Abstract

Optical packet switches that scale to thousands of input/output ports might find their application in next-generation datacenters (DCs). They will allow interconnecting the servers of a DC in a flat topology, providing higher bandwidth and lower latency in comparison with currently applied electronic switches. Using a simple analytic model that allows computing end-to-end latency and throughput, we show that optical interconnects that employ a centralized (electronic) controller cannot scale to thousands of ports while providing end-to-end latencies below 1μs and high throughput. We therefore investigate architectures with highly distributed control. We present a strictly non-blocking wavelength division multiplexing architecture with contention resolution based on wavelength conversion. We study the packet loss probability of such architecture for different implementations of the contention resolution functionality. Furthermore, we show that the proposed architecture, applied in a short link with flow control, provides submicrosecond end-to-end latencies and allows high load operation, while scaling over a thousand ports.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in 36th European Conf. and Exhibition on Optical Communication, 2010.
  2. L. A. Barroso and U. Hölzle, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, in Synthesis Lectures on Computer Architecture. Morgan & Claypool, 2009.
  3. R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection network: The OSMOSIS project,” in 17th Annu. Meeting of the IEEE Lasers and Electro-Optics Society, 2004, vol. 2, pp. 563–564.
  4. H. Wang, A. Wonfor, K. A. Williams, R. V. Penty, and I. H. White, “Demonstration of a lossless monolithic 16 × 16 QW SOA switch,” in 35th European Conf. on Optical Communication, 2009, PD 1.7.
  5. S. C. Nicholes, M. L. Mašanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “The world’s first InP 8 × 8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port,” in Optical Fiber Communication Conf., 2009, PDPB1.
  6. I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1 × 16 photonic switch for WDM optical packet switching application,” in Proc. Int. Conf. Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.
  7. N. Calabretta, I. M. Soganci, T. Tanemura, W. Wang, O. Raz, K. Higuchi, K. A. Williams, T. J. de Vries, Y. Nakano, and H. J. S. Dorren, “1 × 16 optical packet switch sub-system with a monolithically integrated InP optical switch,” in Optical Fiber Communication Conf., 2010, OTuN6.
  8. I. M. Soganci, T. Tanemura, K. Takeda, M. Zaitsu, M. Takenaka, and Y. Nakano, “Monolithic InP 100-port photonic switch,” in 36th European Conf. and Exhibition on Optical Communication, 2010.
  9. J. Gripp, M. Duelk, J. E. Simsarian, A. Bhardwaj, P. Bernasconi, O. Laznicka, and M. Zirngibl, “Optical switch fabrics for ultra-high-capacity IP routers,” J. Lightwave Technol., vol. 21, pp. 2839–2850, 2003.
    [CrossRef]
  10. C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Commun. Surv. Tutorials, to be published.
  11. C. Clos, “A study of non-blocking switching networks,” Bell Syst. Tech. J., vol. 32, no. 2, pp. 406–424, 1953.
  12. V. E. Beneš, Mathematical Theory of Connecting Networks and Telephone Traffic. Academic Press, New York, 1965.
  13. W. Kabacinski, Nonblocking Electronic and Photonic Switching Fabrics. Springer-Verlag, New York, 2005.
  14. S. Y. R. Li, Algebraic Switching Theory and Broadband Applications. Academic Press, 2001.
  15. F. K. Hwang, The Mathematical Theory of Nonblocking Switching Networks. World Scientific, Singapore, 1998.
  16. A. Pattavina, Switching Theory: Architectures and Performance in Broadband ATM Networks. Wiley, 1989.
  17. N. A. Shalmany and A. G. P. Rahbar, “On the choice of all-optical switches for optical networking,” in Int. Symp. on High Capacity Optical Networks and Enabling Technologies (HONET), 2007.
  18. D. C. Opferman and N. T. Tsao-Wu, “On a class of rearrangeable switching networks,” Bell Syst. Tech. J., vol. 50, no. 5, pp. 1579–1618, 1971.
  19. S. Andresen, “The looping algorithm extended to base 2t rearrangeable switching networks,” IEEE Trans. Commun., vol. 25, no. 10, pp. 1057–1063, 1977.
    [CrossRef]
  20. K. Y. Lee, “A new Beneš network control algorithm,” IEEE Trans. Comput., vol. 100, no. 36, pp. 768–772, 1987.
  21. T. T. Lee and S. Y. Liew, “Parallel routing algorithms in Beneš-Clos networks,” IEEE Trans. Commun., vol. 50, no. 11, pp. 1841–1847, 2002.
    [CrossRef]
  22. N. Calabretta, W. Wang, T. Ditewig, O. Raz, F. Gomez Agis, S. Zhang, H. de Waardt, and H. J. S. Dorren, “Scalable optical packet switches for multiple data formats and data-rates packets,” IEEE Photon. Technol. Lett., vol. 22, pp. 483–485, 2010.
    [CrossRef]
  23. W. Wang, N. Calabretta, T. Ditewig, F. Gomez Agis, S. Zhang, O. Raz, E. Tangdiongga, and H. J. S. Dorren, “Scalable optical packet switching at 160 Gb/s data rate,” in 35th European Conf. on Optical Communication, 2009.
  24. R. Hemenway, R. R. Grzybowski, C. Minkenberg, and R. Luijten, “Optical-packet-switched interconnect for supercomputer applications,” J. Opt. Netw., vol. 3, no. 12, pp. 900–913, 2004.
    [CrossRef]
  25. M. Batayneh, D. A. Schupke, M. Hoffmann, A. Kirstaedter, and B. Mukherjee, “On routing and transmission-range determination of multi-bit-rate signals over mixed-line-rate WDM networks for carrier Ethernet,” IEEE/ACM Trans. Netw., vol. 19, no. 5, pp. 1304–1316, 2011.
    [CrossRef]
  26. M. Batayneh, D. A. Schupke, M. Hoffmann, A. Kirstaedter, and B. Mukherjee, “Reliable multi-bit-rate VPN provisioning for multipoint carrier-grade Ethernet services over mixed-line-rate WDM optical networks,” J. Opt. Commun. Netw., vol. 3, no. 1, pp. 67–76, 2011.
  27. N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, Y. Kondo, and Y. Tohmori, “Monolithically integrated 100-channel WDM channel selector employing low-crosstalk AWG,” IEEE Photon. Technol. Lett., vol. 16, no. 11, pp. 2481–2483, 2004.
    [CrossRef]
  28. http://www.omnetpp.org/.
  29. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol., vol. 25, no. 1, pp. 103–108, 2007.
    [CrossRef]
  30. J. Luo, S. Di Lucente, J. Ramirez, H. J. S. Dorren, and N. Calabretta, “Low latency and large port count optical packet switch with highly distributed control,” in Optical Fiber Communication Conf., 2012, OW3J.2.

2011 (2)

M. Batayneh, D. A. Schupke, M. Hoffmann, A. Kirstaedter, and B. Mukherjee, “On routing and transmission-range determination of multi-bit-rate signals over mixed-line-rate WDM networks for carrier Ethernet,” IEEE/ACM Trans. Netw., vol. 19, no. 5, pp. 1304–1316, 2011.
[CrossRef]

M. Batayneh, D. A. Schupke, M. Hoffmann, A. Kirstaedter, and B. Mukherjee, “Reliable multi-bit-rate VPN provisioning for multipoint carrier-grade Ethernet services over mixed-line-rate WDM optical networks,” J. Opt. Commun. Netw., vol. 3, no. 1, pp. 67–76, 2011.

2010 (1)

N. Calabretta, W. Wang, T. Ditewig, O. Raz, F. Gomez Agis, S. Zhang, H. de Waardt, and H. J. S. Dorren, “Scalable optical packet switches for multiple data formats and data-rates packets,” IEEE Photon. Technol. Lett., vol. 22, pp. 483–485, 2010.
[CrossRef]

2007 (1)

2004 (2)

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, Y. Kondo, and Y. Tohmori, “Monolithically integrated 100-channel WDM channel selector employing low-crosstalk AWG,” IEEE Photon. Technol. Lett., vol. 16, no. 11, pp. 2481–2483, 2004.
[CrossRef]

R. Hemenway, R. R. Grzybowski, C. Minkenberg, and R. Luijten, “Optical-packet-switched interconnect for supercomputer applications,” J. Opt. Netw., vol. 3, no. 12, pp. 900–913, 2004.
[CrossRef]

2003 (1)

2002 (1)

T. T. Lee and S. Y. Liew, “Parallel routing algorithms in Beneš-Clos networks,” IEEE Trans. Commun., vol. 50, no. 11, pp. 1841–1847, 2002.
[CrossRef]

1987 (1)

K. Y. Lee, “A new Beneš network control algorithm,” IEEE Trans. Comput., vol. 100, no. 36, pp. 768–772, 1987.

1977 (1)

S. Andresen, “The looping algorithm extended to base 2t rearrangeable switching networks,” IEEE Trans. Commun., vol. 25, no. 10, pp. 1057–1063, 1977.
[CrossRef]

1971 (1)

D. C. Opferman and N. T. Tsao-Wu, “On a class of rearrangeable switching networks,” Bell Syst. Tech. J., vol. 50, no. 5, pp. 1579–1618, 1971.

1953 (1)

C. Clos, “A study of non-blocking switching networks,” Bell Syst. Tech. J., vol. 32, no. 2, pp. 406–424, 1953.

Andresen, S.

S. Andresen, “The looping algorithm extended to base 2t rearrangeable switching networks,” IEEE Trans. Commun., vol. 25, no. 10, pp. 1057–1063, 1977.
[CrossRef]

Barroso, L. A.

L. A. Barroso and U. Hölzle, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, in Synthesis Lectures on Computer Architecture. Morgan & Claypool, 2009.

Batayneh, M.

M. Batayneh, D. A. Schupke, M. Hoffmann, A. Kirstaedter, and B. Mukherjee, “On routing and transmission-range determination of multi-bit-rate signals over mixed-line-rate WDM networks for carrier Ethernet,” IEEE/ACM Trans. Netw., vol. 19, no. 5, pp. 1304–1316, 2011.
[CrossRef]

M. Batayneh, D. A. Schupke, M. Hoffmann, A. Kirstaedter, and B. Mukherjee, “Reliable multi-bit-rate VPN provisioning for multipoint carrier-grade Ethernet services over mixed-line-rate WDM optical networks,” J. Opt. Commun. Netw., vol. 3, no. 1, pp. 67–76, 2011.

Beneš, V. E.

V. E. Beneš, Mathematical Theory of Connecting Networks and Telephone Traffic. Academic Press, New York, 1965.

Benner, A.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in 36th European Conf. and Exhibition on Optical Communication, 2010.

Bennion, I.

Bernasconi, P.

Bhardwaj, A.

Blumenthal, D. J.

S. C. Nicholes, M. L. Mašanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “The world’s first InP 8 × 8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port,” in Optical Fiber Communication Conf., 2009, PDPB1.

Calabretta, N.

N. Calabretta, W. Wang, T. Ditewig, O. Raz, F. Gomez Agis, S. Zhang, H. de Waardt, and H. J. S. Dorren, “Scalable optical packet switches for multiple data formats and data-rates packets,” IEEE Photon. Technol. Lett., vol. 22, pp. 483–485, 2010.
[CrossRef]

N. Calabretta, I. M. Soganci, T. Tanemura, W. Wang, O. Raz, K. Higuchi, K. A. Williams, T. J. de Vries, Y. Nakano, and H. J. S. Dorren, “1 × 16 optical packet switch sub-system with a monolithically integrated InP optical switch,” in Optical Fiber Communication Conf., 2010, OTuN6.

I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1 × 16 photonic switch for WDM optical packet switching application,” in Proc. Int. Conf. Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.

J. Luo, S. Di Lucente, J. Ramirez, H. J. S. Dorren, and N. Calabretta, “Low latency and large port count optical packet switch with highly distributed control,” in Optical Fiber Communication Conf., 2012, OW3J.2.

W. Wang, N. Calabretta, T. Ditewig, F. Gomez Agis, S. Zhang, O. Raz, E. Tangdiongga, and H. J. S. Dorren, “Scalable optical packet switching at 160 Gb/s data rate,” in 35th European Conf. on Optical Communication, 2009.

Clos, C.

C. Clos, “A study of non-blocking switching networks,” Bell Syst. Tech. J., vol. 32, no. 2, pp. 406–424, 1953.

Coldren, L. A.

S. C. Nicholes, M. L. Mašanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “The world’s first InP 8 × 8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port,” in Optical Fiber Communication Conf., 2009, PDPB1.

de Vries, T.

I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1 × 16 photonic switch for WDM optical packet switching application,” in Proc. Int. Conf. Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.

de Vries, T. J.

N. Calabretta, I. M. Soganci, T. Tanemura, W. Wang, O. Raz, K. Higuchi, K. A. Williams, T. J. de Vries, Y. Nakano, and H. J. S. Dorren, “1 × 16 optical packet switch sub-system with a monolithically integrated InP optical switch,” in Optical Fiber Communication Conf., 2010, OTuN6.

de Waardt, H.

N. Calabretta, W. Wang, T. Ditewig, O. Raz, F. Gomez Agis, S. Zhang, H. de Waardt, and H. J. S. Dorren, “Scalable optical packet switches for multiple data formats and data-rates packets,” IEEE Photon. Technol. Lett., vol. 22, pp. 483–485, 2010.
[CrossRef]

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol., vol. 25, no. 1, pp. 103–108, 2007.
[CrossRef]

Denzel, W. E.

R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection network: The OSMOSIS project,” in 17th Annu. Meeting of the IEEE Lasers and Electro-Optics Society, 2004, vol. 2, pp. 563–564.

Di Lucente, S.

J. Luo, S. Di Lucente, J. Ramirez, H. J. S. Dorren, and N. Calabretta, “Low latency and large port count optical packet switch with highly distributed control,” in Optical Fiber Communication Conf., 2012, OW3J.2.

Ditewig, T.

N. Calabretta, W. Wang, T. Ditewig, O. Raz, F. Gomez Agis, S. Zhang, H. de Waardt, and H. J. S. Dorren, “Scalable optical packet switches for multiple data formats and data-rates packets,” IEEE Photon. Technol. Lett., vol. 22, pp. 483–485, 2010.
[CrossRef]

W. Wang, N. Calabretta, T. Ditewig, F. Gomez Agis, S. Zhang, O. Raz, E. Tangdiongga, and H. J. S. Dorren, “Scalable optical packet switching at 160 Gb/s data rate,” in 35th European Conf. on Optical Communication, 2009.

Doany, F.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in 36th European Conf. and Exhibition on Optical Communication, 2010.

Dorren, H. J. S.

N. Calabretta, I. M. Soganci, T. Tanemura, W. Wang, O. Raz, K. Higuchi, K. A. Williams, T. J. de Vries, Y. Nakano, and H. J. S. Dorren, “1 × 16 optical packet switch sub-system with a monolithically integrated InP optical switch,” in Optical Fiber Communication Conf., 2010, OTuN6.

Dorren, H. J. S.

N. Calabretta, W. Wang, T. Ditewig, O. Raz, F. Gomez Agis, S. Zhang, H. de Waardt, and H. J. S. Dorren, “Scalable optical packet switches for multiple data formats and data-rates packets,” IEEE Photon. Technol. Lett., vol. 22, pp. 483–485, 2010.
[CrossRef]

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol., vol. 25, no. 1, pp. 103–108, 2007.
[CrossRef]

J. Luo, S. Di Lucente, J. Ramirez, H. J. S. Dorren, and N. Calabretta, “Low latency and large port count optical packet switch with highly distributed control,” in Optical Fiber Communication Conf., 2012, OW3J.2.

W. Wang, N. Calabretta, T. Ditewig, F. Gomez Agis, S. Zhang, O. Raz, E. Tangdiongga, and H. J. S. Dorren, “Scalable optical packet switching at 160 Gb/s data rate,” in 35th European Conf. on Optical Communication, 2009.

I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1 × 16 photonic switch for WDM optical packet switching application,” in Proc. Int. Conf. Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.

Duelk, M.

Gomez Agis, F.

N. Calabretta, W. Wang, T. Ditewig, O. Raz, F. Gomez Agis, S. Zhang, H. de Waardt, and H. J. S. Dorren, “Scalable optical packet switches for multiple data formats and data-rates packets,” IEEE Photon. Technol. Lett., vol. 22, pp. 483–485, 2010.
[CrossRef]

W. Wang, N. Calabretta, T. Ditewig, F. Gomez Agis, S. Zhang, O. Raz, E. Tangdiongga, and H. J. S. Dorren, “Scalable optical packet switching at 160 Gb/s data rate,” in 35th European Conf. on Optical Communication, 2009.

Gripp, J.

Grzybowski, R. R.

R. Hemenway, R. R. Grzybowski, C. Minkenberg, and R. Luijten, “Optical-packet-switched interconnect for supercomputer applications,” J. Opt. Netw., vol. 3, no. 12, pp. 900–913, 2004.
[CrossRef]

R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection network: The OSMOSIS project,” in 17th Annu. Meeting of the IEEE Lasers and Electro-Optics Society, 2004, vol. 2, pp. 563–564.

Hemenway, R.

R. Hemenway, R. R. Grzybowski, C. Minkenberg, and R. Luijten, “Optical-packet-switched interconnect for supercomputer applications,” J. Opt. Netw., vol. 3, no. 12, pp. 900–913, 2004.
[CrossRef]

R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection network: The OSMOSIS project,” in 17th Annu. Meeting of the IEEE Lasers and Electro-Optics Society, 2004, vol. 2, pp. 563–564.

Higuchi, K.

N. Calabretta, I. M. Soganci, T. Tanemura, W. Wang, O. Raz, K. Higuchi, K. A. Williams, T. J. de Vries, Y. Nakano, and H. J. S. Dorren, “1 × 16 optical packet switch sub-system with a monolithically integrated InP optical switch,” in Optical Fiber Communication Conf., 2010, OTuN6.

Hoffmann, M.

M. Batayneh, D. A. Schupke, M. Hoffmann, A. Kirstaedter, and B. Mukherjee, “Reliable multi-bit-rate VPN provisioning for multipoint carrier-grade Ethernet services over mixed-line-rate WDM optical networks,” J. Opt. Commun. Netw., vol. 3, no. 1, pp. 67–76, 2011.

M. Batayneh, D. A. Schupke, M. Hoffmann, A. Kirstaedter, and B. Mukherjee, “On routing and transmission-range determination of multi-bit-rate signals over mixed-line-rate WDM networks for carrier Ethernet,” IEEE/ACM Trans. Netw., vol. 19, no. 5, pp. 1304–1316, 2011.
[CrossRef]

Hölzle, U.

L. A. Barroso and U. Hölzle, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, in Synthesis Lectures on Computer Architecture. Morgan & Claypool, 2009.

Hwang, F. K.

F. K. Hwang, The Mathematical Theory of Nonblocking Switching Networks. World Scientific, Singapore, 1998.

Jevremovic, B.

S. C. Nicholes, M. L. Mašanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “The world’s first InP 8 × 8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port,” in Optical Fiber Communication Conf., 2009, PDPB1.

Kabacinski, W.

W. Kabacinski, Nonblocking Electronic and Photonic Switching Fabrics. Springer-Verlag, New York, 2005.

Kachris, C.

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Commun. Surv. Tutorials, to be published.

Kash, J.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in 36th European Conf. and Exhibition on Optical Communication, 2010.

Kawaguchi, Y.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, Y. Kondo, and Y. Tohmori, “Monolithically integrated 100-channel WDM channel selector employing low-crosstalk AWG,” IEEE Photon. Technol. Lett., vol. 16, no. 11, pp. 2481–2483, 2004.
[CrossRef]

Khoe, G. D.

Kikuchi, N.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, Y. Kondo, and Y. Tohmori, “Monolithically integrated 100-channel WDM channel selector employing low-crosstalk AWG,” IEEE Photon. Technol. Lett., vol. 16, no. 11, pp. 2481–2483, 2004.
[CrossRef]

Kirstaedter, A.

M. Batayneh, D. A. Schupke, M. Hoffmann, A. Kirstaedter, and B. Mukherjee, “Reliable multi-bit-rate VPN provisioning for multipoint carrier-grade Ethernet services over mixed-line-rate WDM optical networks,” J. Opt. Commun. Netw., vol. 3, no. 1, pp. 67–76, 2011.

M. Batayneh, D. A. Schupke, M. Hoffmann, A. Kirstaedter, and B. Mukherjee, “On routing and transmission-range determination of multi-bit-rate signals over mixed-line-rate WDM networks for carrier Ethernet,” IEEE/ACM Trans. Netw., vol. 19, no. 5, pp. 1304–1316, 2011.
[CrossRef]

Kondo, Y.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, Y. Kondo, and Y. Tohmori, “Monolithically integrated 100-channel WDM channel selector employing low-crosstalk AWG,” IEEE Photon. Technol. Lett., vol. 16, no. 11, pp. 2481–2483, 2004.
[CrossRef]

Koonen, A. M. J.

Kuchta, D.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in 36th European Conf. and Exhibition on Optical Communication, 2010.

Laznicka, O.

Lee, K. Y.

K. Y. Lee, “A new Beneš network control algorithm,” IEEE Trans. Comput., vol. 100, no. 36, pp. 768–772, 1987.

Lee, T. T.

T. T. Lee and S. Y. Liew, “Parallel routing algorithms in Beneš-Clos networks,” IEEE Trans. Commun., vol. 50, no. 11, pp. 1841–1847, 2002.
[CrossRef]

Li, S. Y. R.

S. Y. R. Li, Algebraic Switching Theory and Broadband Applications. Academic Press, 2001.

Li, Z.

Liew, S. Y.

T. T. Lee and S. Y. Liew, “Parallel routing algorithms in Beneš-Clos networks,” IEEE Trans. Commun., vol. 50, no. 11, pp. 1841–1847, 2002.
[CrossRef]

Liu, Y.

Lively, E.

S. C. Nicholes, M. L. Mašanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “The world’s first InP 8 × 8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port,” in Optical Fiber Communication Conf., 2009, PDPB1.

Luijten, R.

R. Hemenway, R. R. Grzybowski, C. Minkenberg, and R. Luijten, “Optical-packet-switched interconnect for supercomputer applications,” J. Opt. Netw., vol. 3, no. 12, pp. 900–913, 2004.
[CrossRef]

R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection network: The OSMOSIS project,” in 17th Annu. Meeting of the IEEE Lasers and Electro-Optics Society, 2004, vol. 2, pp. 563–564.

Luo, J.

J. Luo, S. Di Lucente, J. Ramirez, H. J. S. Dorren, and N. Calabretta, “Low latency and large port count optical packet switch with highly distributed control,” in Optical Fiber Communication Conf., 2012, OW3J.2.

Mašanovic, M. L.

S. C. Nicholes, M. L. Mašanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “The world’s first InP 8 × 8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port,” in Optical Fiber Communication Conf., 2009, PDPB1.

Minkenberg, C.

Mukherjee, B.

M. Batayneh, D. A. Schupke, M. Hoffmann, A. Kirstaedter, and B. Mukherjee, “Reliable multi-bit-rate VPN provisioning for multipoint carrier-grade Ethernet services over mixed-line-rate WDM optical networks,” J. Opt. Commun. Netw., vol. 3, no. 1, pp. 67–76, 2011.

M. Batayneh, D. A. Schupke, M. Hoffmann, A. Kirstaedter, and B. Mukherjee, “On routing and transmission-range determination of multi-bit-rate signals over mixed-line-rate WDM networks for carrier Ethernet,” IEEE/ACM Trans. Netw., vol. 19, no. 5, pp. 1304–1316, 2011.
[CrossRef]

Nakano, Y.

I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1 × 16 photonic switch for WDM optical packet switching application,” in Proc. Int. Conf. Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.

I. M. Soganci, T. Tanemura, K. Takeda, M. Zaitsu, M. Takenaka, and Y. Nakano, “Monolithic InP 100-port photonic switch,” in 36th European Conf. and Exhibition on Optical Communication, 2010.

N. Calabretta, I. M. Soganci, T. Tanemura, W. Wang, O. Raz, K. Higuchi, K. A. Williams, T. J. de Vries, Y. Nakano, and H. J. S. Dorren, “1 × 16 optical packet switch sub-system with a monolithically integrated InP optical switch,” in Optical Fiber Communication Conf., 2010, OTuN6.

Nicholes, S. C.

S. C. Nicholes, M. L. Mašanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “The world’s first InP 8 × 8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port,” in Optical Fiber Communication Conf., 2009, PDPB1.

Offrein, B. J.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in 36th European Conf. and Exhibition on Optical Communication, 2010.

Okamoto, H.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, Y. Kondo, and Y. Tohmori, “Monolithically integrated 100-channel WDM channel selector employing low-crosstalk AWG,” IEEE Photon. Technol. Lett., vol. 16, no. 11, pp. 2481–2483, 2004.
[CrossRef]

Oku, S.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, Y. Kondo, and Y. Tohmori, “Monolithically integrated 100-channel WDM channel selector employing low-crosstalk AWG,” IEEE Photon. Technol. Lett., vol. 16, no. 11, pp. 2481–2483, 2004.
[CrossRef]

Opferman, D. C.

D. C. Opferman and N. T. Tsao-Wu, “On a class of rearrangeable switching networks,” Bell Syst. Tech. J., vol. 50, no. 5, pp. 1579–1618, 1971.

Pattavina, A.

A. Pattavina, Switching Theory: Architectures and Performance in Broadband ATM Networks. Wiley, 1989.

Penty, R. V.

H. Wang, A. Wonfor, K. A. Williams, R. V. Penty, and I. H. White, “Demonstration of a lossless monolithic 16 × 16 QW SOA switch,” in 35th European Conf. on Optical Communication, 2009, PD 1.7.

Pepeljugoski, P.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in 36th European Conf. and Exhibition on Optical Communication, 2010.

Rahbar, A. G. P.

N. A. Shalmany and A. G. P. Rahbar, “On the choice of all-optical switches for optical networking,” in Int. Symp. on High Capacity Optical Networks and Enabling Technologies (HONET), 2007.

Ramirez, J.

J. Luo, S. Di Lucente, J. Ramirez, H. J. S. Dorren, and N. Calabretta, “Low latency and large port count optical packet switch with highly distributed control,” in Optical Fiber Communication Conf., 2012, OW3J.2.

Raz, O.

N. Calabretta, W. Wang, T. Ditewig, O. Raz, F. Gomez Agis, S. Zhang, H. de Waardt, and H. J. S. Dorren, “Scalable optical packet switches for multiple data formats and data-rates packets,” IEEE Photon. Technol. Lett., vol. 22, pp. 483–485, 2010.
[CrossRef]

N. Calabretta, I. M. Soganci, T. Tanemura, W. Wang, O. Raz, K. Higuchi, K. A. Williams, T. J. de Vries, Y. Nakano, and H. J. S. Dorren, “1 × 16 optical packet switch sub-system with a monolithically integrated InP optical switch,” in Optical Fiber Communication Conf., 2010, OTuN6.

W. Wang, N. Calabretta, T. Ditewig, F. Gomez Agis, S. Zhang, O. Raz, E. Tangdiongga, and H. J. S. Dorren, “Scalable optical packet switching at 160 Gb/s data rate,” in 35th European Conf. on Optical Communication, 2009.

Schares, L.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in 36th European Conf. and Exhibition on Optical Communication, 2010.

Schow, C.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in 36th European Conf. and Exhibition on Optical Communication, 2010.

Schupke, D. A.

M. Batayneh, D. A. Schupke, M. Hoffmann, A. Kirstaedter, and B. Mukherjee, “On routing and transmission-range determination of multi-bit-rate signals over mixed-line-rate WDM networks for carrier Ethernet,” IEEE/ACM Trans. Netw., vol. 19, no. 5, pp. 1304–1316, 2011.
[CrossRef]

M. Batayneh, D. A. Schupke, M. Hoffmann, A. Kirstaedter, and B. Mukherjee, “Reliable multi-bit-rate VPN provisioning for multipoint carrier-grade Ethernet services over mixed-line-rate WDM optical networks,” J. Opt. Commun. Netw., vol. 3, no. 1, pp. 67–76, 2011.

Shalmany, N. A.

N. A. Shalmany and A. G. P. Rahbar, “On the choice of all-optical switches for optical networking,” in Int. Symp. on High Capacity Optical Networks and Enabling Technologies (HONET), 2007.

Shibata, Y.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, Y. Kondo, and Y. Tohmori, “Monolithically integrated 100-channel WDM channel selector employing low-crosstalk AWG,” IEEE Photon. Technol. Lett., vol. 16, no. 11, pp. 2481–2483, 2004.
[CrossRef]

Shu, X.

Simsarian, J. E.

Smalbrugge, E.

I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1 × 16 photonic switch for WDM optical packet switching application,” in Proc. Int. Conf. Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.

Smit, M. K.

I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1 × 16 photonic switch for WDM optical packet switching application,” in Proc. Int. Conf. Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.

Soganci, I. M.

I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1 × 16 photonic switch for WDM optical packet switching application,” in Proc. Int. Conf. Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.

I. M. Soganci, T. Tanemura, K. Takeda, M. Zaitsu, M. Takenaka, and Y. Nakano, “Monolithic InP 100-port photonic switch,” in 36th European Conf. and Exhibition on Optical Communication, 2010.

N. Calabretta, I. M. Soganci, T. Tanemura, W. Wang, O. Raz, K. Higuchi, K. A. Williams, T. J. de Vries, Y. Nakano, and H. J. S. Dorren, “1 × 16 optical packet switch sub-system with a monolithically integrated InP optical switch,” in Optical Fiber Communication Conf., 2010, OTuN6.

Takeda, K.

I. M. Soganci, T. Tanemura, K. Takeda, M. Zaitsu, M. Takenaka, and Y. Nakano, “Monolithic InP 100-port photonic switch,” in 36th European Conf. and Exhibition on Optical Communication, 2010.

Takenaka, M.

I. M. Soganci, T. Tanemura, K. Takeda, M. Zaitsu, M. Takenaka, and Y. Nakano, “Monolithic InP 100-port photonic switch,” in 36th European Conf. and Exhibition on Optical Communication, 2010.

Tanemura, T.

I. M. Soganci, T. Tanemura, K. Takeda, M. Zaitsu, M. Takenaka, and Y. Nakano, “Monolithic InP 100-port photonic switch,” in 36th European Conf. and Exhibition on Optical Communication, 2010.

N. Calabretta, I. M. Soganci, T. Tanemura, W. Wang, O. Raz, K. Higuchi, K. A. Williams, T. J. de Vries, Y. Nakano, and H. J. S. Dorren, “1 × 16 optical packet switch sub-system with a monolithically integrated InP optical switch,” in Optical Fiber Communication Conf., 2010, OTuN6.

I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1 × 16 photonic switch for WDM optical packet switching application,” in Proc. Int. Conf. Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.

Tangdiongga, E.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol., vol. 25, no. 1, pp. 103–108, 2007.
[CrossRef]

W. Wang, N. Calabretta, T. Ditewig, F. Gomez Agis, S. Zhang, O. Raz, E. Tangdiongga, and H. J. S. Dorren, “Scalable optical packet switching at 160 Gb/s data rate,” in 35th European Conf. on Optical Communication, 2009.

Taubenblatt, M.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in 36th European Conf. and Exhibition on Optical Communication, 2010.

Tohmori, Y.

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, Y. Kondo, and Y. Tohmori, “Monolithically integrated 100-channel WDM channel selector employing low-crosstalk AWG,” IEEE Photon. Technol. Lett., vol. 16, no. 11, pp. 2481–2483, 2004.
[CrossRef]

Tomkos, I.

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Commun. Surv. Tutorials, to be published.

Tsao-Wu, N. T.

D. C. Opferman and N. T. Tsao-Wu, “On a class of rearrangeable switching networks,” Bell Syst. Tech. J., vol. 50, no. 5, pp. 1579–1618, 1971.

Wang, H.

H. Wang, A. Wonfor, K. A. Williams, R. V. Penty, and I. H. White, “Demonstration of a lossless monolithic 16 × 16 QW SOA switch,” in 35th European Conf. on Optical Communication, 2009, PD 1.7.

Wang, W.

N. Calabretta, W. Wang, T. Ditewig, O. Raz, F. Gomez Agis, S. Zhang, H. de Waardt, and H. J. S. Dorren, “Scalable optical packet switches for multiple data formats and data-rates packets,” IEEE Photon. Technol. Lett., vol. 22, pp. 483–485, 2010.
[CrossRef]

N. Calabretta, I. M. Soganci, T. Tanemura, W. Wang, O. Raz, K. Higuchi, K. A. Williams, T. J. de Vries, Y. Nakano, and H. J. S. Dorren, “1 × 16 optical packet switch sub-system with a monolithically integrated InP optical switch,” in Optical Fiber Communication Conf., 2010, OTuN6.

W. Wang, N. Calabretta, T. Ditewig, F. Gomez Agis, S. Zhang, O. Raz, E. Tangdiongga, and H. J. S. Dorren, “Scalable optical packet switching at 160 Gb/s data rate,” in 35th European Conf. on Optical Communication, 2009.

White, I. H.

H. Wang, A. Wonfor, K. A. Williams, R. V. Penty, and I. H. White, “Demonstration of a lossless monolithic 16 × 16 QW SOA switch,” in 35th European Conf. on Optical Communication, 2009, PD 1.7.

Williams, K. A.

I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1 × 16 photonic switch for WDM optical packet switching application,” in Proc. Int. Conf. Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.

H. Wang, A. Wonfor, K. A. Williams, R. V. Penty, and I. H. White, “Demonstration of a lossless monolithic 16 × 16 QW SOA switch,” in 35th European Conf. on Optical Communication, 2009, PD 1.7.

N. Calabretta, I. M. Soganci, T. Tanemura, W. Wang, O. Raz, K. Higuchi, K. A. Williams, T. J. de Vries, Y. Nakano, and H. J. S. Dorren, “1 × 16 optical packet switch sub-system with a monolithically integrated InP optical switch,” in Optical Fiber Communication Conf., 2010, OTuN6.

Wonfor, A.

H. Wang, A. Wonfor, K. A. Williams, R. V. Penty, and I. H. White, “Demonstration of a lossless monolithic 16 × 16 QW SOA switch,” in 35th European Conf. on Optical Communication, 2009, PD 1.7.

Zaitsu, M.

I. M. Soganci, T. Tanemura, K. Takeda, M. Zaitsu, M. Takenaka, and Y. Nakano, “Monolithic InP 100-port photonic switch,” in 36th European Conf. and Exhibition on Optical Communication, 2010.

Zhang, S.

N. Calabretta, W. Wang, T. Ditewig, O. Raz, F. Gomez Agis, S. Zhang, H. de Waardt, and H. J. S. Dorren, “Scalable optical packet switches for multiple data formats and data-rates packets,” IEEE Photon. Technol. Lett., vol. 22, pp. 483–485, 2010.
[CrossRef]

W. Wang, N. Calabretta, T. Ditewig, F. Gomez Agis, S. Zhang, O. Raz, E. Tangdiongga, and H. J. S. Dorren, “Scalable optical packet switching at 160 Gb/s data rate,” in 35th European Conf. on Optical Communication, 2009.

Zirngibl, M.

Bell Syst. Tech. J. (2)

C. Clos, “A study of non-blocking switching networks,” Bell Syst. Tech. J., vol. 32, no. 2, pp. 406–424, 1953.

D. C. Opferman and N. T. Tsao-Wu, “On a class of rearrangeable switching networks,” Bell Syst. Tech. J., vol. 50, no. 5, pp. 1579–1618, 1971.

IEEE Commun. Surv. Tutorials (1)

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Commun. Surv. Tutorials, to be published.

IEEE Photon. Technol. Lett. (2)

N. Calabretta, W. Wang, T. Ditewig, O. Raz, F. Gomez Agis, S. Zhang, H. de Waardt, and H. J. S. Dorren, “Scalable optical packet switches for multiple data formats and data-rates packets,” IEEE Photon. Technol. Lett., vol. 22, pp. 483–485, 2010.
[CrossRef]

N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, Y. Kondo, and Y. Tohmori, “Monolithically integrated 100-channel WDM channel selector employing low-crosstalk AWG,” IEEE Photon. Technol. Lett., vol. 16, no. 11, pp. 2481–2483, 2004.
[CrossRef]

IEEE Trans. Commun. (2)

T. T. Lee and S. Y. Liew, “Parallel routing algorithms in Beneš-Clos networks,” IEEE Trans. Commun., vol. 50, no. 11, pp. 1841–1847, 2002.
[CrossRef]

S. Andresen, “The looping algorithm extended to base 2t rearrangeable switching networks,” IEEE Trans. Commun., vol. 25, no. 10, pp. 1057–1063, 1977.
[CrossRef]

IEEE Trans. Comput. (1)

K. Y. Lee, “A new Beneš network control algorithm,” IEEE Trans. Comput., vol. 100, no. 36, pp. 768–772, 1987.

IEEE/ACM Trans. Netw. (1)

M. Batayneh, D. A. Schupke, M. Hoffmann, A. Kirstaedter, and B. Mukherjee, “On routing and transmission-range determination of multi-bit-rate signals over mixed-line-rate WDM networks for carrier Ethernet,” IEEE/ACM Trans. Netw., vol. 19, no. 5, pp. 1304–1316, 2011.
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (1)

M. Batayneh, D. A. Schupke, M. Hoffmann, A. Kirstaedter, and B. Mukherjee, “Reliable multi-bit-rate VPN provisioning for multipoint carrier-grade Ethernet services over mixed-line-rate WDM optical networks,” J. Opt. Commun. Netw., vol. 3, no. 1, pp. 67–76, 2011.

J. Opt. Netw. (1)

Other (17)

W. Wang, N. Calabretta, T. Ditewig, F. Gomez Agis, S. Zhang, O. Raz, E. Tangdiongga, and H. J. S. Dorren, “Scalable optical packet switching at 160 Gb/s data rate,” in 35th European Conf. on Optical Communication, 2009.

http://www.omnetpp.org/.

J. Luo, S. Di Lucente, J. Ramirez, H. J. S. Dorren, and N. Calabretta, “Low latency and large port count optical packet switch with highly distributed control,” in Optical Fiber Communication Conf., 2012, OW3J.2.

V. E. Beneš, Mathematical Theory of Connecting Networks and Telephone Traffic. Academic Press, New York, 1965.

W. Kabacinski, Nonblocking Electronic and Photonic Switching Fabrics. Springer-Verlag, New York, 2005.

S. Y. R. Li, Algebraic Switching Theory and Broadband Applications. Academic Press, 2001.

F. K. Hwang, The Mathematical Theory of Nonblocking Switching Networks. World Scientific, Singapore, 1998.

A. Pattavina, Switching Theory: Architectures and Performance in Broadband ATM Networks. Wiley, 1989.

N. A. Shalmany and A. G. P. Rahbar, “On the choice of all-optical switches for optical networking,” in Int. Symp. on High Capacity Optical Networks and Enabling Technologies (HONET), 2007.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in 36th European Conf. and Exhibition on Optical Communication, 2010.

L. A. Barroso and U. Hölzle, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, in Synthesis Lectures on Computer Architecture. Morgan & Claypool, 2009.

R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection network: The OSMOSIS project,” in 17th Annu. Meeting of the IEEE Lasers and Electro-Optics Society, 2004, vol. 2, pp. 563–564.

H. Wang, A. Wonfor, K. A. Williams, R. V. Penty, and I. H. White, “Demonstration of a lossless monolithic 16 × 16 QW SOA switch,” in 35th European Conf. on Optical Communication, 2009, PD 1.7.

S. C. Nicholes, M. L. Mašanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “The world’s first InP 8 × 8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port,” in Optical Fiber Communication Conf., 2009, PDPB1.

I. M. Soganci, T. Tanemura, K. A. Williams, N. Calabretta, T. de Vries, E. Smalbrugge, M. K. Smit, H. J. S. Dorren, and Y. Nakano, “Integrated phased-array 1 × 16 photonic switch for WDM optical packet switching application,” in Proc. Int. Conf. Photonics in Switching, Pisa, Italy, 2009, WeI3-1/2.

N. Calabretta, I. M. Soganci, T. Tanemura, W. Wang, O. Raz, K. Higuchi, K. A. Williams, T. J. de Vries, Y. Nakano, and H. J. S. Dorren, “1 × 16 optical packet switch sub-system with a monolithically integrated InP optical switch,” in Optical Fiber Communication Conf., 2010, OTuN6.

I. M. Soganci, T. Tanemura, K. Takeda, M. Zaitsu, M. Takenaka, and Y. Nakano, “Monolithic InP 100-port photonic switch,” in 36th European Conf. and Exhibition on Optical Communication, 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

(Color online) Abstract system under investigation. Traffic arrives from ingress clusters and is destined to egress clusters. The switch matrix and the switch controller are the main objects of study.

Fig. 2
Fig. 2

(Color online) Time to configure a Beneš switch matrix expressed in clock cycles according to a looping algorithm, a trial partition machine (TPM), and an algorithm that scales linearly with the number of input/output ports of the switch.

Fig. 3
Fig. 3

Spanke architecture based on 1 × N and N × 1 switches with N input/output ports.

Fig. 4
Fig. 4

Schematic of the simple model used to study the latency and throughput of the system under investigation.

Fig. 5
Fig. 5

(Color online) load and loadR computed for different numbers of iterations (I=1,3,5,10, and 20) in a system with four inputs and outputs.

Fig. 6
Fig. 6

(Color online) Throughput of the system under investigation computed according to Eq. (6) for a switch based on Beneš (considering the looping and a linear algorithm) and Spanke architectures. The results are computed considering loadR=1.

Fig. 7
Fig. 7

(Color online) Latency as a function of the port count for a switching matrix based on Beneš architecture employing the looping algorithm, and with configuration time that scales linearly with the port count, and for a switching matrix based on the Spanke architecture as a function of the number of ports. The results are computed considering load=1.

Fig. 8
Fig. 8

WDM Spanke architecture with highly distributed control and contention resolution blocks (CRBs) at its outputs.

Fig. 9
Fig. 9

(Color online) Schematic of a CRB that can solve contentions by employing wavelength conversion. It is assumed that there is a tunable converter on each input line.

Fig. 10
Fig. 10

Spanke architecture for a WDM node with CRBs consisting of AWGs, fast wavelength selectors (WSs), and fixed wavelength converters (FWCs).

Fig. 11
Fig. 11

(Color online) Latency upper bound (a) and average throughput (b) obtained by using the single model of Section II on a system with input buffer and thus retransmission, and where the CRB is implemented according to the practical implementation.

Fig. 12
Fig. 12

(Color online) Subsystem studied by means of node simulation and mean value analysis. The system employs the architecture with the concrete implementation of the CRB. Each input buffer consists of M queues, each of them associated with a different wavelength channel.

Fig. 13
Fig. 13

(Color online) (a) Latency, (b) packet loss and its upper bound, and (c) throughput as a function of the input load of the system with the switch employing the concrete CRB implementation. 4 × 4, 16 × 16, 64 × 64, 256 × 256, and 1024 × 1024 switching matrices have been considered during the simulations.

Fig. 14
Fig. 14

(Color online) Mean buffer population as a function of the input load expressed in number of packets.

Fig. 15
Fig. 15

Single-chain analytic model of system in Fig. 1 in which there are no input buffers. In this model, the probability of retransmission is replaced by the packet loss probability.

Fig. 16
Fig. 16

(Color online) Packet loss probabilities versus load for a Spanke-type architecture with F=8, F=16, and F=32, F being the number of optical fibers and the number of wavelength channels at each input fiber, considering the ideal CRB.

Fig. 17
Fig. 17

(Color online) Packet loss probabilities versus load for a Spanke-type architecture with F=8, F=16, and F=32, F being the number of optical fibers and the number of wavelength channels at each input fiber, considering the practical CRB.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Pcont=i=2NNiloadNi1loadNNi,
Pcont_gp=k=1N1N1kloadNk1loadNN1k,
PRetr=loadk=1N1N1kloadNk1loadNN1kkk+1,
loadRi=load+PRetri1.
PRetri=loadRik=1N1N1kloadRiNk1loadRiNN1kkk+1.
throughput¯=RTTRTT+tswitchk=1NNkloadRNk1loadRNNk.
latencyUB¯=RTT+tswitch+PRetrMaxlatencyUB¯
latencyUB¯=RTT+tswitch1PRetrMax.
Ploss=k=Z+1VVkpk1pVkkZVp.
Ploss=k=2MMkloadFk1loadFMkk1MloadF.