Abstract

We consider channel characterization for underwater wireless optical communication (UWOC) systems. We focus on the channel impulse response and, in particular, quantify the channel time dispersion for different water types, link distances, and transmitter/receiver characteristics, taking into account realistic parameters. We use the Monte Carlo approach to simulate the trajectories of emitted photons propagating in water from the transmitter towards the receiver. During their propagation, photons are absorbed or scattered as a result of their interaction with different particles present in water. To model angle scattering, we use the two-term Henyey–Greenstein model in our channel simulator. We show that this model is more accurate than the commonly used Henyey–Greenstein model, especially in pure sea waters. Through the numerical results that we present, we show that, except for highly turbid waters, the channel time dispersion can be neglected when working over moderate distances. In other words, under such conditions, we do not suffer from any inter-symbol interference in the received signal. Lastly, we study the performance of a typical UWOC system in terms of bit-error-rate using the simple on–off-keying modulation. The presented results give insight into the design of UWOC systems.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. International Sensor Development Network, SENSEnet [Online]. Available: http://www.eu-sensenet.net/.
  2. B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Ocean. Eng., vol. 33, no. 4, pp. 513–521, Oct.2008.
    [CrossRef]
  3. I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: Research challenges,” Ad Hoc Netw., vol. 3, no. 3, pp. 257–279, 2005.
    [CrossRef]
  4. G. Shah, “A survey on medium access control in underwater acoustic sensor networks,” in Int. Conf. Workshops on Advanced Information Networking and Applications (WAINA), Bradford, UK, May 2009, pp. 1178–1183.
  5. F. Pignieri, F. De Rango, F. Veltri, and S. Marano, “Markovian approach to model underwater acoustic channel: Techniques comparison,” in Military Communications Conf. (MILCOM), San Diego, CA, Nov. 2008, pp. 1–7.
  6. F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt., vol. 47, no. 2, pp. 277–283, Jan.2008.
    [CrossRef] [PubMed]
  7. J. W. Giles and I. Bankman, “Underwater optical communcations systems. Part 2: Basic design considerations,” in IEEE Military Communications Conf. (MILCOM), Atlantic City, NJ, Oct. 2005, vol. 3, pp. 1700–1705.
  8. D. Anguita, D. Brizzolara, and G. Parodi, “Building an underwater wireless sensor network based on optical communication: Research challenges and current results,” in Int. Conf. on Sensor Technologies and Applications (SENSORCOMM), Athens, Greece, Aug. 2009, pp. 476–479.
  9. S. Arnon, “Underwater optical wireless communication network,” Opt. Eng., vol. 49, no. 1, pp. 1–6, Jan.2010.
    [CrossRef]
  10. S. Jaruwatanadilok, “Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory,” IEEE J. Sel. Areas Commun., vol. 26, no. 9, pp. 1620–1627, Dec.2008.
    [CrossRef]
  11. C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Channel modeling for underwater optical communication,” in IEEE Workshop on Optical Wireless Communications, Global Communication Conf., Houston, TX, Dec. 2011, pp. 833–837.
  12. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters. Academic Press, June1994.
  13. J. H. Smart, “Underwater optical communications systems. Part 1: Variability of water optical parameters,” in IEEE Military Communications Conf., Atlantic City, NJ, Oct. 2005, vol. 2, pp. 1140–1146.
  14. T. J. Petzold, “Volume scattering functions for selected ocean waters,” Tech. Rep. SIO 7278, Scripps Institute of Oceanography, 1972.
  15. I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke, “Data collection, storage, and retrieval with an underwater sensor network,” in Int. Conf. on Embedded Networked Sensor Systems (SenSys), San Diego, CA, Nov. 2005, pp. 154–165.
  16. I. Vasilescu, C. Detweiler, and D. Rus, “Aquanodes: An underwater sensor network,” in Workshop on Underwater Networks (WuWNet), MobiCom Conf., Montreal, Canada, Sept. 2007, pp. 85–88.
  17. M. Tivey, P. Fucile, and E. Sichel, “A low power, low cost, underwater optical communication system,” Ridge 2000 Events, pp. 27–29, Apr.2004.
  18. F. Schill, U. R. Zimmer, and J. Trumpf, “Visible spectrum optical communication and distance sensing for underwater applications,” in Australian Conf. on Robotics and Automation (ACRA), Canberra, Australia, Dec. 2004.
  19. M. Doniec, I. Vasilescu, M. Chitre, and C. Detweiler, “AquaOptical: A lightweight device for high-rate long-range underwater point-to-point communication,” in IEEE OCEANS Conf., Biloxi, MS, Oct. 2009, pp. 1–6.
  20. J. Lu, S. Lee, J. Mounzer, and C. Schurgers, “Low-cost medium range optical underwater modem,” in ACM Int. Workshop on UnderWater Networks (WUWNet), Berkeley, CA, Nov. 2009.
  21. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt., vol. 32, no. 36, pp. 7484–7504, Dec.1993.
    [CrossRef] [PubMed]
  22. D. J. Bogucki, J. Piskozub, M.-E. Carr, and G. D. Spiers, “Monte Carlo simulation of propagation of a short light beam through turbulent oceanic flow,” Opt. Express, vol. 15, no. 21, pp. 13988–13996, Oct.2007.
    [CrossRef] [PubMed]
  23. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed.SPIE Press, 2005.
  24. M. A. Khalighi, N. Schwartz, N. Aitamer, and S. Bourennane, “Fading reduction by aperture averaging and spatial diversity in optical wireless systems,” J. Opt. Commun. Netw., vol. 1, no. 6, pp. 580–593, Nov.2009.
    [CrossRef]
  25. J. A. Simpson, B. L. Hughes, and J. F. Muth, “A spatial diversity system to measure optical fading in an underwater communications channel,” in IEEE OCEANS Conf., Biloxi, MS, Oct. 2009, pp. 1–6.
  26. F. Hanson and M. Lasher, “Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber,” Appl. Opt., vol. 49, no. 16, pp. 3224–3230, June2010.
    [CrossRef] [PubMed]
  27. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles. Wiley, 1988.
  28. V. I. Haltrin and G. W. Kattawar, “Self-consistent solutions to the equation of transfer with elastic and inelastic scattering in oceanic optics: I. Model,” Appl. Opt., vol. 32, no. 27, pp. 5356–5367, 1993.
    [CrossRef] [PubMed]
  29. V. I. Haltrin, “Chlorophyll-based model of seawater optical properties,” Appl. Opt., vol. 38, no. 33, pp. 6826–6832, Nov.1999.
    [CrossRef] [PubMed]
  30. G. Kervern, “Lidars sous-marins,” Techniques de l’Ingénieur, vol. 6, no. E4325, pp. 1–7, Nov.1997.
  31. A. Ishimaru, Wave Propagation and Scattering in Random Media. IEEE Press, 1997.
  32. L. Wang, S. L. Jacques, and L. Zheng, “MCML, Monte Carlo modeling of light transport in multi-layered tissues,” Tech. Rep., Laser Biology Research Laboratory, University of Texas, M.D. Anderson Cancer Center, Nov.1995.
  33. H. C. van de Hulst, Light Scattering by Small Particles. Dover Publications, 1981.
  34. Yu. I. Kopilevich, M. E. Kononenko, and E. I. Zadorozhnaya, “The effect of the forward-scattering index on the characteristics of a light beam in sea water,” J. Opt. Technol., vol. 77, no. 10, pp. 598–601, Oct.2010.
    [CrossRef]
  35. L. Mullen, D. Alley, and B. Cochenour, “Investigation of the effect of scattering agent and scattering albedo on modulated light propagation in water,” Appl. Opt., vol. 50, no. 10, pp. 1396–1404, Apr.2011.
    [CrossRef] [PubMed]
  36. V. Haltrin, “One-parameter two-term Henyey–Greenstein phase function for ligth scattering in seawater,” Appl. Opt., vol. 41, no. 6, pp. 1022–1028, Feb.2002.
    [CrossRef] [PubMed]
  37. V. I. Haltrin, “Two-term Henyey–Greenstein light scattering phase function for seawater,” in Int. Geoscience and Remote Sensing Symp. (IGARSS), Hamburg, Germany, June–July 1999, pp. 1423–1425.
  38. V. Timofeyeva, “Relation between light-field parameters and between scattering phase function characteristics of turbid media, including seawater,” Izv., Acad. Sci. USSR, Atmos. Ocean Phys., vol. 14, pp. 834–848, 1978.
  39. J. D. Gibson, Ed., Mobile Communications Handbook, 2nd ed.CRC Press, 1999.
  40. B. Cochenour, L. Mullen, and J. Muth, “Effect of scattering albedo on attenuation and polarization of light underwater,” Opt. Lett., vol. 35, no. 12, pp. 2088–2090, June2010.
    [CrossRef] [PubMed]
  41. F. Xu, M. A. Khalighi, and S. Bourennane, “Impact of different noise sources on the performance of PIN- and APD-based FSO receivers,” in COST IC0802 Workshop, IEEE ConTEL Conf., Graz, Austria, June 2011, pp. 279–286.
  42. M. A. Khalighi, F. Xu, Y. Jaafar, and S. Bourennane, “Double-laser differential signaling for reducing the effect of background radiation in free-space optical systems,” J. Opt. Commun. Netw., vol. 3, no. 2, pp. 145–154, Feb.2011.
    [CrossRef]
  43. M. Katz, Introduction to Geometrical Optics. World Scientific, 2002.
  44. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. Wiley, 1991.
  45. Hamamatsu Opto-semiconductor Products [Online]. Available: http://jp.hamamatsu.com/products/sensor-ssd/index_en.html.
  46. D. G. Steel and L. Bayvel, Eds., Encyclopedia of Modern Optics. vol. 1, Elsevier, 2004.
  47. K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun., vol. 53, no. 9, pp. 1455–1461, Sept.2005.
    [CrossRef]

2011 (2)

2010 (4)

2009 (1)

2008 (3)

S. Jaruwatanadilok, “Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory,” IEEE J. Sel. Areas Commun., vol. 26, no. 9, pp. 1620–1627, Dec.2008.
[CrossRef]

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Ocean. Eng., vol. 33, no. 4, pp. 513–521, Oct.2008.
[CrossRef]

F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt., vol. 47, no. 2, pp. 277–283, Jan.2008.
[CrossRef] [PubMed]

2007 (1)

2005 (2)

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: Research challenges,” Ad Hoc Netw., vol. 3, no. 3, pp. 257–279, 2005.
[CrossRef]

K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun., vol. 53, no. 9, pp. 1455–1461, Sept.2005.
[CrossRef]

2004 (1)

M. Tivey, P. Fucile, and E. Sichel, “A low power, low cost, underwater optical communication system,” Ridge 2000 Events, pp. 27–29, Apr.2004.

2002 (1)

1999 (1)

1997 (1)

G. Kervern, “Lidars sous-marins,” Techniques de l’Ingénieur, vol. 6, no. E4325, pp. 1–7, Nov.1997.

1993 (2)

1978 (1)

V. Timofeyeva, “Relation between light-field parameters and between scattering phase function characteristics of turbid media, including seawater,” Izv., Acad. Sci. USSR, Atmos. Ocean Phys., vol. 14, pp. 834–848, 1978.

Aitamer, N.

Akyildiz, I. F.

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: Research challenges,” Ad Hoc Netw., vol. 3, no. 3, pp. 257–279, 2005.
[CrossRef]

Alley, D.

Andrews, L. C.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed.SPIE Press, 2005.

Anguita, D.

D. Anguita, D. Brizzolara, and G. Parodi, “Building an underwater wireless sensor network based on optical communication: Research challenges and current results,” in Int. Conf. on Sensor Technologies and Applications (SENSORCOMM), Athens, Greece, Aug. 2009, pp. 476–479.

Arnon, S.

S. Arnon, “Underwater optical wireless communication network,” Opt. Eng., vol. 49, no. 1, pp. 1–6, Jan.2010.
[CrossRef]

Bankman, I.

J. W. Giles and I. Bankman, “Underwater optical communcations systems. Part 2: Basic design considerations,” in IEEE Military Communications Conf. (MILCOM), Atlantic City, NJ, Oct. 2005, vol. 3, pp. 1700–1705.

Bogucki, D. J.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles. Wiley, 1988.

Bourennane, S.

M. A. Khalighi, F. Xu, Y. Jaafar, and S. Bourennane, “Double-laser differential signaling for reducing the effect of background radiation in free-space optical systems,” J. Opt. Commun. Netw., vol. 3, no. 2, pp. 145–154, Feb.2011.
[CrossRef]

M. A. Khalighi, N. Schwartz, N. Aitamer, and S. Bourennane, “Fading reduction by aperture averaging and spatial diversity in optical wireless systems,” J. Opt. Commun. Netw., vol. 1, no. 6, pp. 580–593, Nov.2009.
[CrossRef]

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Channel modeling for underwater optical communication,” in IEEE Workshop on Optical Wireless Communications, Global Communication Conf., Houston, TX, Dec. 2011, pp. 833–837.

F. Xu, M. A. Khalighi, and S. Bourennane, “Impact of different noise sources on the performance of PIN- and APD-based FSO receivers,” in COST IC0802 Workshop, IEEE ConTEL Conf., Graz, Austria, June 2011, pp. 279–286.

Brizzolara, D.

D. Anguita, D. Brizzolara, and G. Parodi, “Building an underwater wireless sensor network based on optical communication: Research challenges and current results,” in Int. Conf. on Sensor Technologies and Applications (SENSORCOMM), Athens, Greece, Aug. 2009, pp. 476–479.

Carr, M.-E.

Chitre, M.

M. Doniec, I. Vasilescu, M. Chitre, and C. Detweiler, “AquaOptical: A lightweight device for high-rate long-range underwater point-to-point communication,” in IEEE OCEANS Conf., Biloxi, MS, Oct. 2009, pp. 1–6.

Cochenour, B.

Cochenour, B. M.

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Ocean. Eng., vol. 33, no. 4, pp. 513–521, Oct.2008.
[CrossRef]

Corke, P.

I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke, “Data collection, storage, and retrieval with an underwater sensor network,” in Int. Conf. on Embedded Networked Sensor Systems (SenSys), San Diego, CA, Nov. 2005, pp. 154–165.

De Rango, F.

F. Pignieri, F. De Rango, F. Veltri, and S. Marano, “Markovian approach to model underwater acoustic channel: Techniques comparison,” in Military Communications Conf. (MILCOM), San Diego, CA, Nov. 2008, pp. 1–7.

Detweiler, C.

M. Doniec, I. Vasilescu, M. Chitre, and C. Detweiler, “AquaOptical: A lightweight device for high-rate long-range underwater point-to-point communication,” in IEEE OCEANS Conf., Biloxi, MS, Oct. 2009, pp. 1–6.

I. Vasilescu, C. Detweiler, and D. Rus, “Aquanodes: An underwater sensor network,” in Workshop on Underwater Networks (WuWNet), MobiCom Conf., Montreal, Canada, Sept. 2007, pp. 85–88.

Doniec, M.

M. Doniec, I. Vasilescu, M. Chitre, and C. Detweiler, “AquaOptical: A lightweight device for high-rate long-range underwater point-to-point communication,” in IEEE OCEANS Conf., Biloxi, MS, Oct. 2009, pp. 1–6.

Dunbabin, M.

I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke, “Data collection, storage, and retrieval with an underwater sensor network,” in Int. Conf. on Embedded Networked Sensor Systems (SenSys), San Diego, CA, Nov. 2005, pp. 154–165.

Fucile, P.

M. Tivey, P. Fucile, and E. Sichel, “A low power, low cost, underwater optical communication system,” Ridge 2000 Events, pp. 27–29, Apr.2004.

Gabriel, C.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Channel modeling for underwater optical communication,” in IEEE Workshop on Optical Wireless Communications, Global Communication Conf., Houston, TX, Dec. 2011, pp. 833–837.

Gentili, B.

Giles, J. W.

J. W. Giles and I. Bankman, “Underwater optical communcations systems. Part 2: Basic design considerations,” in IEEE Military Communications Conf. (MILCOM), Atlantic City, NJ, Oct. 2005, vol. 3, pp. 1700–1705.

Gordon, H. R.

Haltrin, V.

Haltrin, V. I.

Hanson, F.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles. Wiley, 1988.

Hughes, B. L.

J. A. Simpson, B. L. Hughes, and J. F. Muth, “A spatial diversity system to measure optical fading in an underwater communications channel,” in IEEE OCEANS Conf., Biloxi, MS, Oct. 2009, pp. 1–6.

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media. IEEE Press, 1997.

Jaafar, Y.

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML, Monte Carlo modeling of light transport in multi-layered tissues,” Tech. Rep., Laser Biology Research Laboratory, University of Texas, M.D. Anderson Cancer Center, Nov.1995.

Jaruwatanadilok, S.

S. Jaruwatanadilok, “Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory,” IEEE J. Sel. Areas Commun., vol. 26, no. 9, pp. 1620–1627, Dec.2008.
[CrossRef]

Jin, Z.

Kattawar, G. W.

Katz, M.

M. Katz, Introduction to Geometrical Optics. World Scientific, 2002.

Kervern, G.

G. Kervern, “Lidars sous-marins,” Techniques de l’Ingénieur, vol. 6, no. E4325, pp. 1–7, Nov.1997.

Khalighi, M. A.

M. A. Khalighi, F. Xu, Y. Jaafar, and S. Bourennane, “Double-laser differential signaling for reducing the effect of background radiation in free-space optical systems,” J. Opt. Commun. Netw., vol. 3, no. 2, pp. 145–154, Feb.2011.
[CrossRef]

M. A. Khalighi, N. Schwartz, N. Aitamer, and S. Bourennane, “Fading reduction by aperture averaging and spatial diversity in optical wireless systems,” J. Opt. Commun. Netw., vol. 1, no. 6, pp. 580–593, Nov.2009.
[CrossRef]

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Channel modeling for underwater optical communication,” in IEEE Workshop on Optical Wireless Communications, Global Communication Conf., Houston, TX, Dec. 2011, pp. 833–837.

F. Xu, M. A. Khalighi, and S. Bourennane, “Impact of different noise sources on the performance of PIN- and APD-based FSO receivers,” in COST IC0802 Workshop, IEEE ConTEL Conf., Graz, Austria, June 2011, pp. 279–286.

Kiasaleh, K.

K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun., vol. 53, no. 9, pp. 1455–1461, Sept.2005.
[CrossRef]

Kononenko, M. E.

Kopilevich, Yu. I.

Kotay, K.

I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke, “Data collection, storage, and retrieval with an underwater sensor network,” in Int. Conf. on Embedded Networked Sensor Systems (SenSys), San Diego, CA, Nov. 2005, pp. 154–165.

Lasher, M.

Laux, A. E.

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Ocean. Eng., vol. 33, no. 4, pp. 513–521, Oct.2008.
[CrossRef]

Lee, S.

J. Lu, S. Lee, J. Mounzer, and C. Schurgers, “Low-cost medium range optical underwater modem,” in ACM Int. Workshop on UnderWater Networks (WUWNet), Berkeley, CA, Nov. 2009.

Léon, P.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Channel modeling for underwater optical communication,” in IEEE Workshop on Optical Wireless Communications, Global Communication Conf., Houston, TX, Dec. 2011, pp. 833–837.

Lu, J.

J. Lu, S. Lee, J. Mounzer, and C. Schurgers, “Low-cost medium range optical underwater modem,” in ACM Int. Workshop on UnderWater Networks (WUWNet), Berkeley, CA, Nov. 2009.

Marano, S.

F. Pignieri, F. De Rango, F. Veltri, and S. Marano, “Markovian approach to model underwater acoustic channel: Techniques comparison,” in Military Communications Conf. (MILCOM), San Diego, CA, Nov. 2008, pp. 1–7.

Melodia, T.

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: Research challenges,” Ad Hoc Netw., vol. 3, no. 3, pp. 257–279, 2005.
[CrossRef]

Mobley, C. D.

Morel, A.

Mounzer, J.

J. Lu, S. Lee, J. Mounzer, and C. Schurgers, “Low-cost medium range optical underwater modem,” in ACM Int. Workshop on UnderWater Networks (WUWNet), Berkeley, CA, Nov. 2009.

Mullen, L.

Mullen, L. J.

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Ocean. Eng., vol. 33, no. 4, pp. 513–521, Oct.2008.
[CrossRef]

Muth, J.

Muth, J. F.

J. A. Simpson, B. L. Hughes, and J. F. Muth, “A spatial diversity system to measure optical fading in an underwater communications channel,” in IEEE OCEANS Conf., Biloxi, MS, Oct. 2009, pp. 1–6.

Parodi, G.

D. Anguita, D. Brizzolara, and G. Parodi, “Building an underwater wireless sensor network based on optical communication: Research challenges and current results,” in Int. Conf. on Sensor Technologies and Applications (SENSORCOMM), Athens, Greece, Aug. 2009, pp. 476–479.

Petzold, T. J.

T. J. Petzold, “Volume scattering functions for selected ocean waters,” Tech. Rep. SIO 7278, Scripps Institute of Oceanography, 1972.

Phillips, R. L.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed.SPIE Press, 2005.

Pignieri, F.

F. Pignieri, F. De Rango, F. Veltri, and S. Marano, “Markovian approach to model underwater acoustic channel: Techniques comparison,” in Military Communications Conf. (MILCOM), San Diego, CA, Nov. 2008, pp. 1–7.

Piskozub, J.

Pompili, D.

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: Research challenges,” Ad Hoc Netw., vol. 3, no. 3, pp. 257–279, 2005.
[CrossRef]

Radic, S.

Reinersman, P.

Rigaud, V.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Channel modeling for underwater optical communication,” in IEEE Workshop on Optical Wireless Communications, Global Communication Conf., Houston, TX, Dec. 2011, pp. 833–837.

Rus, D.

I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke, “Data collection, storage, and retrieval with an underwater sensor network,” in Int. Conf. on Embedded Networked Sensor Systems (SenSys), San Diego, CA, Nov. 2005, pp. 154–165.

I. Vasilescu, C. Detweiler, and D. Rus, “Aquanodes: An underwater sensor network,” in Workshop on Underwater Networks (WuWNet), MobiCom Conf., Montreal, Canada, Sept. 2007, pp. 85–88.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. Wiley, 1991.

Schill, F.

F. Schill, U. R. Zimmer, and J. Trumpf, “Visible spectrum optical communication and distance sensing for underwater applications,” in Australian Conf. on Robotics and Automation (ACRA), Canberra, Australia, Dec. 2004.

Schurgers, C.

J. Lu, S. Lee, J. Mounzer, and C. Schurgers, “Low-cost medium range optical underwater modem,” in ACM Int. Workshop on UnderWater Networks (WUWNet), Berkeley, CA, Nov. 2009.

Schwartz, N.

Shah, G.

G. Shah, “A survey on medium access control in underwater acoustic sensor networks,” in Int. Conf. Workshops on Advanced Information Networking and Applications (WAINA), Bradford, UK, May 2009, pp. 1178–1183.

Sichel, E.

M. Tivey, P. Fucile, and E. Sichel, “A low power, low cost, underwater optical communication system,” Ridge 2000 Events, pp. 27–29, Apr.2004.

Simpson, J. A.

J. A. Simpson, B. L. Hughes, and J. F. Muth, “A spatial diversity system to measure optical fading in an underwater communications channel,” in IEEE OCEANS Conf., Biloxi, MS, Oct. 2009, pp. 1–6.

Smart, J. H.

J. H. Smart, “Underwater optical communications systems. Part 1: Variability of water optical parameters,” in IEEE Military Communications Conf., Atlantic City, NJ, Oct. 2005, vol. 2, pp. 1140–1146.

Spiers, G. D.

Stamnes, K.

Stavn, R. H.

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. Wiley, 1991.

Timofeyeva, V.

V. Timofeyeva, “Relation between light-field parameters and between scattering phase function characteristics of turbid media, including seawater,” Izv., Acad. Sci. USSR, Atmos. Ocean Phys., vol. 14, pp. 834–848, 1978.

Tivey, M.

M. Tivey, P. Fucile, and E. Sichel, “A low power, low cost, underwater optical communication system,” Ridge 2000 Events, pp. 27–29, Apr.2004.

Trumpf, J.

F. Schill, U. R. Zimmer, and J. Trumpf, “Visible spectrum optical communication and distance sensing for underwater applications,” in Australian Conf. on Robotics and Automation (ACRA), Canberra, Australia, Dec. 2004.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles. Dover Publications, 1981.

Vasilescu, I.

M. Doniec, I. Vasilescu, M. Chitre, and C. Detweiler, “AquaOptical: A lightweight device for high-rate long-range underwater point-to-point communication,” in IEEE OCEANS Conf., Biloxi, MS, Oct. 2009, pp. 1–6.

I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke, “Data collection, storage, and retrieval with an underwater sensor network,” in Int. Conf. on Embedded Networked Sensor Systems (SenSys), San Diego, CA, Nov. 2005, pp. 154–165.

I. Vasilescu, C. Detweiler, and D. Rus, “Aquanodes: An underwater sensor network,” in Workshop on Underwater Networks (WuWNet), MobiCom Conf., Montreal, Canada, Sept. 2007, pp. 85–88.

Veltri, F.

F. Pignieri, F. De Rango, F. Veltri, and S. Marano, “Markovian approach to model underwater acoustic channel: Techniques comparison,” in Military Communications Conf. (MILCOM), San Diego, CA, Nov. 2008, pp. 1–7.

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML, Monte Carlo modeling of light transport in multi-layered tissues,” Tech. Rep., Laser Biology Research Laboratory, University of Texas, M.D. Anderson Cancer Center, Nov.1995.

Xu, F.

M. A. Khalighi, F. Xu, Y. Jaafar, and S. Bourennane, “Double-laser differential signaling for reducing the effect of background radiation in free-space optical systems,” J. Opt. Commun. Netw., vol. 3, no. 2, pp. 145–154, Feb.2011.
[CrossRef]

F. Xu, M. A. Khalighi, and S. Bourennane, “Impact of different noise sources on the performance of PIN- and APD-based FSO receivers,” in COST IC0802 Workshop, IEEE ConTEL Conf., Graz, Austria, June 2011, pp. 279–286.

Zadorozhnaya, E. I.

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML, Monte Carlo modeling of light transport in multi-layered tissues,” Tech. Rep., Laser Biology Research Laboratory, University of Texas, M.D. Anderson Cancer Center, Nov.1995.

Zimmer, U. R.

F. Schill, U. R. Zimmer, and J. Trumpf, “Visible spectrum optical communication and distance sensing for underwater applications,” in Australian Conf. on Robotics and Automation (ACRA), Canberra, Australia, Dec. 2004.

Ad Hoc Netw. (1)

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: Research challenges,” Ad Hoc Netw., vol. 3, no. 3, pp. 257–279, 2005.
[CrossRef]

Appl. Opt. (7)

IEEE J. Ocean. Eng. (1)

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Ocean. Eng., vol. 33, no. 4, pp. 513–521, Oct.2008.
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

S. Jaruwatanadilok, “Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory,” IEEE J. Sel. Areas Commun., vol. 26, no. 9, pp. 1620–1627, Dec.2008.
[CrossRef]

IEEE Trans. Commun. (1)

K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun., vol. 53, no. 9, pp. 1455–1461, Sept.2005.
[CrossRef]

Izv., Acad. Sci. USSR, Atmos. Ocean Phys. (1)

V. Timofeyeva, “Relation between light-field parameters and between scattering phase function characteristics of turbid media, including seawater,” Izv., Acad. Sci. USSR, Atmos. Ocean Phys., vol. 14, pp. 834–848, 1978.

J. Opt. Commun. Netw. (2)

J. Opt. Technol. (1)

Opt. Eng. (1)

S. Arnon, “Underwater optical wireless communication network,” Opt. Eng., vol. 49, no. 1, pp. 1–6, Jan.2010.
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Ridge 2000 Events (1)

M. Tivey, P. Fucile, and E. Sichel, “A low power, low cost, underwater optical communication system,” Ridge 2000 Events, pp. 27–29, Apr.2004.

Techniques de l’Ingénieur (1)

G. Kervern, “Lidars sous-marins,” Techniques de l’Ingénieur, vol. 6, no. E4325, pp. 1–7, Nov.1997.

Other (27)

A. Ishimaru, Wave Propagation and Scattering in Random Media. IEEE Press, 1997.

L. Wang, S. L. Jacques, and L. Zheng, “MCML, Monte Carlo modeling of light transport in multi-layered tissues,” Tech. Rep., Laser Biology Research Laboratory, University of Texas, M.D. Anderson Cancer Center, Nov.1995.

H. C. van de Hulst, Light Scattering by Small Particles. Dover Publications, 1981.

J. A. Simpson, B. L. Hughes, and J. F. Muth, “A spatial diversity system to measure optical fading in an underwater communications channel,” in IEEE OCEANS Conf., Biloxi, MS, Oct. 2009, pp. 1–6.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles. Wiley, 1988.

F. Xu, M. A. Khalighi, and S. Bourennane, “Impact of different noise sources on the performance of PIN- and APD-based FSO receivers,” in COST IC0802 Workshop, IEEE ConTEL Conf., Graz, Austria, June 2011, pp. 279–286.

J. D. Gibson, Ed., Mobile Communications Handbook, 2nd ed.CRC Press, 1999.

V. I. Haltrin, “Two-term Henyey–Greenstein light scattering phase function for seawater,” in Int. Geoscience and Remote Sensing Symp. (IGARSS), Hamburg, Germany, June–July 1999, pp. 1423–1425.

F. Schill, U. R. Zimmer, and J. Trumpf, “Visible spectrum optical communication and distance sensing for underwater applications,” in Australian Conf. on Robotics and Automation (ACRA), Canberra, Australia, Dec. 2004.

M. Doniec, I. Vasilescu, M. Chitre, and C. Detweiler, “AquaOptical: A lightweight device for high-rate long-range underwater point-to-point communication,” in IEEE OCEANS Conf., Biloxi, MS, Oct. 2009, pp. 1–6.

J. Lu, S. Lee, J. Mounzer, and C. Schurgers, “Low-cost medium range optical underwater modem,” in ACM Int. Workshop on UnderWater Networks (WUWNet), Berkeley, CA, Nov. 2009.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed.SPIE Press, 2005.

J. W. Giles and I. Bankman, “Underwater optical communcations systems. Part 2: Basic design considerations,” in IEEE Military Communications Conf. (MILCOM), Atlantic City, NJ, Oct. 2005, vol. 3, pp. 1700–1705.

D. Anguita, D. Brizzolara, and G. Parodi, “Building an underwater wireless sensor network based on optical communication: Research challenges and current results,” in Int. Conf. on Sensor Technologies and Applications (SENSORCOMM), Athens, Greece, Aug. 2009, pp. 476–479.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Channel modeling for underwater optical communication,” in IEEE Workshop on Optical Wireless Communications, Global Communication Conf., Houston, TX, Dec. 2011, pp. 833–837.

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters. Academic Press, June1994.

J. H. Smart, “Underwater optical communications systems. Part 1: Variability of water optical parameters,” in IEEE Military Communications Conf., Atlantic City, NJ, Oct. 2005, vol. 2, pp. 1140–1146.

T. J. Petzold, “Volume scattering functions for selected ocean waters,” Tech. Rep. SIO 7278, Scripps Institute of Oceanography, 1972.

I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke, “Data collection, storage, and retrieval with an underwater sensor network,” in Int. Conf. on Embedded Networked Sensor Systems (SenSys), San Diego, CA, Nov. 2005, pp. 154–165.

I. Vasilescu, C. Detweiler, and D. Rus, “Aquanodes: An underwater sensor network,” in Workshop on Underwater Networks (WuWNet), MobiCom Conf., Montreal, Canada, Sept. 2007, pp. 85–88.

International Sensor Development Network, SENSEnet [Online]. Available: http://www.eu-sensenet.net/.

G. Shah, “A survey on medium access control in underwater acoustic sensor networks,” in Int. Conf. Workshops on Advanced Information Networking and Applications (WAINA), Bradford, UK, May 2009, pp. 1178–1183.

F. Pignieri, F. De Rango, F. Veltri, and S. Marano, “Markovian approach to model underwater acoustic channel: Techniques comparison,” in Military Communications Conf. (MILCOM), San Diego, CA, Nov. 2008, pp. 1–7.

M. Katz, Introduction to Geometrical Optics. World Scientific, 2002.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. Wiley, 1991.

Hamamatsu Opto-semiconductor Products [Online]. Available: http://jp.hamamatsu.com/products/sensor-ssd/index_en.html.

D. G. Steel and L. Bayvel, Eds., Encyclopedia of Modern Optics. vol. 1, Elsevier, 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(Color online) Light scattering when encountering a particle in water. Part of the incident light flux is absorbed by the particle and the remaining flux is scattered through an angle Ψ. The scattering direction Ψ is within a solid angle Δ Ω around Ψ ¯ .

Fig. 2
Fig. 2

(Color online) Absorption a, scattering b, and attenuation c coefficients as a function of the wavelength λ for two chlorophyll concentrations C (in mg.m 3 ) corresponding to clear ocean and coastal waters, using the model in [28,29].

Fig. 3
Fig. 3

(Color online) Contrasting HG and TTHG phase functions with Petzold’s experimental measurements [14] for B = b b / b = 0 . 038 . To see better the difference of the phase functions for small angles, the figure is enlarged and displayed in log-scale for θ < 10 ° .

Fig. 4
Fig. 4

(Color online) Received intensity (in dB) as a function of distance for different water types. D = 20  cm; “av. cos” denotes cos θ ¯ .

Fig. 5
Fig. 5

(Color online) CIR (received intensity as a function of time) for pure sea, clear ocean, and coastal waters. Z = 20  m and D = 20  cm.

Fig. 6
Fig. 6

(Color online) CIR for turbid harbor waters with c = 2 . 17 m 1 . θ = 20 ° and D = 20  cm. The abscissa is with reference to the absolute propagation time from the transmitter to the receiver.

Fig. 7
Fig. 7

(Color online) CIR for different receiver aperture diameters D. Z = 20  m, clear ocean waters, c Z = 3 . 0 .

Fig. 8
Fig. 8

(Color online) Shifted CIR for different link distances Z. D = 20  cm, clear ocean waters. The abscissa is with reference to the absolute propagation time from the transmitter to the receiver.

Fig. 9
Fig. 9

(Color online) The received photon distribution on the receiver lens focal plane. Clear ocean waters, D = 20  cm, F = 25  cm.

Fig. 10
Fig. 10

(Color online) BER performance as a function of distance Z for different transmit optical powers P t for the case of a PIN PD. Clear ocean and coastal waters, D = 20  cm.

Fig. 11
Fig. 11

(Color online) BER performance as a function of distance Z for different transmit optical powers P t for the case of an APD. Clear ocean and coastal waters, D = 20  cm.

Tables (2)

Tables Icon

Table I Absorption, Scattering, Back-Scattering, and Attenuation Coefficients for the Four Water Types Considering Typical Chlorophyll Concentrations

Tables Icon

Table II Summary of Intensity Loss and Channel Time Dispersion for Different System and Channel Parameters (The Default Case Appears in the First Row)

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

b ( λ ) = 2 π 0 π β ( Ψ , λ ) sin Ψ d Ψ .
b b ( λ ) = 2 π π / 2 π β ( Ψ , λ ) sin Ψ d Ψ .
c ( λ ) = a ( λ ) + b ( λ ) .
d L d r = c L + L E + L I ( Wm 3 sr 1 nm 1 ) ,
L ( z ) = L ( 0 ) exp ( c z ) .
δ = log ( χ δ ) / c .
W post = W pre ( 1 a / c ) .
p  HG ( θ , g ) = 1 g 2 2 ( 1 + g 2 2 g cos θ ) 3 / 2 .
χ  HG = 0 θ p  HG ( Ψ , g ) sin Ψ d Ψ .
p  TTHG ( θ , α , g  FWD , g  BKWD ) = α p  HG ( θ , g  FWD ) + ( 1 α ) p  HG ( θ , g  BKWD ) ,
g  BKWD = 0 . 3061446 + 1 . 000568 g  FWD 0 . 01826338 g  FWD 2 + 0 . 03643748 g   FWD 3 ,
α = g  BKWD ( 1 + g   BKWD ) ( g  FWD + g  BKWD ) ( 1 + g   BKWD g  FWD ) ,
cos θ ¯ = α ( g  FWD + g  BKWD ) g  BKWD .
cos θ ¯ = 2 1 2 B 2 + B ,
FOV = 2 arctan ( D aa 2 F ) .
d = F tan ( Θ ) .