Abstract

We propose a wide-range frequency offset estimation algorithm used in a direct detection orthogonal frequency division multiplexing passive optical network (DD-OFDM-PON) downstream system. Using this method, frequency offset is estimated according to the spectrum of the received DD-OFDM signal. The estimated frequency offset is used for frequency down-conversion in the digital domain to obtain the baseband OFDM signal. With this method, all data-bearing subcarriers should fall into the OFDM bandwidth after frequency down-conversion. The validity of the method is confirmed by an experiment with 20 Gb/s OFDM-PON downstream transmission.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S.-W. Wong, “Next-generation optical access networks,” J. Lightwave Technol., vol. 25, pp. 3428–3442, Nov.2007.
    [CrossRef]
  2. http://fsanweb.com/archives/category/next-generation-pon-task-group-ng-pon.
  3. J.-i. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—Part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol. 47, pp. 43–49, Nov.2009.
    [CrossRef]
  4. J. Yu, Z. Jia, P. N. Ji, and T. Wang, “40-Gb/s wavelength-division-multiplexing passive optical network with centralized lightwave source,” in Optical Fiber Communication Conf., 2008, OTuH8.
  5. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “40-Gb/s MIMO-OFDM-PON using polarization multiplexing and direct-detection,” in Optical Fiber Communication Conf., 2009, OMV3.
  6. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol., vol. 28, pp. 484–493, Feb.2010.
    [CrossRef]
  7. D. Qian, N. Cvijetic, Y.-K. Huang, J. Hu, and T. Wang, “Single-wavelength 108 Gb/s upstream OFDMA-PON transmission,” in 35th European Conf. on Optical Communication, 2009, PD3.3.
  8. N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag., vol. 48, no. 7, pp. 70–77, July2010.
    [CrossRef]
  9. W. Shieh and I. Djordjevic, Orthogonal Frequency Division Multiplexing for Optical Communications. Academic Press, San Diego, CA, 2010, ch. 7.
  10. D. Qian, S.-H. Fan, N. Cvijetic, J. Hu, and T. Wang, “64/32/16QAM-OFDM using direct-detection for 40G-OFDMA-PON downstream,” in Optical Fiber Communication Conf., 2011, OMG4.
  11. T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun., vol. 45, pp. 1613–1621, Dec.1997.
    [CrossRef]
  12. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express, vol. 14, pp. 2079–2084, Mar.2006.
    [CrossRef] [PubMed]
  13. B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol., vol. 26, pp. 196–203, Jan.2008.
    [CrossRef]

2010

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol., vol. 28, pp. 484–493, Feb.2010.
[CrossRef]

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag., vol. 48, no. 7, pp. 70–77, July2010.
[CrossRef]

2009

J.-i. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—Part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol. 47, pp. 43–49, Nov.2009.
[CrossRef]

2008

2007

2006

1997

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun., vol. 45, pp. 1613–1621, Dec.1997.
[CrossRef]

Armstrong, J.

Bourgart, F.

J.-i. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—Part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol. 47, pp. 43–49, Nov.2009.
[CrossRef]

Campbell, M.

J.-i. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—Part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol. 47, pp. 43–49, Nov.2009.
[CrossRef]

Cheng, N.

Cox, D. C.

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun., vol. 45, pp. 1613–1621, Dec.1997.
[CrossRef]

Cui, A.

J.-i. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—Part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol. 47, pp. 43–49, Nov.2009.
[CrossRef]

Cvijetic, N.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol., vol. 28, pp. 484–493, Feb.2010.
[CrossRef]

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag., vol. 48, no. 7, pp. 70–77, July2010.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “40-Gb/s MIMO-OFDM-PON using polarization multiplexing and direct-detection,” in Optical Fiber Communication Conf., 2009, OMV3.

D. Qian, N. Cvijetic, Y.-K. Huang, J. Hu, and T. Wang, “Single-wavelength 108 Gb/s upstream OFDMA-PON transmission,” in 35th European Conf. on Optical Communication, 2009, PD3.3.

D. Qian, S.-H. Fan, N. Cvijetic, J. Hu, and T. Wang, “64/32/16QAM-OFDM using direct-detection for 40G-OFDMA-PON downstream,” in Optical Fiber Communication Conf., 2011, OMG4.

Davey, R.

J.-i. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—Part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol. 47, pp. 43–49, Nov.2009.
[CrossRef]

Djordjevic, I.

W. Shieh and I. Djordjevic, Orthogonal Frequency Division Multiplexing for Optical Communications. Academic Press, San Diego, CA, 2010, ch. 7.

Fan, S.-H.

D. Qian, S.-H. Fan, N. Cvijetic, J. Hu, and T. Wang, “64/32/16QAM-OFDM using direct-detection for 40G-OFDMA-PON downstream,” in Optical Fiber Communication Conf., 2011, OMG4.

Gutierrez, D.

Hu, J.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag., vol. 48, no. 7, pp. 70–77, July2010.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol., vol. 28, pp. 484–493, Feb.2010.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “40-Gb/s MIMO-OFDM-PON using polarization multiplexing and direct-detection,” in Optical Fiber Communication Conf., 2009, OMV3.

D. Qian, N. Cvijetic, Y.-K. Huang, J. Hu, and T. Wang, “Single-wavelength 108 Gb/s upstream OFDMA-PON transmission,” in 35th European Conf. on Optical Communication, 2009, PD3.3.

D. Qian, S.-H. Fan, N. Cvijetic, J. Hu, and T. Wang, “64/32/16QAM-OFDM using direct-detection for 40G-OFDMA-PON downstream,” in Optical Fiber Communication Conf., 2011, OMG4.

Huang, Y.-K.

D. Qian, N. Cvijetic, Y.-K. Huang, J. Hu, and T. Wang, “Single-wavelength 108 Gb/s upstream OFDMA-PON transmission,” in 35th European Conf. on Optical Communication, 2009, PD3.3.

Ji, P. N.

J. Yu, Z. Jia, P. N. Ji, and T. Wang, “40-Gb/s wavelength-division-multiplexing passive optical network with centralized lightwave source,” in Optical Fiber Communication Conf., 2008, OTuH8.

Jia, Z.

J. Yu, Z. Jia, P. N. Ji, and T. Wang, “40-Gb/s wavelength-division-multiplexing passive optical network with centralized lightwave source,” in Optical Fiber Communication Conf., 2008, OTuH8.

Kani, J.-i.

J.-i. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—Part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol. 47, pp. 43–49, Nov.2009.
[CrossRef]

Kazovsky, L. G.

Lowery, A. J.

Lowery, J.

Qian, D.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol., vol. 28, pp. 484–493, Feb.2010.
[CrossRef]

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag., vol. 48, no. 7, pp. 70–77, July2010.
[CrossRef]

D. Qian, S.-H. Fan, N. Cvijetic, J. Hu, and T. Wang, “64/32/16QAM-OFDM using direct-detection for 40G-OFDMA-PON downstream,” in Optical Fiber Communication Conf., 2011, OMG4.

D. Qian, N. Cvijetic, Y.-K. Huang, J. Hu, and T. Wang, “Single-wavelength 108 Gb/s upstream OFDMA-PON transmission,” in 35th European Conf. on Optical Communication, 2009, PD3.3.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “40-Gb/s MIMO-OFDM-PON using polarization multiplexing and direct-detection,” in Optical Fiber Communication Conf., 2009, OMV3.

Rafel, A.

J.-i. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—Part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol. 47, pp. 43–49, Nov.2009.
[CrossRef]

Rodrigues, S.

J.-i. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—Part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol. 47, pp. 43–49, Nov.2009.
[CrossRef]

Schmidl, T. M.

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun., vol. 45, pp. 1613–1621, Dec.1997.
[CrossRef]

Schmidt, B. J. C.

Shaw, W.-T.

Shieh, W.

W. Shieh and I. Djordjevic, Orthogonal Frequency Division Multiplexing for Optical Communications. Academic Press, San Diego, CA, 2010, ch. 7.

Wang, T.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol., vol. 28, pp. 484–493, Feb.2010.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “40-Gb/s MIMO-OFDM-PON using polarization multiplexing and direct-detection,” in Optical Fiber Communication Conf., 2009, OMV3.

D. Qian, N. Cvijetic, Y.-K. Huang, J. Hu, and T. Wang, “Single-wavelength 108 Gb/s upstream OFDMA-PON transmission,” in 35th European Conf. on Optical Communication, 2009, PD3.3.

J. Yu, Z. Jia, P. N. Ji, and T. Wang, “40-Gb/s wavelength-division-multiplexing passive optical network with centralized lightwave source,” in Optical Fiber Communication Conf., 2008, OTuH8.

D. Qian, S.-H. Fan, N. Cvijetic, J. Hu, and T. Wang, “64/32/16QAM-OFDM using direct-detection for 40G-OFDMA-PON downstream,” in Optical Fiber Communication Conf., 2011, OMG4.

Wong, S.-W.

Yu, J.

J. Yu, Z. Jia, P. N. Ji, and T. Wang, “40-Gb/s wavelength-division-multiplexing passive optical network with centralized lightwave source,” in Optical Fiber Communication Conf., 2008, OTuH8.

IEEE Commun. Mag.

J.-i. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—Part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol. 47, pp. 43–49, Nov.2009.
[CrossRef]

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag., vol. 48, no. 7, pp. 70–77, July2010.
[CrossRef]

IEEE Trans. Commun.

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun., vol. 45, pp. 1613–1621, Dec.1997.
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

http://fsanweb.com/archives/category/next-generation-pon-task-group-ng-pon.

J. Yu, Z. Jia, P. N. Ji, and T. Wang, “40-Gb/s wavelength-division-multiplexing passive optical network with centralized lightwave source,” in Optical Fiber Communication Conf., 2008, OTuH8.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “40-Gb/s MIMO-OFDM-PON using polarization multiplexing and direct-detection,” in Optical Fiber Communication Conf., 2009, OMV3.

D. Qian, N. Cvijetic, Y.-K. Huang, J. Hu, and T. Wang, “Single-wavelength 108 Gb/s upstream OFDMA-PON transmission,” in 35th European Conf. on Optical Communication, 2009, PD3.3.

W. Shieh and I. Djordjevic, Orthogonal Frequency Division Multiplexing for Optical Communications. Academic Press, San Diego, CA, 2010, ch. 7.

D. Qian, S.-H. Fan, N. Cvijetic, J. Hu, and T. Wang, “64/32/16QAM-OFDM using direct-detection for 40G-OFDMA-PON downstream,” in Optical Fiber Communication Conf., 2011, OMG4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(Color online) Conventional DD-OFDM system and signal spectra in the system: (a) baseband OFDM signal, (b) frequency up-converted OFDM signal, (c) DSB optical OFDM signal, (d) DD-OFDM signal.

Fig. 2
Fig. 2

(Color online) Simple DD-OFDM system and signal spectra in the system: (a) optical OFDM signal, (b) DD-OFDM signal.

Fig. 3
Fig. 3

(Color online) Flow chart of the DD-OFDM demodulation algorithm.

Fig. 4
Fig. 4

Illustration of subcarriers discarded due to large FO: (a) OFDM spectrum, (b) OFDM spectrum with frequency offset.

Fig. 5
Fig. 5

Illustration of pilot-assisted frequency offset estimation.

Fig. 6
Fig. 6

(Color online) Experiment setup of the DD-OFDM-PON.

Fig. 7
Fig. 7

(Color online) Spectra of the electrical signal after PD detection.

Fig. 8
Fig. 8

(Color online) Histogram of DSFOE error with 500 samples.

Fig. 9
Fig. 9

(Color online) Histogram of DSFOE error with 3000 samples.

Fig. 10
Fig. 10

Average DSFOE error versus sample number.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

st=A+expj2πf0tk=N1N2dkexpj2πkΔft,
r(t)=|A|2+2ReA*expj2πf0tk=N1N2dkexpj2πkΔft+k=N1N2l=N1N2dkdl*expj2πklΔft.
Xf=1B2fB20otherwise,
MaxCf0Cf0=0fs2YfXff0dfs. t.B2f0fsB2,