Abstract

A two millimeter-wave signal generation scheme for a bidirectional 60 GHz radio-over-fiber system is theoretically analyzed and numerically verified. Three dual-electrical Mach–Zehnder modulators (MZMs) and two optical interleavers (OILs) are employed, and MZM1, MZM2, and MZM3 are biased at the minimum, maximum, and minimum transmission points, respectively. The two OILs and a fiber Bragg grating are used to separate the subcarriers after transmission. In the scheme, a tunable laser serves as the optical source, and two 60 GHz millimeter-wave signals with modulating data are generated to transmit diversity, and a remote local oscillator is also generated. The analytical models for transmission through a dispersive medium are confirmed by simulations. It is found that chromatic dispersion has little impact on the bit error rate performance when a narrow-linewidth laser and a noise management technique are employed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Cooper, “‘Fibre/radio’ for the provision of cordless/mobile telephony services in the access network,” Electron. Lett., vol. 26, pp. 2054–2056, 1990.
    [CrossRef]
  2. T. Kuri and K. Kitayama, “Optical heterodyne detection technique for densely multiplexed millimeter-wave-band radio-on-fiber systems,” J. Lightwave Technol., vol. 21, pp. 3167–3179, 2003.
    [CrossRef]
  3. H. Toda, T. Yamashita, T. Kuri, and K. Kitayama, “Demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM millimeter-wave radio-on-fiber systems,” J. Lightwave Technol., vol. 21, pp. 1735–1741, 2003.
    [CrossRef]
  4. L. J. Zhang, X. J. Xin, B. Liu, Y. J. Wang, J. J. Yu, and C. X. Yu, “OFDM modulated WDM-ROF system based on PCF supercontinuum,” Opt. Express, vol. 18, pp. 15003–15008, 2010.
    [CrossRef] [PubMed]
  5. U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1716–1724, 1996.
    [CrossRef]
  6. H. Sotobayashi and K. Kitayama, “Cancellation of the signal fading for 60 GHz subcarrier multiplexed optical DSB signal transmission in nondispersion shifted fiber using midway optical phase conjugation,” J. Lightwave Technol., vol. 17, pp. 2488–2497, 1999.
    [CrossRef]
  7. J. H. Chen, C. T. Lin, P. T. Shih, W. J. Jiang, S. P. Dai, Y. M. Lin, P. C. Peng, and S. Chi, “Generation of optical millimeter-wave signals and vector formats using an integrated optical I/Q modulator [Invited],” J. Opt. Netw., vol. 8, pp. 188–200, Feb.2009.
    [CrossRef]
  8. J. Li, T. G. Ning, L. Pei, and C. H. Qi, “Millimeter-wave radio-over-fiber system based on two-step heterodyne technique,” Opt. Lett., vol. 34, pp. 3136–3138, Oct.2009.
    [CrossRef] [PubMed]
  9. H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio communication,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2285–2293, 1992.
    [CrossRef]
  10. J. Li, T. G. Ning, L. Pei, C. H. Qi, Q. A. Zhou, X. D. Hu, and S. Gao, “60 GHz millimeter-wave generator based on a frequency-quadrupling feed-forward modulation technique,” Opt. Lett., vol. 35, pp. 3619–3621, Nov.2010.
    [CrossRef] [PubMed]
  11. L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1257–1264, 1999.
    [CrossRef]
  12. R. A. Griffin and K. Kitayama, “Optical millimetre-wave generation with high spectral purity using feed-forward optical field modulation,” Electron. Lett., vol. 34, pp. 795–796, 1998.
    [CrossRef]
  13. W. C. Jakes, Ed., Microwave Mobile Communications. 1974.
  14. S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, pp. 1451–1458, 1998.
    [CrossRef]
  15. K. Y. Lau and J. Park, Ultra-high Frequency Linear Fiber Optic Systems, 2nd ed. Springer, 2008, pp. 155–166.

2010 (2)

2009 (2)

2003 (2)

T. Kuri and K. Kitayama, “Optical heterodyne detection technique for densely multiplexed millimeter-wave-band radio-on-fiber systems,” J. Lightwave Technol., vol. 21, pp. 3167–3179, 2003.
[CrossRef]

H. Toda, T. Yamashita, T. Kuri, and K. Kitayama, “Demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM millimeter-wave radio-on-fiber systems,” J. Lightwave Technol., vol. 21, pp. 1735–1741, 2003.
[CrossRef]

1999 (2)

H. Sotobayashi and K. Kitayama, “Cancellation of the signal fading for 60 GHz subcarrier multiplexed optical DSB signal transmission in nondispersion shifted fiber using midway optical phase conjugation,” J. Lightwave Technol., vol. 17, pp. 2488–2497, 1999.
[CrossRef]

L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1257–1264, 1999.
[CrossRef]

1998 (2)

R. A. Griffin and K. Kitayama, “Optical millimetre-wave generation with high spectral purity using feed-forward optical field modulation,” Electron. Lett., vol. 34, pp. 795–796, 1998.
[CrossRef]

S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, pp. 1451–1458, 1998.
[CrossRef]

1996 (1)

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1716–1724, 1996.
[CrossRef]

1992 (1)

H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio communication,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2285–2293, 1992.
[CrossRef]

1990 (1)

A. J. Cooper, “‘Fibre/radio’ for the provision of cordless/mobile telephony services in the access network,” Electron. Lett., vol. 26, pp. 2054–2056, 1990.
[CrossRef]

Alamouti, S. M.

S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, pp. 1451–1458, 1998.
[CrossRef]

Banba, S.

H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio communication,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2285–2293, 1992.
[CrossRef]

Chen, J. H.

Chi, S.

Cooper, A. J.

A. J. Cooper, “‘Fibre/radio’ for the provision of cordless/mobile telephony services in the access network,” Electron. Lett., vol. 26, pp. 2054–2056, 1990.
[CrossRef]

Dai, S. P.

Edge, C.

L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1257–1264, 1999.
[CrossRef]

Elkin, M. D.

L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1257–1264, 1999.
[CrossRef]

Gao, S.

Gliese, U.

L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1257–1264, 1999.
[CrossRef]

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1716–1724, 1996.
[CrossRef]

Griffin, R. A.

R. A. Griffin and K. Kitayama, “Optical millimetre-wave generation with high spectral purity using feed-forward optical field modulation,” Electron. Lett., vol. 34, pp. 795–796, 1998.
[CrossRef]

Hu, X. D.

Huang, X.

L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1257–1264, 1999.
[CrossRef]

Jiang, W. J.

Kitayama, K.

T. Kuri and K. Kitayama, “Optical heterodyne detection technique for densely multiplexed millimeter-wave-band radio-on-fiber systems,” J. Lightwave Technol., vol. 21, pp. 3167–3179, 2003.
[CrossRef]

H. Toda, T. Yamashita, T. Kuri, and K. Kitayama, “Demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM millimeter-wave radio-on-fiber systems,” J. Lightwave Technol., vol. 21, pp. 1735–1741, 2003.
[CrossRef]

H. Sotobayashi and K. Kitayama, “Cancellation of the signal fading for 60 GHz subcarrier multiplexed optical DSB signal transmission in nondispersion shifted fiber using midway optical phase conjugation,” J. Lightwave Technol., vol. 17, pp. 2488–2497, 1999.
[CrossRef]

R. A. Griffin and K. Kitayama, “Optical millimetre-wave generation with high spectral purity using feed-forward optical field modulation,” Electron. Lett., vol. 34, pp. 795–796, 1998.
[CrossRef]

Kuri, T.

H. Toda, T. Yamashita, T. Kuri, and K. Kitayama, “Demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM millimeter-wave radio-on-fiber systems,” J. Lightwave Technol., vol. 21, pp. 1735–1741, 2003.
[CrossRef]

T. Kuri and K. Kitayama, “Optical heterodyne detection technique for densely multiplexed millimeter-wave-band radio-on-fiber systems,” J. Lightwave Technol., vol. 21, pp. 3167–3179, 2003.
[CrossRef]

Langley, L. N.

L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1257–1264, 1999.
[CrossRef]

Lau, K. Y.

K. Y. Lau and J. Park, Ultra-high Frequency Linear Fiber Optic Systems, 2nd ed. Springer, 2008, pp. 155–166.

Li, J.

Lin, C. T.

Lin, Y. M.

Liu, B.

Nielsen, T. N.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1716–1724, 1996.
[CrossRef]

Ning, T. G.

Norskov, S.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1716–1724, 1996.
[CrossRef]

Ogawa, H.

H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio communication,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2285–2293, 1992.
[CrossRef]

Park, J.

K. Y. Lau and J. Park, Ultra-high Frequency Linear Fiber Optic Systems, 2nd ed. Springer, 2008, pp. 155–166.

Pei, L.

Peng, P. C.

Polifko, D.

H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio communication,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2285–2293, 1992.
[CrossRef]

Qi, C. H.

Seeds, A. J.

L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1257–1264, 1999.
[CrossRef]

Shih, P. T.

Sotobayashi, H.

Toda, H.

H. Toda, T. Yamashita, T. Kuri, and K. Kitayama, “Demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM millimeter-wave radio-on-fiber systems,” J. Lightwave Technol., vol. 21, pp. 1735–1741, 2003.
[CrossRef]

Wale, M. J.

L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1257–1264, 1999.
[CrossRef]

Wang, Y. J.

Xin, X. J.

Yamashita, T.

H. Toda, T. Yamashita, T. Kuri, and K. Kitayama, “Demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM millimeter-wave radio-on-fiber systems,” J. Lightwave Technol., vol. 21, pp. 1735–1741, 2003.
[CrossRef]

Yu, C. X.

Yu, J. J.

Zhang, L. J.

Zhou, Q. A.

Electron. Lett. (2)

A. J. Cooper, “‘Fibre/radio’ for the provision of cordless/mobile telephony services in the access network,” Electron. Lett., vol. 26, pp. 2054–2056, 1990.
[CrossRef]

R. A. Griffin and K. Kitayama, “Optical millimetre-wave generation with high spectral purity using feed-forward optical field modulation,” Electron. Lett., vol. 34, pp. 795–796, 1998.
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, pp. 1451–1458, 1998.
[CrossRef]

IEEE Trans. Microwave Theory Tech. (3)

L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1257–1264, 1999.
[CrossRef]

H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio communication,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2285–2293, 1992.
[CrossRef]

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1716–1724, 1996.
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Netw. (1)

J. Lightwave Technol. (1)

H. Toda, T. Yamashita, T. Kuri, and K. Kitayama, “Demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM millimeter-wave radio-on-fiber systems,” J. Lightwave Technol., vol. 21, pp. 1735–1741, 2003.
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (2)

W. C. Jakes, Ed., Microwave Mobile Communications. 1974.

K. Y. Lau and J. Park, Ultra-high Frequency Linear Fiber Optic Systems, 2nd ed. Springer, 2008, pp. 155–166.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sketch map of the transmit diversity scheme for a 60 GHz RoF system (EA, electrical amplifier).

Fig. 2
Fig. 2

Spectra of millimeter-wave signals and the local oscillator: (a) spectrum of optical field E4(t), (b) spectrum of i1(t), (c) spectrum of i2(t), and (d) spectrum of the local oscillator.

Fig. 3
Fig. 3

BER versus the linewidth with different fiber lengths.

Fig. 4
Fig. 4

BER versus the noise power with different fiber lengths.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Ein(t)=E0exp[j2πf0t+jϕ0(t)],
E1(t)Ein(t)n=1(1)nJ2n1(α){exp[j2π(2n1)ft]+exp[j2π(2n1)ft]},
E1(t)=E0J1αexpj2πf0+ft+jϕ0t+expj2πf0ft+jϕ0t,
E2(t)12E1(t)mINaiJ0(β)+2n=1(1)nJ2n(β)cos(2π2nft),
E2(t)=12aiE0{J1(α)J2(β)exp[j2π(f0+3f)t+jϕ0(t)]J1(α)[J0(β)J2(β)]exp[j2π(f0+f)t+jϕ0(t)]J1(α)[J0(β)J2(β)]exp[j2π(f0f)t+jϕ0(t)]+J1(α)J2(β)exp[j2π(f03f)t+jϕ0(t)]}.
E3(t)=12E0J1(α)2exp[j2π(f0+2f)t+jϕ0(t)]+2exp[j2πf0t+jϕ0(t)]+exp[j2π(f02f)t+jϕ0(t)].
E4(t)=E02GaiJ1(α)J2(β)exp[j2π(f0+3f)(tτ1)+jϕ0(tτ1)]GaiJ1(α)[J0(β)J2(β)]exp[j2π(f0+f)(tτ2)+jϕ0(tτ2)]GaiJ1(α)[J0(β)J2(β)]exp[j2π(f0f)(tτ3)+jϕ0(tτ3)]+GaiJ1(α)J2(β)exp[j2π(f03f)(tτ4)+jϕ0(tτ4)]+J1(α)2exp[j2π(f0+2f)(tτ5)+jϕ0(tτ5)]+2J1(α)2exp[j2πf0(tτ6)+jϕ0(tτ6)]+J1(α)2exp[j2π(f02f)(tτ7)+jϕ0(tτ7)],
E5(t)=E0GJ1(α)2aiJ2(β)exp[j2π(f0+3f)(tτ1)+jϕ0(tτ1)][J0(β)J2(β)]exp[j2π(f0+f)(tτ2)+jϕ0(tτ2)][J0(β)J2(β)]exp[j2π(f0f)(tτ3)+jϕ0(tτ3)]+J2(β)exp[j2π(f03f)(tτ4)+jϕ0(tτ4)],
E6(t)=E0J1(α)22{exp[j2π(f0+2f)(tτ5)+jϕ0(tτ5)]+2exp[j2πf0(tτ6)+jϕ0(tτ6)]+exp[j2π(f02f)(tτ7)+jϕ0(tτ7)]}.
E7(t)=E0GJ1(α)2aiJ2(β)exp[j2π(f03f)(tτ4)+jϕ0(tτ4)][J0(β)J2(β)]exp[j2π(f0f)(tτ3)+jϕ0(tτ3)],
E8(t)=E0GJ1(α)2ai{J2(β)exp[j2π(f0+3f)(tτ1)+jϕ0(tτ1)][J0(β)J2(β)]exp[j2π(f0+f)(tτ2)+jϕ0(tτ2)]}.
i1(t)12RE{E7(t)E7*(t)}=RE02G2J1(α)28(ai)2×A2+B2+ABE{exp[jϕ0(tτ4)jϕ0(tτ3)]}exp(j2π2ft)+ABE{exp[jϕ0(tτ3)jϕ0(tτ4)]}exp(j2π2ft),
Eexpjϕ0t1jϕ0t2=+12πδt1t2exp14πδt1t2expjxdx=exp12×2πδt1t2=expπδt1t2.
i1(t)RE02G2J12(α)J2(β)[J2(β)J0(β)]4×exp(2πδLcDf/f02)(ai)2cos(2π2ft).
i2(t)12RE{E8(t)E8*(t)}=RE02G2J1(α)2J2(β)[J2(β)J0(β)]4×exp(2πδLcDf/f02)(ai)2cos(2π2ft).
E9(t)=E0J12(α)2exp[j2π(f0+2f)(tτ5)+jϕ0(tτ5)]+2exp[j2πf0(tτ6)+jϕ0(tτ6)].
iLO(t)12RE{E9(t)E9*(t)}=RE02J14(α)exp(2πδLcDf/f02)cos(2π2ft).
Pe=12erfcr2,
Pe12erfcI×exp4πδLcDff02/4n0B,