Abstract

We review our work on optical switching architectures that allow for scaling to a large number (thousands) of ports. We explain that the complexity of the node control critically depends on the node architecture and, hence, critically impacts the end-to-end latency of the system. We introduce node architectures with highly distributed control that allow for systems with very low end-to-end latency. We present integrated devices that support such systems and we present laboratory experiments to illustrate the technical feasibility of such switching systems.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Bell, J. Gray, and A. Szalay, “Petascale computational systems,” Computer, vol. 39, no. 1, pp. 110–112, 2006.
    [CrossRef]
  2. M. Taubenblatt, J. A. Kash, and Y. Taira, “Optical interconnects for high performance computing,” in Asia Communications and Photonics Conf. and Exhibition, 2009, TuZ1.
  3. L. A. Barroso and U. Hölzle, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, in Vol. 4 of Synthesis Lectures on Computer Architecture. Morgan & Claypool, 2009.
  4. R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection network: The OSMOSIS project,” in 17th Annu. Meeting of the IEEE Lasers and Electro-Optics Society, 2004, vol. 2, pp. 563–564.
  5. H. Wang, A. Wonfor, K. A. Williams, R. V. Penty, and I. H. White, “Demonstration of a lossless monolithic 16×16 QW SOA switch,” in 35th European Conf. on Optical Communication (ECOC), Vienna, Austria, 2009, PD 1.7.
  6. S. C. Nicholes, M. L. Mašanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “The world’s first InP 8×8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, 2009, PDPB1.
  7. D. C. Opferman and N. T. Tsao-Wu, “On a class of re-arrangeable switching networks,” Bell Syst. Tech. J., vol. 50, no. 5, pp. 1579–1618, 1971.
  8. S. Andresen, “The looping algorithm extended to Base 2t rearrange able switching networks,” IEEE Trans. Commun., vol. COM-25, no. 10, pp. 1057–1063, 1977.
    [CrossRef]
  9. K. Y. Lee, “A new Beneš network control algorithm,” IEEE Trans. Comput., vol. 100, no. 36, pp. 768–772, 1987.
  10. T. T. Lee and S. Y. Liew, “Parallel routing algorithms in Beneš-Clos networks,” IEEE Trans. Commun., vol. 50, no. 11, pp. 1841–1847, 2002.
    [CrossRef]
  11. S. Di Lucente, N. Calabretta, J. A. C. Resing, and H. J. S. Dorren, “Scaling low-latency optical packet switches to a thousand ports,” J. Opt. Commun. Netw., vol. 4, no. 9, pp. A17–A28, Sept.2012.
    [CrossRef]
  12. S. Di Lucente, R. Pueyo Centelles, H. J. S. Dorren, and N. Calabretta, “Study of the performance of an optical packet switch architecture with highly distributed control in a data center environment,” in Proc. of ONDM, 2012.
  13. S. Di Lucente, N. Calabretta, and H. J. S. Dorren, “Low-latency photonic packet switches with large number of ports,” in Proc. NOC, 2012.
  14. H. J. S. Dorren, N. Calabretta, and O. Raz, “Scaling all-optical packet routers: how much buffering is required? [Invited],” J. Opt. Netw., vol. 7, pp. 936–946, 2008.
    [CrossRef]
  15. I. Soganci, T. Tanemura, K. Takeda, M. Zaitsu, M. Takenaka, and Y. Nakano, “Monolithic InP 100-port photonic switch,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), Torino, Italy, 2010, PD1-5.
  16. I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1×16 photonic switch for WDM optical packet switching application,” in Int. Conf. on Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.
  17. http://www.omnetpp.org/.
  18. T. Tanemura, M. Takenaka, A. Al Amin, K. Takeda, T. Shioda, M. Sugiyama, and Y. Nakano, “InP–InGaAsP integrated 1×5 optical switch using arrayed phase shifters,” IEEE Photon. Technol. Lett., vol. 20, pp. 1063–1065, 2008.
    [CrossRef]
  19. J. Luo, F. Gomez-Agis, H. J. S. Dorren, and N. Calabretta, “Scalable optical packet switch for multiple data-rate packets using RF tone based in-band labeling,” in 37th European Conf. and Exhibition on Optical Communication (ECOC), 2011, Mo.2.A.3.
  20. M. Matsuura, N. Kishi, and T. Miki, “Ultra-wideband wavelength conversion over 300 nm by cascaded SOA-based wavelength converters,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Anaheim, CA, Mar. 2006, PDP29.
  21. R. S. Tucker, J. Lightwave Technol., vol. 29, no. 16, pp. 2410–2421, 2011.
    [CrossRef]

2012

2011

2008

H. J. S. Dorren, N. Calabretta, and O. Raz, “Scaling all-optical packet routers: how much buffering is required? [Invited],” J. Opt. Netw., vol. 7, pp. 936–946, 2008.
[CrossRef]

T. Tanemura, M. Takenaka, A. Al Amin, K. Takeda, T. Shioda, M. Sugiyama, and Y. Nakano, “InP–InGaAsP integrated 1×5 optical switch using arrayed phase shifters,” IEEE Photon. Technol. Lett., vol. 20, pp. 1063–1065, 2008.
[CrossRef]

2006

G. Bell, J. Gray, and A. Szalay, “Petascale computational systems,” Computer, vol. 39, no. 1, pp. 110–112, 2006.
[CrossRef]

2002

T. T. Lee and S. Y. Liew, “Parallel routing algorithms in Beneš-Clos networks,” IEEE Trans. Commun., vol. 50, no. 11, pp. 1841–1847, 2002.
[CrossRef]

1987

K. Y. Lee, “A new Beneš network control algorithm,” IEEE Trans. Comput., vol. 100, no. 36, pp. 768–772, 1987.

1977

S. Andresen, “The looping algorithm extended to Base 2t rearrange able switching networks,” IEEE Trans. Commun., vol. COM-25, no. 10, pp. 1057–1063, 1977.
[CrossRef]

1971

D. C. Opferman and N. T. Tsao-Wu, “On a class of re-arrangeable switching networks,” Bell Syst. Tech. J., vol. 50, no. 5, pp. 1579–1618, 1971.

Al Amin, A.

T. Tanemura, M. Takenaka, A. Al Amin, K. Takeda, T. Shioda, M. Sugiyama, and Y. Nakano, “InP–InGaAsP integrated 1×5 optical switch using arrayed phase shifters,” IEEE Photon. Technol. Lett., vol. 20, pp. 1063–1065, 2008.
[CrossRef]

Andresen, S.

S. Andresen, “The looping algorithm extended to Base 2t rearrange able switching networks,” IEEE Trans. Commun., vol. COM-25, no. 10, pp. 1057–1063, 1977.
[CrossRef]

Barroso, L. A.

L. A. Barroso and U. Hölzle, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, in Vol. 4 of Synthesis Lectures on Computer Architecture. Morgan & Claypool, 2009.

Bell, G.

G. Bell, J. Gray, and A. Szalay, “Petascale computational systems,” Computer, vol. 39, no. 1, pp. 110–112, 2006.
[CrossRef]

Blumenthal, D. J.

S. C. Nicholes, M. L. Mašanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “The world’s first InP 8×8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, 2009, PDPB1.

Calabretta, N.

S. Di Lucente, N. Calabretta, J. A. C. Resing, and H. J. S. Dorren, “Scaling low-latency optical packet switches to a thousand ports,” J. Opt. Commun. Netw., vol. 4, no. 9, pp. A17–A28, Sept.2012.
[CrossRef]

H. J. S. Dorren, N. Calabretta, and O. Raz, “Scaling all-optical packet routers: how much buffering is required? [Invited],” J. Opt. Netw., vol. 7, pp. 936–946, 2008.
[CrossRef]

S. Di Lucente, R. Pueyo Centelles, H. J. S. Dorren, and N. Calabretta, “Study of the performance of an optical packet switch architecture with highly distributed control in a data center environment,” in Proc. of ONDM, 2012.

S. Di Lucente, N. Calabretta, and H. J. S. Dorren, “Low-latency photonic packet switches with large number of ports,” in Proc. NOC, 2012.

I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1×16 photonic switch for WDM optical packet switching application,” in Int. Conf. on Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.

J. Luo, F. Gomez-Agis, H. J. S. Dorren, and N. Calabretta, “Scalable optical packet switch for multiple data-rate packets using RF tone based in-band labeling,” in 37th European Conf. and Exhibition on Optical Communication (ECOC), 2011, Mo.2.A.3.

Coldren, L. A.

S. C. Nicholes, M. L. Mašanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “The world’s first InP 8×8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, 2009, PDPB1.

de Vries, T.

I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1×16 photonic switch for WDM optical packet switching application,” in Int. Conf. on Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.

Denzel, W. E.

R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection network: The OSMOSIS project,” in 17th Annu. Meeting of the IEEE Lasers and Electro-Optics Society, 2004, vol. 2, pp. 563–564.

Di Lucente, S.

S. Di Lucente, N. Calabretta, J. A. C. Resing, and H. J. S. Dorren, “Scaling low-latency optical packet switches to a thousand ports,” J. Opt. Commun. Netw., vol. 4, no. 9, pp. A17–A28, Sept.2012.
[CrossRef]

S. Di Lucente, R. Pueyo Centelles, H. J. S. Dorren, and N. Calabretta, “Study of the performance of an optical packet switch architecture with highly distributed control in a data center environment,” in Proc. of ONDM, 2012.

S. Di Lucente, N. Calabretta, and H. J. S. Dorren, “Low-latency photonic packet switches with large number of ports,” in Proc. NOC, 2012.

Dorren, H. J. S.

S. Di Lucente, N. Calabretta, J. A. C. Resing, and H. J. S. Dorren, “Scaling low-latency optical packet switches to a thousand ports,” J. Opt. Commun. Netw., vol. 4, no. 9, pp. A17–A28, Sept.2012.
[CrossRef]

H. J. S. Dorren, N. Calabretta, and O. Raz, “Scaling all-optical packet routers: how much buffering is required? [Invited],” J. Opt. Netw., vol. 7, pp. 936–946, 2008.
[CrossRef]

S. Di Lucente, R. Pueyo Centelles, H. J. S. Dorren, and N. Calabretta, “Study of the performance of an optical packet switch architecture with highly distributed control in a data center environment,” in Proc. of ONDM, 2012.

S. Di Lucente, N. Calabretta, and H. J. S. Dorren, “Low-latency photonic packet switches with large number of ports,” in Proc. NOC, 2012.

I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1×16 photonic switch for WDM optical packet switching application,” in Int. Conf. on Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.

J. Luo, F. Gomez-Agis, H. J. S. Dorren, and N. Calabretta, “Scalable optical packet switch for multiple data-rate packets using RF tone based in-band labeling,” in 37th European Conf. and Exhibition on Optical Communication (ECOC), 2011, Mo.2.A.3.

Gomez-Agis, F.

J. Luo, F. Gomez-Agis, H. J. S. Dorren, and N. Calabretta, “Scalable optical packet switch for multiple data-rate packets using RF tone based in-band labeling,” in 37th European Conf. and Exhibition on Optical Communication (ECOC), 2011, Mo.2.A.3.

Gray, J.

G. Bell, J. Gray, and A. Szalay, “Petascale computational systems,” Computer, vol. 39, no. 1, pp. 110–112, 2006.
[CrossRef]

Grzybowski, R. R.

R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection network: The OSMOSIS project,” in 17th Annu. Meeting of the IEEE Lasers and Electro-Optics Society, 2004, vol. 2, pp. 563–564.

Hemenway, R.

R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection network: The OSMOSIS project,” in 17th Annu. Meeting of the IEEE Lasers and Electro-Optics Society, 2004, vol. 2, pp. 563–564.

Hölzle, U.

L. A. Barroso and U. Hölzle, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, in Vol. 4 of Synthesis Lectures on Computer Architecture. Morgan & Claypool, 2009.

Jevremovic, B.

S. C. Nicholes, M. L. Mašanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “The world’s first InP 8×8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, 2009, PDPB1.

Kash, J. A.

M. Taubenblatt, J. A. Kash, and Y. Taira, “Optical interconnects for high performance computing,” in Asia Communications and Photonics Conf. and Exhibition, 2009, TuZ1.

Kishi, N.

M. Matsuura, N. Kishi, and T. Miki, “Ultra-wideband wavelength conversion over 300 nm by cascaded SOA-based wavelength converters,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Anaheim, CA, Mar. 2006, PDP29.

Lee, K. Y.

K. Y. Lee, “A new Beneš network control algorithm,” IEEE Trans. Comput., vol. 100, no. 36, pp. 768–772, 1987.

Lee, T. T.

T. T. Lee and S. Y. Liew, “Parallel routing algorithms in Beneš-Clos networks,” IEEE Trans. Commun., vol. 50, no. 11, pp. 1841–1847, 2002.
[CrossRef]

Liew, S. Y.

T. T. Lee and S. Y. Liew, “Parallel routing algorithms in Beneš-Clos networks,” IEEE Trans. Commun., vol. 50, no. 11, pp. 1841–1847, 2002.
[CrossRef]

Lively, E.

S. C. Nicholes, M. L. Mašanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “The world’s first InP 8×8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, 2009, PDPB1.

Luijten, R.

R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection network: The OSMOSIS project,” in 17th Annu. Meeting of the IEEE Lasers and Electro-Optics Society, 2004, vol. 2, pp. 563–564.

Luo, J.

J. Luo, F. Gomez-Agis, H. J. S. Dorren, and N. Calabretta, “Scalable optical packet switch for multiple data-rate packets using RF tone based in-band labeling,” in 37th European Conf. and Exhibition on Optical Communication (ECOC), 2011, Mo.2.A.3.

Mašanovic, M. L.

S. C. Nicholes, M. L. Mašanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “The world’s first InP 8×8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, 2009, PDPB1.

Matsuura, M.

M. Matsuura, N. Kishi, and T. Miki, “Ultra-wideband wavelength conversion over 300 nm by cascaded SOA-based wavelength converters,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Anaheim, CA, Mar. 2006, PDP29.

Miki, T.

M. Matsuura, N. Kishi, and T. Miki, “Ultra-wideband wavelength conversion over 300 nm by cascaded SOA-based wavelength converters,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Anaheim, CA, Mar. 2006, PDP29.

Nakano, Y.

T. Tanemura, M. Takenaka, A. Al Amin, K. Takeda, T. Shioda, M. Sugiyama, and Y. Nakano, “InP–InGaAsP integrated 1×5 optical switch using arrayed phase shifters,” IEEE Photon. Technol. Lett., vol. 20, pp. 1063–1065, 2008.
[CrossRef]

I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1×16 photonic switch for WDM optical packet switching application,” in Int. Conf. on Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.

I. Soganci, T. Tanemura, K. Takeda, M. Zaitsu, M. Takenaka, and Y. Nakano, “Monolithic InP 100-port photonic switch,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), Torino, Italy, 2010, PD1-5.

Nicholes, S. C.

S. C. Nicholes, M. L. Mašanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “The world’s first InP 8×8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, 2009, PDPB1.

Opferman, D. C.

D. C. Opferman and N. T. Tsao-Wu, “On a class of re-arrangeable switching networks,” Bell Syst. Tech. J., vol. 50, no. 5, pp. 1579–1618, 1971.

Penty, R. V.

H. Wang, A. Wonfor, K. A. Williams, R. V. Penty, and I. H. White, “Demonstration of a lossless monolithic 16×16 QW SOA switch,” in 35th European Conf. on Optical Communication (ECOC), Vienna, Austria, 2009, PD 1.7.

Pueyo Centelles, R.

S. Di Lucente, R. Pueyo Centelles, H. J. S. Dorren, and N. Calabretta, “Study of the performance of an optical packet switch architecture with highly distributed control in a data center environment,” in Proc. of ONDM, 2012.

Raz, O.

H. J. S. Dorren, N. Calabretta, and O. Raz, “Scaling all-optical packet routers: how much buffering is required? [Invited],” J. Opt. Netw., vol. 7, pp. 936–946, 2008.
[CrossRef]

Resing, J. A. C.

Shioda, T.

T. Tanemura, M. Takenaka, A. Al Amin, K. Takeda, T. Shioda, M. Sugiyama, and Y. Nakano, “InP–InGaAsP integrated 1×5 optical switch using arrayed phase shifters,” IEEE Photon. Technol. Lett., vol. 20, pp. 1063–1065, 2008.
[CrossRef]

Smalbrugge, E.

I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1×16 photonic switch for WDM optical packet switching application,” in Int. Conf. on Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.

Smit, M. K.

I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1×16 photonic switch for WDM optical packet switching application,” in Int. Conf. on Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.

Soganci, I.

I. Soganci, T. Tanemura, K. Takeda, M. Zaitsu, M. Takenaka, and Y. Nakano, “Monolithic InP 100-port photonic switch,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), Torino, Italy, 2010, PD1-5.

Soganci, I. M.

I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1×16 photonic switch for WDM optical packet switching application,” in Int. Conf. on Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.

Sugiyama, M.

T. Tanemura, M. Takenaka, A. Al Amin, K. Takeda, T. Shioda, M. Sugiyama, and Y. Nakano, “InP–InGaAsP integrated 1×5 optical switch using arrayed phase shifters,” IEEE Photon. Technol. Lett., vol. 20, pp. 1063–1065, 2008.
[CrossRef]

Szalay, A.

G. Bell, J. Gray, and A. Szalay, “Petascale computational systems,” Computer, vol. 39, no. 1, pp. 110–112, 2006.
[CrossRef]

Taira, Y.

M. Taubenblatt, J. A. Kash, and Y. Taira, “Optical interconnects for high performance computing,” in Asia Communications and Photonics Conf. and Exhibition, 2009, TuZ1.

Takeda, K.

T. Tanemura, M. Takenaka, A. Al Amin, K. Takeda, T. Shioda, M. Sugiyama, and Y. Nakano, “InP–InGaAsP integrated 1×5 optical switch using arrayed phase shifters,” IEEE Photon. Technol. Lett., vol. 20, pp. 1063–1065, 2008.
[CrossRef]

I. Soganci, T. Tanemura, K. Takeda, M. Zaitsu, M. Takenaka, and Y. Nakano, “Monolithic InP 100-port photonic switch,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), Torino, Italy, 2010, PD1-5.

Takenaka, M.

T. Tanemura, M. Takenaka, A. Al Amin, K. Takeda, T. Shioda, M. Sugiyama, and Y. Nakano, “InP–InGaAsP integrated 1×5 optical switch using arrayed phase shifters,” IEEE Photon. Technol. Lett., vol. 20, pp. 1063–1065, 2008.
[CrossRef]

I. Soganci, T. Tanemura, K. Takeda, M. Zaitsu, M. Takenaka, and Y. Nakano, “Monolithic InP 100-port photonic switch,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), Torino, Italy, 2010, PD1-5.

Tanemura, T.

T. Tanemura, M. Takenaka, A. Al Amin, K. Takeda, T. Shioda, M. Sugiyama, and Y. Nakano, “InP–InGaAsP integrated 1×5 optical switch using arrayed phase shifters,” IEEE Photon. Technol. Lett., vol. 20, pp. 1063–1065, 2008.
[CrossRef]

I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1×16 photonic switch for WDM optical packet switching application,” in Int. Conf. on Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.

I. Soganci, T. Tanemura, K. Takeda, M. Zaitsu, M. Takenaka, and Y. Nakano, “Monolithic InP 100-port photonic switch,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), Torino, Italy, 2010, PD1-5.

Taubenblatt, M.

M. Taubenblatt, J. A. Kash, and Y. Taira, “Optical interconnects for high performance computing,” in Asia Communications and Photonics Conf. and Exhibition, 2009, TuZ1.

Tsao-Wu, N. T.

D. C. Opferman and N. T. Tsao-Wu, “On a class of re-arrangeable switching networks,” Bell Syst. Tech. J., vol. 50, no. 5, pp. 1579–1618, 1971.

Tucker, R. S.

Wang, H.

H. Wang, A. Wonfor, K. A. Williams, R. V. Penty, and I. H. White, “Demonstration of a lossless monolithic 16×16 QW SOA switch,” in 35th European Conf. on Optical Communication (ECOC), Vienna, Austria, 2009, PD 1.7.

White, I. H.

H. Wang, A. Wonfor, K. A. Williams, R. V. Penty, and I. H. White, “Demonstration of a lossless monolithic 16×16 QW SOA switch,” in 35th European Conf. on Optical Communication (ECOC), Vienna, Austria, 2009, PD 1.7.

Williams, K. A.

H. Wang, A. Wonfor, K. A. Williams, R. V. Penty, and I. H. White, “Demonstration of a lossless monolithic 16×16 QW SOA switch,” in 35th European Conf. on Optical Communication (ECOC), Vienna, Austria, 2009, PD 1.7.

I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1×16 photonic switch for WDM optical packet switching application,” in Int. Conf. on Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.

Wonfor, A.

H. Wang, A. Wonfor, K. A. Williams, R. V. Penty, and I. H. White, “Demonstration of a lossless monolithic 16×16 QW SOA switch,” in 35th European Conf. on Optical Communication (ECOC), Vienna, Austria, 2009, PD 1.7.

Zaitsu, M.

I. Soganci, T. Tanemura, K. Takeda, M. Zaitsu, M. Takenaka, and Y. Nakano, “Monolithic InP 100-port photonic switch,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), Torino, Italy, 2010, PD1-5.

Bell Syst. Tech. J.

D. C. Opferman and N. T. Tsao-Wu, “On a class of re-arrangeable switching networks,” Bell Syst. Tech. J., vol. 50, no. 5, pp. 1579–1618, 1971.

Computer

G. Bell, J. Gray, and A. Szalay, “Petascale computational systems,” Computer, vol. 39, no. 1, pp. 110–112, 2006.
[CrossRef]

IEEE Photon. Technol. Lett.

T. Tanemura, M. Takenaka, A. Al Amin, K. Takeda, T. Shioda, M. Sugiyama, and Y. Nakano, “InP–InGaAsP integrated 1×5 optical switch using arrayed phase shifters,” IEEE Photon. Technol. Lett., vol. 20, pp. 1063–1065, 2008.
[CrossRef]

IEEE Trans. Commun.

S. Andresen, “The looping algorithm extended to Base 2t rearrange able switching networks,” IEEE Trans. Commun., vol. COM-25, no. 10, pp. 1057–1063, 1977.
[CrossRef]

T. T. Lee and S. Y. Liew, “Parallel routing algorithms in Beneš-Clos networks,” IEEE Trans. Commun., vol. 50, no. 11, pp. 1841–1847, 2002.
[CrossRef]

IEEE Trans. Comput.

K. Y. Lee, “A new Beneš network control algorithm,” IEEE Trans. Comput., vol. 100, no. 36, pp. 768–772, 1987.

J. Lightwave Technol.

J. Opt. Commun. Netw.

J. Opt. Netw.

H. J. S. Dorren, N. Calabretta, and O. Raz, “Scaling all-optical packet routers: how much buffering is required? [Invited],” J. Opt. Netw., vol. 7, pp. 936–946, 2008.
[CrossRef]

Other

I. Soganci, T. Tanemura, K. Takeda, M. Zaitsu, M. Takenaka, and Y. Nakano, “Monolithic InP 100-port photonic switch,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), Torino, Italy, 2010, PD1-5.

I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1×16 photonic switch for WDM optical packet switching application,” in Int. Conf. on Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.

http://www.omnetpp.org/.

J. Luo, F. Gomez-Agis, H. J. S. Dorren, and N. Calabretta, “Scalable optical packet switch for multiple data-rate packets using RF tone based in-band labeling,” in 37th European Conf. and Exhibition on Optical Communication (ECOC), 2011, Mo.2.A.3.

M. Matsuura, N. Kishi, and T. Miki, “Ultra-wideband wavelength conversion over 300 nm by cascaded SOA-based wavelength converters,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Anaheim, CA, Mar. 2006, PDP29.

S. Di Lucente, R. Pueyo Centelles, H. J. S. Dorren, and N. Calabretta, “Study of the performance of an optical packet switch architecture with highly distributed control in a data center environment,” in Proc. of ONDM, 2012.

S. Di Lucente, N. Calabretta, and H. J. S. Dorren, “Low-latency photonic packet switches with large number of ports,” in Proc. NOC, 2012.

M. Taubenblatt, J. A. Kash, and Y. Taira, “Optical interconnects for high performance computing,” in Asia Communications and Photonics Conf. and Exhibition, 2009, TuZ1.

L. A. Barroso and U. Hölzle, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, in Vol. 4 of Synthesis Lectures on Computer Architecture. Morgan & Claypool, 2009.

R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection network: The OSMOSIS project,” in 17th Annu. Meeting of the IEEE Lasers and Electro-Optics Society, 2004, vol. 2, pp. 563–564.

H. Wang, A. Wonfor, K. A. Williams, R. V. Penty, and I. H. White, “Demonstration of a lossless monolithic 16×16 QW SOA switch,” in 35th European Conf. on Optical Communication (ECOC), Vienna, Austria, 2009, PD 1.7.

S. C. Nicholes, M. L. Mašanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “The world’s first InP 8×8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, 2009, PDPB1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(Color online) The system architecture under investigation. Traffic arrives from ingress nodes (left side) and is destined for egress nodes (right side). The switch matrix and the switch controller are the main objects of study.

Fig. 2
Fig. 2

(Color online) The time to configure a Beneš switch matrix expressed in clock cycles according to the looping algorithm (black line), trial partition machine (red line) and an algorithm which scales linearly with the number of input/output ports (blue line).

Fig. 3
Fig. 3

(Color online) Upper panel: throughput of an optical link with a Beneš or a Spanke switch. For the Beneš switch, we consider the looping and linear algorithms. The control time of the switch was computed following Fig. 2, assuming that a clock cycle is 1 ns. We also present the result for a Spanke switch that allows for fast control (5 ns), independent of the node size. The control time of the Spanke switch is in agreement with experimental results presented later in this paper. Lower panel: corresponding latencies.

Fig. 4
Fig. 4

(Color online) Modified Spanke architecture with highly distributed control and contention resolution based on wavelength conversion.

Fig. 5
Fig. 5

(Color online) Latency (upper) and throughput (lower) as a function of load for several switch sizes. The switch architecture is as in Fig. 4.

Fig. 6
Fig. 6

(Color online) Optical microscope image of the integrated 1×16 optical phased-array switch (4.5mm×3.1mm) [16].

Fig. 7
Fig. 7

(Color online) Dynamic switching response (time-scale 5 ns/div) [16].

Fig. 8
Fig. 8

(Color online) Optical packet switch architecture with highly distributed control. Fixed WC: fixed wavelength converter.

Fig. 9
Fig. 9

(Color online) (a) Experimental setup: TX: transmitter; fixed WC: fixed wavelength converter; O/E: optical-to-electrical conversion; RX: receiver; BERT: bit-error-rate tester. (b) Optical spectrum at the output of the packet transmitter. (c) Optical spectrum after the label extraction. (d) Electrical spectrum of the detected RF tone label. (e) Implementation schematic of the label processor and switch controller: ED: envelope detector; DEC: decoder; Cont. Res.: contention resolution. (f) Time traces of the label processing results.

Fig. 10
Fig. 10

(Color online) Experimental results: (a) dynamic switching operation, (b) BER measurements and eye diagrams, (c) penalty caused by the 1×N switch, (d) control time of the OPS.

Fig. 11
Fig. 11

(Color online) Cost per port for a fat-tree network built out of commercially available 48 port gigabit Ethernet switches. The blue line shows a computation based on a cost structure of US$30 per port; the red line is based on a cost structure of US$10 per port.