Abstract

We investigate the use of different direct detection modulation formats in a wavelength switched optical network. We find the minimum time it takes a tunable sampled grating distributed Bragg reflector laser to recover after switching from one wavelength channel to another for different modulation formats. The recovery time is investigated utilizing a field programmable gate array which operates as a time resolved bit error rate detector. The detector offers 93 ps resolution operating at 10.7 Gb/s and allows for all the data received to contribute to the measurement, allowing low bit error rates to be measured at high speed. The recovery times for 10.7 Gb/s non-return-to-zero on–off keyed modulation, 10.7 Gb/s differentially phase shift keyed signal and 21.4 Gb/s differentially quadrature phase shift keyed formats can be as low as 4 ns, 7 ns and 40 ns, respectively. The time resolved phase noise associated with laser settling is simultaneously measured for 21.4 Gb/s differentially quadrature phase shift keyed data and it shows that the phase noise coupled with frequency error is the primary limitation on transmitting immediately after a laser switching event.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Bishop, A. R. Hartman, D. C. Kilper, S. K. Korotky, and D. Suvakovic, “Energy efficient networking: Avoiding a future energy crunch,” in Military Communications Conf. (MILCOM), 2010, pp. 2047–2049.
  2. A. D. Ellis, Z. Jian, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol., vol. 28, pp. 423–433, 2010.
    [CrossRef]
  3. J. E. Simsarian, J. Gripp, A. H. Gnauck, G. Raybon, and P. J. Winzer, “Fast-tuning 224-Gb/s intradyne receiver for optical packet networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2010, PDPB5.
  4. J. Dunne, T. Farrell, and J. Shields, “Optical packet switch and transport: A new metro platform to reduce costs and power by 50% to 75% while simultaneously increasing deterministic performance levels,” in 11th Int. Conf. on Transparent Optical Networks (ICTON), 2009, pp. 1–5.
  5. J. A. O’Dowd, V. M. Bessler, S. K. Ibrahim, A. J. Walsh, F. H. Peters, B. Corbett, B. Roycroft, P. O. Brien, and A. D. Ellis, “Implementation of a high speed time resolved error detector utilising a high speed FPGA,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–4.
  6. F. Smyth, C. Browning, K. Shi, F. Peters, B. Corbett, B. Roycroft, and L. P. Barry, “10.7 Gbd DQPSK packet transmission using a widely tunable slotted Fabry–Perot laser,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), 2010, pp. 1–3.
  7. W. S. Wong, H.-S. Tsai, C.-J. Chen, H. K. Lee, and M.-C. Ho, “Novel time-resolved measurements of bit-error-rate and optical-signal-to-noise-ratio degradations due to EDFA gain dynamics in a WDM network,” in Optical Fiber Communication Conf. (OFC), 2002, pp. 515–516.
  8. K. Hoon and P. J. Winzer, “Robustness to laser frequency offset in direct-detection DPSK and DQPSK systems,” J. Lightwave Technol., vol. 21, pp. 1887–1891, 2003.
    [CrossRef]
  9. Y. Yu and R. O’Dowd, “Influence of mode competition on the fast wavelength switching of an SG-DBR laser,” J. Lightwave Technol., vol. 20, pp. 700–704, 2002.
    [CrossRef]
  10. A. J. Walsh, J. A. O’Dowd, V. M. Bessler, K. Shi, F. Smyth, J. Dailey, B. Kelleher, L. P. Barry, and A. D. Ellis, “Characterization of time-resolved laser phase noise using 3D complementary cumulative distribution functions,” Opt. Lett., vol. 37, pp. 1769–1771, 2012.
    [CrossRef] [PubMed]

2012

2010

2003

2002

Barry, L. P.

A. J. Walsh, J. A. O’Dowd, V. M. Bessler, K. Shi, F. Smyth, J. Dailey, B. Kelleher, L. P. Barry, and A. D. Ellis, “Characterization of time-resolved laser phase noise using 3D complementary cumulative distribution functions,” Opt. Lett., vol. 37, pp. 1769–1771, 2012.
[CrossRef] [PubMed]

F. Smyth, C. Browning, K. Shi, F. Peters, B. Corbett, B. Roycroft, and L. P. Barry, “10.7 Gbd DQPSK packet transmission using a widely tunable slotted Fabry–Perot laser,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), 2010, pp. 1–3.

Bessler, V. M.

A. J. Walsh, J. A. O’Dowd, V. M. Bessler, K. Shi, F. Smyth, J. Dailey, B. Kelleher, L. P. Barry, and A. D. Ellis, “Characterization of time-resolved laser phase noise using 3D complementary cumulative distribution functions,” Opt. Lett., vol. 37, pp. 1769–1771, 2012.
[CrossRef] [PubMed]

J. A. O’Dowd, V. M. Bessler, S. K. Ibrahim, A. J. Walsh, F. H. Peters, B. Corbett, B. Roycroft, P. O. Brien, and A. D. Ellis, “Implementation of a high speed time resolved error detector utilising a high speed FPGA,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–4.

Bishop, D. J.

D. J. Bishop, A. R. Hartman, D. C. Kilper, S. K. Korotky, and D. Suvakovic, “Energy efficient networking: Avoiding a future energy crunch,” in Military Communications Conf. (MILCOM), 2010, pp. 2047–2049.

Brien, P. O.

J. A. O’Dowd, V. M. Bessler, S. K. Ibrahim, A. J. Walsh, F. H. Peters, B. Corbett, B. Roycroft, P. O. Brien, and A. D. Ellis, “Implementation of a high speed time resolved error detector utilising a high speed FPGA,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–4.

Browning, C.

F. Smyth, C. Browning, K. Shi, F. Peters, B. Corbett, B. Roycroft, and L. P. Barry, “10.7 Gbd DQPSK packet transmission using a widely tunable slotted Fabry–Perot laser,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), 2010, pp. 1–3.

Chen, C.-J.

W. S. Wong, H.-S. Tsai, C.-J. Chen, H. K. Lee, and M.-C. Ho, “Novel time-resolved measurements of bit-error-rate and optical-signal-to-noise-ratio degradations due to EDFA gain dynamics in a WDM network,” in Optical Fiber Communication Conf. (OFC), 2002, pp. 515–516.

Corbett, B.

J. A. O’Dowd, V. M. Bessler, S. K. Ibrahim, A. J. Walsh, F. H. Peters, B. Corbett, B. Roycroft, P. O. Brien, and A. D. Ellis, “Implementation of a high speed time resolved error detector utilising a high speed FPGA,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–4.

F. Smyth, C. Browning, K. Shi, F. Peters, B. Corbett, B. Roycroft, and L. P. Barry, “10.7 Gbd DQPSK packet transmission using a widely tunable slotted Fabry–Perot laser,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), 2010, pp. 1–3.

Cotter, D.

Dailey, J.

Dunne, J.

J. Dunne, T. Farrell, and J. Shields, “Optical packet switch and transport: A new metro platform to reduce costs and power by 50% to 75% while simultaneously increasing deterministic performance levels,” in 11th Int. Conf. on Transparent Optical Networks (ICTON), 2009, pp. 1–5.

Ellis, A. D.

A. J. Walsh, J. A. O’Dowd, V. M. Bessler, K. Shi, F. Smyth, J. Dailey, B. Kelleher, L. P. Barry, and A. D. Ellis, “Characterization of time-resolved laser phase noise using 3D complementary cumulative distribution functions,” Opt. Lett., vol. 37, pp. 1769–1771, 2012.
[CrossRef] [PubMed]

A. D. Ellis, Z. Jian, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol., vol. 28, pp. 423–433, 2010.
[CrossRef]

J. A. O’Dowd, V. M. Bessler, S. K. Ibrahim, A. J. Walsh, F. H. Peters, B. Corbett, B. Roycroft, P. O. Brien, and A. D. Ellis, “Implementation of a high speed time resolved error detector utilising a high speed FPGA,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–4.

Farrell, T.

J. Dunne, T. Farrell, and J. Shields, “Optical packet switch and transport: A new metro platform to reduce costs and power by 50% to 75% while simultaneously increasing deterministic performance levels,” in 11th Int. Conf. on Transparent Optical Networks (ICTON), 2009, pp. 1–5.

Gnauck, A. H.

J. E. Simsarian, J. Gripp, A. H. Gnauck, G. Raybon, and P. J. Winzer, “Fast-tuning 224-Gb/s intradyne receiver for optical packet networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2010, PDPB5.

Gripp, J.

J. E. Simsarian, J. Gripp, A. H. Gnauck, G. Raybon, and P. J. Winzer, “Fast-tuning 224-Gb/s intradyne receiver for optical packet networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2010, PDPB5.

Hartman, A. R.

D. J. Bishop, A. R. Hartman, D. C. Kilper, S. K. Korotky, and D. Suvakovic, “Energy efficient networking: Avoiding a future energy crunch,” in Military Communications Conf. (MILCOM), 2010, pp. 2047–2049.

Ho, M.-C.

W. S. Wong, H.-S. Tsai, C.-J. Chen, H. K. Lee, and M.-C. Ho, “Novel time-resolved measurements of bit-error-rate and optical-signal-to-noise-ratio degradations due to EDFA gain dynamics in a WDM network,” in Optical Fiber Communication Conf. (OFC), 2002, pp. 515–516.

Hoon, K.

Ibrahim, S. K.

J. A. O’Dowd, V. M. Bessler, S. K. Ibrahim, A. J. Walsh, F. H. Peters, B. Corbett, B. Roycroft, P. O. Brien, and A. D. Ellis, “Implementation of a high speed time resolved error detector utilising a high speed FPGA,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–4.

Jian, Z.

Kelleher, B.

Kilper, D. C.

D. J. Bishop, A. R. Hartman, D. C. Kilper, S. K. Korotky, and D. Suvakovic, “Energy efficient networking: Avoiding a future energy crunch,” in Military Communications Conf. (MILCOM), 2010, pp. 2047–2049.

Korotky, S. K.

D. J. Bishop, A. R. Hartman, D. C. Kilper, S. K. Korotky, and D. Suvakovic, “Energy efficient networking: Avoiding a future energy crunch,” in Military Communications Conf. (MILCOM), 2010, pp. 2047–2049.

Lee, H. K.

W. S. Wong, H.-S. Tsai, C.-J. Chen, H. K. Lee, and M.-C. Ho, “Novel time-resolved measurements of bit-error-rate and optical-signal-to-noise-ratio degradations due to EDFA gain dynamics in a WDM network,” in Optical Fiber Communication Conf. (OFC), 2002, pp. 515–516.

O’Dowd, J. A.

A. J. Walsh, J. A. O’Dowd, V. M. Bessler, K. Shi, F. Smyth, J. Dailey, B. Kelleher, L. P. Barry, and A. D. Ellis, “Characterization of time-resolved laser phase noise using 3D complementary cumulative distribution functions,” Opt. Lett., vol. 37, pp. 1769–1771, 2012.
[CrossRef] [PubMed]

J. A. O’Dowd, V. M. Bessler, S. K. Ibrahim, A. J. Walsh, F. H. Peters, B. Corbett, B. Roycroft, P. O. Brien, and A. D. Ellis, “Implementation of a high speed time resolved error detector utilising a high speed FPGA,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–4.

O’Dowd, R.

Peters, F. H.

J. A. O’Dowd, V. M. Bessler, S. K. Ibrahim, A. J. Walsh, F. H. Peters, B. Corbett, B. Roycroft, P. O. Brien, and A. D. Ellis, “Implementation of a high speed time resolved error detector utilising a high speed FPGA,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–4.

Peters, F.

F. Smyth, C. Browning, K. Shi, F. Peters, B. Corbett, B. Roycroft, and L. P. Barry, “10.7 Gbd DQPSK packet transmission using a widely tunable slotted Fabry–Perot laser,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), 2010, pp. 1–3.

Raybon, G.

J. E. Simsarian, J. Gripp, A. H. Gnauck, G. Raybon, and P. J. Winzer, “Fast-tuning 224-Gb/s intradyne receiver for optical packet networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2010, PDPB5.

Roycroft, B.

J. A. O’Dowd, V. M. Bessler, S. K. Ibrahim, A. J. Walsh, F. H. Peters, B. Corbett, B. Roycroft, P. O. Brien, and A. D. Ellis, “Implementation of a high speed time resolved error detector utilising a high speed FPGA,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–4.

F. Smyth, C. Browning, K. Shi, F. Peters, B. Corbett, B. Roycroft, and L. P. Barry, “10.7 Gbd DQPSK packet transmission using a widely tunable slotted Fabry–Perot laser,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), 2010, pp. 1–3.

Shi, K.

A. J. Walsh, J. A. O’Dowd, V. M. Bessler, K. Shi, F. Smyth, J. Dailey, B. Kelleher, L. P. Barry, and A. D. Ellis, “Characterization of time-resolved laser phase noise using 3D complementary cumulative distribution functions,” Opt. Lett., vol. 37, pp. 1769–1771, 2012.
[CrossRef] [PubMed]

F. Smyth, C. Browning, K. Shi, F. Peters, B. Corbett, B. Roycroft, and L. P. Barry, “10.7 Gbd DQPSK packet transmission using a widely tunable slotted Fabry–Perot laser,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), 2010, pp. 1–3.

Shields, J.

J. Dunne, T. Farrell, and J. Shields, “Optical packet switch and transport: A new metro platform to reduce costs and power by 50% to 75% while simultaneously increasing deterministic performance levels,” in 11th Int. Conf. on Transparent Optical Networks (ICTON), 2009, pp. 1–5.

Simsarian, J. E.

J. E. Simsarian, J. Gripp, A. H. Gnauck, G. Raybon, and P. J. Winzer, “Fast-tuning 224-Gb/s intradyne receiver for optical packet networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2010, PDPB5.

Smyth, F.

A. J. Walsh, J. A. O’Dowd, V. M. Bessler, K. Shi, F. Smyth, J. Dailey, B. Kelleher, L. P. Barry, and A. D. Ellis, “Characterization of time-resolved laser phase noise using 3D complementary cumulative distribution functions,” Opt. Lett., vol. 37, pp. 1769–1771, 2012.
[CrossRef] [PubMed]

F. Smyth, C. Browning, K. Shi, F. Peters, B. Corbett, B. Roycroft, and L. P. Barry, “10.7 Gbd DQPSK packet transmission using a widely tunable slotted Fabry–Perot laser,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), 2010, pp. 1–3.

Suvakovic, D.

D. J. Bishop, A. R. Hartman, D. C. Kilper, S. K. Korotky, and D. Suvakovic, “Energy efficient networking: Avoiding a future energy crunch,” in Military Communications Conf. (MILCOM), 2010, pp. 2047–2049.

Tsai, H.-S.

W. S. Wong, H.-S. Tsai, C.-J. Chen, H. K. Lee, and M.-C. Ho, “Novel time-resolved measurements of bit-error-rate and optical-signal-to-noise-ratio degradations due to EDFA gain dynamics in a WDM network,” in Optical Fiber Communication Conf. (OFC), 2002, pp. 515–516.

Walsh, A. J.

A. J. Walsh, J. A. O’Dowd, V. M. Bessler, K. Shi, F. Smyth, J. Dailey, B. Kelleher, L. P. Barry, and A. D. Ellis, “Characterization of time-resolved laser phase noise using 3D complementary cumulative distribution functions,” Opt. Lett., vol. 37, pp. 1769–1771, 2012.
[CrossRef] [PubMed]

J. A. O’Dowd, V. M. Bessler, S. K. Ibrahim, A. J. Walsh, F. H. Peters, B. Corbett, B. Roycroft, P. O. Brien, and A. D. Ellis, “Implementation of a high speed time resolved error detector utilising a high speed FPGA,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–4.

Winzer, P. J.

J. E. Simsarian, J. Gripp, A. H. Gnauck, G. Raybon, and P. J. Winzer, “Fast-tuning 224-Gb/s intradyne receiver for optical packet networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2010, PDPB5.

Winzer, P. J.

Wong, W. S.

W. S. Wong, H.-S. Tsai, C.-J. Chen, H. K. Lee, and M.-C. Ho, “Novel time-resolved measurements of bit-error-rate and optical-signal-to-noise-ratio degradations due to EDFA gain dynamics in a WDM network,” in Optical Fiber Communication Conf. (OFC), 2002, pp. 515–516.

Yu, Y.

J. Lightwave Technol.

Opt. Lett.

Other

J. E. Simsarian, J. Gripp, A. H. Gnauck, G. Raybon, and P. J. Winzer, “Fast-tuning 224-Gb/s intradyne receiver for optical packet networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2010, PDPB5.

J. Dunne, T. Farrell, and J. Shields, “Optical packet switch and transport: A new metro platform to reduce costs and power by 50% to 75% while simultaneously increasing deterministic performance levels,” in 11th Int. Conf. on Transparent Optical Networks (ICTON), 2009, pp. 1–5.

J. A. O’Dowd, V. M. Bessler, S. K. Ibrahim, A. J. Walsh, F. H. Peters, B. Corbett, B. Roycroft, P. O. Brien, and A. D. Ellis, “Implementation of a high speed time resolved error detector utilising a high speed FPGA,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011, pp. 1–4.

F. Smyth, C. Browning, K. Shi, F. Peters, B. Corbett, B. Roycroft, and L. P. Barry, “10.7 Gbd DQPSK packet transmission using a widely tunable slotted Fabry–Perot laser,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), 2010, pp. 1–3.

W. S. Wong, H.-S. Tsai, C.-J. Chen, H. K. Lee, and M.-C. Ho, “Novel time-resolved measurements of bit-error-rate and optical-signal-to-noise-ratio degradations due to EDFA gain dynamics in a WDM network,” in Optical Fiber Communication Conf. (OFC), 2002, pp. 515–516.

D. J. Bishop, A. R. Hartman, D. C. Kilper, S. K. Korotky, and D. Suvakovic, “Energy efficient networking: Avoiding a future energy crunch,” in Military Communications Conf. (MILCOM), 2010, pp. 2047–2049.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(Color online) Experimental setup. SGDBR = sampled grating distributed Bragg reflector; PG = 10.7 Gb/s pattern generator; ΔT = variable electrical delay; ODI = one bit delay interferometer; ED = 10.7 Gb/s bit error rate detector; FPGA = field programmable gate array; R1, R2 and Φ are the SGDBR front, back and phase sections, respectively.

Fig. 2
Fig. 2

(Color online) The tuning response of the back section of the SGDBR laser under test.

Fig. 3
Fig. 3

(Color online) Schematic diagram of time resolved BER detector functionality. Delays 1 and 2 are controllable digital delays for aligning patterns.

Fig. 4
Fig. 4

(Color online) NRZ-OOK signal switching from 1560.4 nm to 1547.6 nm. (a) Scope trace corresponding to switching from 1.64 V to 2.25 V, Rx=1547.6nm. (b) TRBER traces for different switching combinations, with the voltage of the destination channel and the wavelength transmitted through receiver filters shown in the legend.

Fig. 5
Fig. 5

(Color online) DPSK signal switching from 1560.4 nm to 1547.6 nm. (a) Scope trace corresponding to switching from 1.64 V to 2.25 V, Rx=1547.6nm. (b) TRBER traces for different switching combinations.

Fig. 6
Fig. 6

(Color online) DQPSK signal switching from 1560.4 nm to 1547.6 nm. (a) Scope trace corresponding to switching from 1.64 V to 2.25 V, Rx=1547.6nm. (b) TRBER traces for different switching combinations.

Fig. 7
Fig. 7

(Color online) Measured TRBER (black squares) and BER determined from laser phase noise analysis (red triangles). DQPSK signal switching from 1547.6 nm (2.25 V) to 1560.4 nm (1.64 V), Rx=1547.6nm.