kaler, “Design and implementation of 2-dimensional wavelength/time codes for OCDMA,” Optik: Int. J. Light Electron. Opt., vol. 122, no. 10, pp. 851–857, 2010.
[CrossRef]

Kato, T.

Kitayama, K.

Kobayashi, S.

N. Minato, H. Tami, H. Iwamura, S. Kutsuzawa, S. Kobayashi, K. Sasaki, and A. Nishiki, “Demonstration of 10 Gbit/s-based time-spreading and wavelength-hopping optical-code-division-multiplexing using fiber-Bragg-grating en/decoder,” IEICE Trans. Commun., vol. E88-B, no. 10, pp. 3848–3854, Oct.2005.
[CrossRef]

Koyano, Y.

Kutsuzawa, S.

N. Minato, H. Tami, H. Iwamura, S. Kutsuzawa, S. Kobayashi, K. Sasaki, and A. Nishiki, “Demonstration of 10 Gbit/s-based time-spreading and wavelength-hopping optical-code-division-multiplexing using fiber-Bragg-grating en/decoder,” IEICE Trans. Commun., vol. E88-B, no. 10, pp. 3848–3854, Oct.2005.
[CrossRef]

Kwong, W. C.

C.-H. Hsieh, G.-C. Yang, C.-Y. Chang, and W. C. Kwong, “Multilevel prime codes for optical CDMA systems,” J. Opt. Commun. Netw., vol. 1, no. 7, pp. 600–607, Dec.2009.
[CrossRef]

G.-C. Yang and W. C. Kwong, Prime Codes With Applications to CDMA Optical and Wireless Networks. Artech House, Norwood, MA, 2002.

Lee, J. H.

H. C. Ji, J. H. Lee, and Y. C. Chung, “System outage probability due to dispersion variation caused by seasonal and regional temperature variations,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2005, OME79.

Michie, C.

C.-S. Bres, Y.-K. Huang, D. Rand, I. Glesk, P. R. Prucnal, T. M. Bazan, C. Michie, D. Harle, and I. Andonovic, “On the experimental characterization of beat noise in 2-D time-spreading wavelength-hopping OCDMA systems,” IEEE Photon. Technol. Lett., vol. 18, no. 21, pp. 2314–2316, Nov.2006.
[CrossRef]

Minato, N.

N. Minato, H. Tami, H. Iwamura, S. Kutsuzawa, S. Kobayashi, K. Sasaki, and A. Nishiki, “Demonstration of 10 Gbit/s-based time-spreading and wavelength-hopping optical-code-division-multiplexing using fiber-Bragg-grating en/decoder,” IEICE Trans. Commun., vol. E88-B, no. 10, pp. 3848–3854, Oct.2005.
[CrossRef]

Ng, E. K. H.

E. K. H. Ng, G. E. Weichenberg, and E. H. Sargent, “Dispersion in multi-wavelength optical code division multiple access systems: Impact and remedies,” IEEE Trans. Commun., vol. 50, no. 11, pp. 1811–1816, Nov.2002.
[CrossRef]

Nishiki, A.

N. Minato, H. Tami, H. Iwamura, S. Kutsuzawa, S. Kobayashi, K. Sasaki, and A. Nishiki, “Demonstration of 10 Gbit/s-based time-spreading and wavelength-hopping optical-code-division-multiplexing using fiber-Bragg-grating en/decoder,” IEICE Trans. Commun., vol. E88-B, no. 10, pp. 3848–3854, Oct.2005.
[CrossRef]

Nishimura, M.

Prucnal, P. R.

C.-S. Brès, Y.-K. Huang, I. Glesk, and P. R. Prucnal, “Scalable asynchronous incoherent optical CDMA,” J. Opt. Netw., vol. 6, no. 6, pp. 599–615, June2007.
[CrossRef]

C.-S. Bres, Y.-K. Huang, D. Rand, I. Glesk, P. R. Prucnal, T. M. Bazan, C. Michie, D. Harle, and I. Andonovic, “On the experimental characterization of beat noise in 2-D time-spreading wavelength-hopping OCDMA systems,” IEEE Photon. Technol. Lett., vol. 18, no. 21, pp. 2314–2316, Nov.2006.
[CrossRef]

V. Baby, C.-S. Brès, L. Xu, I. Glesk, and P. R. Prucnal, “Demonstration of differentiated service provisioning with 4-node 253 Gchip/s fast frequency hopping time spreading OCDMA,” Electron. Lett., vol. 40, no. 12, pp. 755–756, 2006.
[CrossRef]

C.-S. Brès, I. Glesk, and P. R. Prucnal, “Demonstration of a transparent router for wavelength-hopping time-spreading optical CDMA,” Opt. Commun., vol. 254, pp. 58–66, 2005.
[CrossRef]

V. Baby, C.-S. Bres, I. Glesk, L. Xu, and P. R. Prucnal, “Wavelength aware receiver for enhanced 2D OCDMA system performance,” Electron. Lett., vol. 40, no. 6, pp. 385–387, Mar.2004.
[CrossRef]

P. R. Prucnal, Optical CDMA: Fundamentals and Applications. Taylor & Francis Books, New York, 2006.

Rand, D.

C.-S. Bres, Y.-K. Huang, D. Rand, I. Glesk, P. R. Prucnal, T. M. Bazan, C. Michie, D. Harle, and I. Andonovic, “On the experimental characterization of beat noise in 2-D time-spreading wavelength-hopping OCDMA systems,” IEEE Photon. Technol. Lett., vol. 18, no. 21, pp. 2314–2316, Nov.2006.
[CrossRef]

Rochette, M.

Rusch, L. A.

Sargent, E. H.

E. K. H. Ng, G. E. Weichenberg, and E. H. Sargent, “Dispersion in multi-wavelength optical code division multiple access systems: Impact and remedies,” IEEE Trans. Commun., vol. 50, no. 11, pp. 1811–1816, Nov.2002.
[CrossRef]

Sasaki, K.

N. Minato, H. Tami, H. Iwamura, S. Kutsuzawa, S. Kobayashi, K. Sasaki, and A. Nishiki, “Demonstration of 10 Gbit/s-based time-spreading and wavelength-hopping optical-code-division-multiplexing using fiber-Bragg-grating en/decoder,” IEICE Trans. Commun., vol. E88-B, no. 10, pp. 3848–3854, Oct.2005.
[CrossRef]

Schaefer, G. S.

A. Walter and G. S. Schaefer, “Chromatic dispersion variations in ultra-long-haul transmission systems arising from seasonal soil temperature variations,” in Optical Fiber Communication Conf. and Exhibit (OFC 2002), 2002, pp. 332–333.

Tami, H.

N. Minato, H. Tami, H. Iwamura, S. Kutsuzawa, S. Kobayashi, K. Sasaki, and A. Nishiki, “Demonstration of 10 Gbit/s-based time-spreading and wavelength-hopping optical-code-division-multiplexing using fiber-Bragg-grating en/decoder,” IEICE Trans. Commun., vol. E88-B, no. 10, pp. 3848–3854, Oct.2005.
[CrossRef]

Walter, A.

A. Walter and G. S. Schaefer, “Chromatic dispersion variations in ultra-long-haul transmission systems arising from seasonal soil temperature variations,” in Optical Fiber Communication Conf. and Exhibit (OFC 2002), 2002, pp. 332–333.

Wang, X.

Weichenberg, G. E.

E. K. H. Ng, G. E. Weichenberg, and E. H. Sargent, “Dispersion in multi-wavelength optical code division multiple access systems: Impact and remedies,” IEEE Trans. Commun., vol. 50, no. 11, pp. 1811–1816, Nov.2002.
[CrossRef]

Xu, L.

V. Baby, C.-S. Brès, L. Xu, I. Glesk, and P. R. Prucnal, “Demonstration of differentiated service provisioning with 4-node 253 Gchip/s fast frequency hopping time spreading OCDMA,” Electron. Lett., vol. 40, no. 12, pp. 755–756, 2006.
[CrossRef]

V. Baby, C.-S. Bres, I. Glesk, L. Xu, and P. R. Prucnal, “Wavelength aware receiver for enhanced 2D OCDMA system performance,” Electron. Lett., vol. 40, no. 6, pp. 385–387, Mar.2004.
[CrossRef]

Yang, G.-C.

C.-H. Hsieh, G.-C. Yang, C.-Y. Chang, and W. C. Kwong, “Multilevel prime codes for optical CDMA systems,” J. Opt. Commun. Netw., vol. 1, no. 7, pp. 600–607, Dec.2009.
[CrossRef]

G.-C. Yang and W. C. Kwong, Prime Codes With Applications to CDMA Optical and Wireless Networks. Artech House, Norwood, MA, 2002.

Electron. Lett. (2)

V. Baby, C.-S. Brès, L. Xu, I. Glesk, and P. R. Prucnal, “Demonstration of differentiated service provisioning with 4-node 253 Gchip/s fast frequency hopping time spreading OCDMA,” Electron. Lett., vol. 40, no. 12, pp. 755–756, 2006.
[CrossRef]

V. Baby, C.-S. Bres, I. Glesk, L. Xu, and P. R. Prucnal, “Wavelength aware receiver for enhanced 2D OCDMA system performance,” Electron. Lett., vol. 40, no. 6, pp. 385–387, Mar.2004.
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C.-S. Bres, Y.-K. Huang, D. Rand, I. Glesk, P. R. Prucnal, T. M. Bazan, C. Michie, D. Harle, and I. Andonovic, “On the experimental characterization of beat noise in 2-D time-spreading wavelength-hopping OCDMA systems,” IEEE Photon. Technol. Lett., vol. 18, no. 21, pp. 2314–2316, Nov.2006.
[CrossRef]

IEEE Trans. Commun. (1)

E. K. H. Ng, G. E. Weichenberg, and E. H. Sargent, “Dispersion in multi-wavelength optical code division multiple access systems: Impact and remedies,” IEEE Trans. Commun., vol. 50, no. 11, pp. 1811–1816, Nov.2002.
[CrossRef]

IEICE Trans. Commun. (1)

N. Minato, H. Tami, H. Iwamura, S. Kutsuzawa, S. Kobayashi, K. Sasaki, and A. Nishiki, “Demonstration of 10 Gbit/s-based time-spreading and wavelength-hopping optical-code-division-multiplexing using fiber-Bragg-grating en/decoder,” IEICE Trans. Commun., vol. E88-B, no. 10, pp. 3848–3854, Oct.2005.
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

J. Opt. Netw. (1)

Opt. Commun. (1)

C.-S. Brès, I. Glesk, and P. R. Prucnal, “Demonstration of a transparent router for wavelength-hopping time-spreading optical CDMA,” Opt. Commun., vol. 254, pp. 58–66, 2005.
[CrossRef]

Opt. Lett. (1)

Optik: Int. J. Light Electron. Opt. (1)

V. Jyoti and R. S. Kaler, “Design and implementation of 2-dimensional wavelength/time codes for OCDMA,” Optik: Int. J. Light Electron. Opt., vol. 122, no. 10, pp. 851–857, 2010.
[CrossRef]

Other (4)

G.-C. Yang and W. C. Kwong, Prime Codes With Applications to CDMA Optical and Wireless Networks. Artech House, Norwood, MA, 2002.

P. R. Prucnal, Optical CDMA: Fundamentals and Applications. Taylor & Francis Books, New York, 2006.

A. Walter and G. S. Schaefer, “Chromatic dispersion variations in ultra-long-haul transmission systems arising from seasonal soil temperature variations,” in Optical Fiber Communication Conf. and Exhibit (OFC 2002), 2002, pp. 332–333.

H. C. Ji, J. H. Lee, and Y. C. Chung, “System outage probability due to dispersion variation caused by seasonal and regional temperature variations,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2005, OME79.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) (a) Decoding of the 2D-WH/TS OCDMA code after its propagation in a fully dispersion compensated fiber link under ideal conditions; (b) code matrix distortion after code propagation when the fiber temperature has changed. The resulting autocorrelation signal is distorted due to a temperature induced temporal skewing effect.

Fig. 2
Fig. 2

Plot of autocorrelation signal formed by decoding OCDMA transmission based on 2D-WH/TS OCDMA codes with 2 ps eight wavelength pulses after experiencing 20 °C temperature variation over a distance of (a) 0 km (back to back), (b) 10 km, (c) 20 km and (d) 40 km. The fiber temperature coefficient used for calculation D temp = 0 . 0025 ps/nmkm/°C [13].

Fig. 3
Fig. 3

(Color online) (a) Maximum obtainable autocorrelation height for an (8200) 2D-WH/TS code as temperature increases over a 10 km and 20 km link. (b) Maximum obtainable autocorrelation height after an (8200) 2D-WH/TS code propagates in a fiber under the influence of environmental temperature swing.

Fig. 4
Fig. 4

(Color online) Performance curves for an (8200) 2D-WH/TS OCDMA system illustrating (a) the case where T is constant, (b) the case where T changes by 20 °C and the code propagation distance is 7 km and (c) the case where T changes by 20 °C and the code propagation distance is 10 km. FEC—forward error correction. FEC can be used to improve the number of simultaneous users.

Fig. 5
Fig. 5

(Color online) Transmission distance against code spectral allocation for a 200 chip OCDMA system using 2D-WH/TS OCDMA codes when the total temperature induced skew is below 1 chip duration. Δ Λ is the wavelength spacing. Code spectral allocation is directly related to the code weight.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ t = D temp × Δ T × Δ Λ × L
Δ τ = D temp × Δ T × Δ λ × L ,
S t ( L ) = k = 0 w 1 P p exp { 2 . 77 [ t k Δ t τ Δ τ ] 2 } .
P e = 1 2 j = 0 t h ( 1 ) j ( w j ) ( 1 j q 1 , 1 w ) K 1 ,
q 1 , 1 = w 2 . N c .