Abstract

The implementation of a chirped fiber-Bragg grating (FBG) for dispersion compensation in high-speed (up to 120 Gbit/s) transmission systems with differential and coherent detection is, for the first time, experimentally investigated. For systems with differential detection, we examine the influence of group-delay ripple (GDR) in 40 GBd 2-, 4-, and 8-ary differential phase shift keying (DPSK) systems. Furthermore, we conduct a nonlinear-tolerance comparison between the systems implementing dispersion-compensating fibers and FBG modules, using a 5×80 Gbit/s 100-GHz-spaced wavelength division multiplexing 4-ary DPSK signal. The results show that the FBG-based system provides a 2 dB higher optimal launch power, which leads to more than 3 dB optical signal-to-noise ratio (OSNR) improvement at the receiver. For systems with coherent detection, we evaluate the influence of GDR in a 112 Gbit/s dual-polarization quadrature phase shift keying system with respect to signal wavelength. In addition, we demonstrate that, at the optimal launch power, the 112 Gbit/s systems implementing FBG modules and that using electronic dispersion compensation provide similar performance after 840 km transmission despite the fact that the FBG-based system delivers lower OSNR at the receiver. Lastly, we quantify the GDR mitigation capability of a digital linear equalizer in the 112 Gbit/s coherent systems with respect to the equalizer tap number (Ntap). The results indicate that at least Ntap=9 is required to confine Q-factor variation within 1 dB.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Eiselt, C. B. Clausen, and R. Tkach, “Performance characterization of components with group delay fluctuation,” IEEE Photon. Electron. Lett., vol. 15, no. 8, pp. 1076–1078, 2003.
    [Crossref]
  2. X. Liu, L. F. Mollenauer, and X. Wei, “Impact of group-delay ripple in transmission systems including phase-modulated formats,” IEEE Photon. Electron. Lett., vol. 16, no. 1, pp. 305–307, 2004.
    [Crossref]
  3. A. Dochhan, G. Göger, S. Smolorz, H. Rohde, and W. Rosenkranz, “The influence of FBG phase ripple distortions - comparison for different modulation formats,” in Optical Fiber Communication Conf. (OFC), Mar. 2008, JWA60.
  4. M. Filer and S. Tibuleac, “Estimation of phase ripple penalties for 40 Gb/s NRZ-DPSK transmission,” in Optical Fiber Communication Conf. (OFC), Mar. 2009, NWD2.
  5. J.-P. Elbers and C. Fürst, “Group-delay ripple induced performance degradation in optical DQPSK transmission,” in European Conf. in Optical Communication (ECOC), Mar. 2006, We3.P.107.
  6. H. Bissessur, C. Bastide, and A. Hugbart, “Performance characterization of components with phase ripple for different 40 Gb/s formats,” in Optical Fiber Communication Conf. (OFC), Mar. 2005, OFN4.
  7. D. van den Borne, V. Veljanovski, E. de Man, U. Gaubatz, C. Zuccaro, C. Paquet, Y. Painchaud, S. L. Jansen, E. Gottwald, G. D. Khoe, and H. de Waardt, “Cost-effective 10.7-Gbit/s long-haul transmission using fiber Bragg gratings for in-line dispersion compensation,” in Optical Fiber Communication Conf. (OFC), Mar. 2006, OthS5.
  8. D. van den Borne, V. Veljanovski, U. Gaubatz, C. Paquet, Y. Painchaud, E. Gottwald, G. D. Khoe, and H. de Waardt, “42.8-Gb/s RZ-DQPSK transmission with FBG-based in-line dispersion compensation,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1069–1071, 2007.
    [Crossref]
  9. V. Veljanovski, M. Alfiad, D. van den Borne, S. L. Jansen, and T. Wuth, “Equalization of FBG-induced group-delay ripples penalties using a coherent receiver and digital signal processing,” in Optical Fiber Communication Conf. (OFC), Mar. 2009, JThA40.
  10. C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express, vol. 17, no. 6, pp. 4815–4823, 2009.
    [Crossref] [PubMed]
  11. Y. K. Lizé, L. Christen, X. Wu, J.-Y. Yang, S. Nuccio, T. Wu, A. E. Willner, and R. Kashyap, “Free spectral range optimization of return-to-zero differential phase shift keyed demodulation in the presence of chromatic dispersion,” Opt. Express, vol. 15, no. 11, pp. 6817–6822, 2007.
    [Crossref] [PubMed]

2009 (1)

2007 (2)

Y. K. Lizé, L. Christen, X. Wu, J.-Y. Yang, S. Nuccio, T. Wu, A. E. Willner, and R. Kashyap, “Free spectral range optimization of return-to-zero differential phase shift keyed demodulation in the presence of chromatic dispersion,” Opt. Express, vol. 15, no. 11, pp. 6817–6822, 2007.
[Crossref] [PubMed]

D. van den Borne, V. Veljanovski, U. Gaubatz, C. Paquet, Y. Painchaud, E. Gottwald, G. D. Khoe, and H. de Waardt, “42.8-Gb/s RZ-DQPSK transmission with FBG-based in-line dispersion compensation,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1069–1071, 2007.
[Crossref]

2004 (1)

X. Liu, L. F. Mollenauer, and X. Wei, “Impact of group-delay ripple in transmission systems including phase-modulated formats,” IEEE Photon. Electron. Lett., vol. 16, no. 1, pp. 305–307, 2004.
[Crossref]

2003 (1)

M. H. Eiselt, C. B. Clausen, and R. Tkach, “Performance characterization of components with group delay fluctuation,” IEEE Photon. Electron. Lett., vol. 15, no. 8, pp. 1076–1078, 2003.
[Crossref]

Alfiad, M.

V. Veljanovski, M. Alfiad, D. van den Borne, S. L. Jansen, and T. Wuth, “Equalization of FBG-induced group-delay ripples penalties using a coherent receiver and digital signal processing,” in Optical Fiber Communication Conf. (OFC), Mar. 2009, JThA40.

Bastide, C.

H. Bissessur, C. Bastide, and A. Hugbart, “Performance characterization of components with phase ripple for different 40 Gb/s formats,” in Optical Fiber Communication Conf. (OFC), Mar. 2005, OFN4.

Bissessur, H.

H. Bissessur, C. Bastide, and A. Hugbart, “Performance characterization of components with phase ripple for different 40 Gb/s formats,” in Optical Fiber Communication Conf. (OFC), Mar. 2005, OFN4.

Christen, L.

Clausen, C. B.

M. H. Eiselt, C. B. Clausen, and R. Tkach, “Performance characterization of components with group delay fluctuation,” IEEE Photon. Electron. Lett., vol. 15, no. 8, pp. 1076–1078, 2003.
[Crossref]

de Man, E.

D. van den Borne, V. Veljanovski, E. de Man, U. Gaubatz, C. Zuccaro, C. Paquet, Y. Painchaud, S. L. Jansen, E. Gottwald, G. D. Khoe, and H. de Waardt, “Cost-effective 10.7-Gbit/s long-haul transmission using fiber Bragg gratings for in-line dispersion compensation,” in Optical Fiber Communication Conf. (OFC), Mar. 2006, OthS5.

de Waardt, H.

D. van den Borne, V. Veljanovski, U. Gaubatz, C. Paquet, Y. Painchaud, E. Gottwald, G. D. Khoe, and H. de Waardt, “42.8-Gb/s RZ-DQPSK transmission with FBG-based in-line dispersion compensation,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1069–1071, 2007.
[Crossref]

D. van den Borne, V. Veljanovski, E. de Man, U. Gaubatz, C. Zuccaro, C. Paquet, Y. Painchaud, S. L. Jansen, E. Gottwald, G. D. Khoe, and H. de Waardt, “Cost-effective 10.7-Gbit/s long-haul transmission using fiber Bragg gratings for in-line dispersion compensation,” in Optical Fiber Communication Conf. (OFC), Mar. 2006, OthS5.

Dochhan, A.

A. Dochhan, G. Göger, S. Smolorz, H. Rohde, and W. Rosenkranz, “The influence of FBG phase ripple distortions - comparison for different modulation formats,” in Optical Fiber Communication Conf. (OFC), Mar. 2008, JWA60.

Eiselt, M. H.

M. H. Eiselt, C. B. Clausen, and R. Tkach, “Performance characterization of components with group delay fluctuation,” IEEE Photon. Electron. Lett., vol. 15, no. 8, pp. 1076–1078, 2003.
[Crossref]

Elbers, J.-P.

J.-P. Elbers and C. Fürst, “Group-delay ripple induced performance degradation in optical DQPSK transmission,” in European Conf. in Optical Communication (ECOC), Mar. 2006, We3.P.107.

Filer, M.

M. Filer and S. Tibuleac, “Estimation of phase ripple penalties for 40 Gb/s NRZ-DPSK transmission,” in Optical Fiber Communication Conf. (OFC), Mar. 2009, NWD2.

Fürst, C.

J.-P. Elbers and C. Fürst, “Group-delay ripple induced performance degradation in optical DQPSK transmission,” in European Conf. in Optical Communication (ECOC), Mar. 2006, We3.P.107.

Gaubatz, U.

D. van den Borne, V. Veljanovski, U. Gaubatz, C. Paquet, Y. Painchaud, E. Gottwald, G. D. Khoe, and H. de Waardt, “42.8-Gb/s RZ-DQPSK transmission with FBG-based in-line dispersion compensation,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1069–1071, 2007.
[Crossref]

D. van den Borne, V. Veljanovski, E. de Man, U. Gaubatz, C. Zuccaro, C. Paquet, Y. Painchaud, S. L. Jansen, E. Gottwald, G. D. Khoe, and H. de Waardt, “Cost-effective 10.7-Gbit/s long-haul transmission using fiber Bragg gratings for in-line dispersion compensation,” in Optical Fiber Communication Conf. (OFC), Mar. 2006, OthS5.

Göger, G.

A. Dochhan, G. Göger, S. Smolorz, H. Rohde, and W. Rosenkranz, “The influence of FBG phase ripple distortions - comparison for different modulation formats,” in Optical Fiber Communication Conf. (OFC), Mar. 2008, JWA60.

Gottwald, E.

D. van den Borne, V. Veljanovski, U. Gaubatz, C. Paquet, Y. Painchaud, E. Gottwald, G. D. Khoe, and H. de Waardt, “42.8-Gb/s RZ-DQPSK transmission with FBG-based in-line dispersion compensation,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1069–1071, 2007.
[Crossref]

D. van den Borne, V. Veljanovski, E. de Man, U. Gaubatz, C. Zuccaro, C. Paquet, Y. Painchaud, S. L. Jansen, E. Gottwald, G. D. Khoe, and H. de Waardt, “Cost-effective 10.7-Gbit/s long-haul transmission using fiber Bragg gratings for in-line dispersion compensation,” in Optical Fiber Communication Conf. (OFC), Mar. 2006, OthS5.

Hugbart, A.

H. Bissessur, C. Bastide, and A. Hugbart, “Performance characterization of components with phase ripple for different 40 Gb/s formats,” in Optical Fiber Communication Conf. (OFC), Mar. 2005, OFN4.

Jansen, S. L.

D. van den Borne, V. Veljanovski, E. de Man, U. Gaubatz, C. Zuccaro, C. Paquet, Y. Painchaud, S. L. Jansen, E. Gottwald, G. D. Khoe, and H. de Waardt, “Cost-effective 10.7-Gbit/s long-haul transmission using fiber Bragg gratings for in-line dispersion compensation,” in Optical Fiber Communication Conf. (OFC), Mar. 2006, OthS5.

V. Veljanovski, M. Alfiad, D. van den Borne, S. L. Jansen, and T. Wuth, “Equalization of FBG-induced group-delay ripples penalties using a coherent receiver and digital signal processing,” in Optical Fiber Communication Conf. (OFC), Mar. 2009, JThA40.

Kashyap, R.

Khoe, G. D.

D. van den Borne, V. Veljanovski, E. de Man, U. Gaubatz, C. Zuccaro, C. Paquet, Y. Painchaud, S. L. Jansen, E. Gottwald, G. D. Khoe, and H. de Waardt, “Cost-effective 10.7-Gbit/s long-haul transmission using fiber Bragg gratings for in-line dispersion compensation,” in Optical Fiber Communication Conf. (OFC), Mar. 2006, OthS5.

Khoe, G. D.

D. van den Borne, V. Veljanovski, U. Gaubatz, C. Paquet, Y. Painchaud, E. Gottwald, G. D. Khoe, and H. de Waardt, “42.8-Gb/s RZ-DQPSK transmission with FBG-based in-line dispersion compensation,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1069–1071, 2007.
[Crossref]

Liu, X.

X. Liu, L. F. Mollenauer, and X. Wei, “Impact of group-delay ripple in transmission systems including phase-modulated formats,” IEEE Photon. Electron. Lett., vol. 16, no. 1, pp. 305–307, 2004.
[Crossref]

Lizé, Y. K.

Mollenauer, L. F.

X. Liu, L. F. Mollenauer, and X. Wei, “Impact of group-delay ripple in transmission systems including phase-modulated formats,” IEEE Photon. Electron. Lett., vol. 16, no. 1, pp. 305–307, 2004.
[Crossref]

Nuccio, S.

Painchaud, Y.

D. van den Borne, V. Veljanovski, U. Gaubatz, C. Paquet, Y. Painchaud, E. Gottwald, G. D. Khoe, and H. de Waardt, “42.8-Gb/s RZ-DQPSK transmission with FBG-based in-line dispersion compensation,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1069–1071, 2007.
[Crossref]

D. van den Borne, V. Veljanovski, E. de Man, U. Gaubatz, C. Zuccaro, C. Paquet, Y. Painchaud, S. L. Jansen, E. Gottwald, G. D. Khoe, and H. de Waardt, “Cost-effective 10.7-Gbit/s long-haul transmission using fiber Bragg gratings for in-line dispersion compensation,” in Optical Fiber Communication Conf. (OFC), Mar. 2006, OthS5.

Paquet, C.

D. van den Borne, V. Veljanovski, U. Gaubatz, C. Paquet, Y. Painchaud, E. Gottwald, G. D. Khoe, and H. de Waardt, “42.8-Gb/s RZ-DQPSK transmission with FBG-based in-line dispersion compensation,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1069–1071, 2007.
[Crossref]

D. van den Borne, V. Veljanovski, E. de Man, U. Gaubatz, C. Zuccaro, C. Paquet, Y. Painchaud, S. L. Jansen, E. Gottwald, G. D. Khoe, and H. de Waardt, “Cost-effective 10.7-Gbit/s long-haul transmission using fiber Bragg gratings for in-line dispersion compensation,” in Optical Fiber Communication Conf. (OFC), Mar. 2006, OthS5.

Rohde, H.

A. Dochhan, G. Göger, S. Smolorz, H. Rohde, and W. Rosenkranz, “The influence of FBG phase ripple distortions - comparison for different modulation formats,” in Optical Fiber Communication Conf. (OFC), Mar. 2008, JWA60.

Rosenkranz, W.

A. Dochhan, G. Göger, S. Smolorz, H. Rohde, and W. Rosenkranz, “The influence of FBG phase ripple distortions - comparison for different modulation formats,” in Optical Fiber Communication Conf. (OFC), Mar. 2008, JWA60.

Smolorz, S.

A. Dochhan, G. Göger, S. Smolorz, H. Rohde, and W. Rosenkranz, “The influence of FBG phase ripple distortions - comparison for different modulation formats,” in Optical Fiber Communication Conf. (OFC), Mar. 2008, JWA60.

Tibuleac, S.

M. Filer and S. Tibuleac, “Estimation of phase ripple penalties for 40 Gb/s NRZ-DPSK transmission,” in Optical Fiber Communication Conf. (OFC), Mar. 2009, NWD2.

Tkach, R.

M. H. Eiselt, C. B. Clausen, and R. Tkach, “Performance characterization of components with group delay fluctuation,” IEEE Photon. Electron. Lett., vol. 15, no. 8, pp. 1076–1078, 2003.
[Crossref]

van den Borne, D.

D. van den Borne, V. Veljanovski, U. Gaubatz, C. Paquet, Y. Painchaud, E. Gottwald, G. D. Khoe, and H. de Waardt, “42.8-Gb/s RZ-DQPSK transmission with FBG-based in-line dispersion compensation,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1069–1071, 2007.
[Crossref]

D. van den Borne, V. Veljanovski, E. de Man, U. Gaubatz, C. Zuccaro, C. Paquet, Y. Painchaud, S. L. Jansen, E. Gottwald, G. D. Khoe, and H. de Waardt, “Cost-effective 10.7-Gbit/s long-haul transmission using fiber Bragg gratings for in-line dispersion compensation,” in Optical Fiber Communication Conf. (OFC), Mar. 2006, OthS5.

V. Veljanovski, M. Alfiad, D. van den Borne, S. L. Jansen, and T. Wuth, “Equalization of FBG-induced group-delay ripples penalties using a coherent receiver and digital signal processing,” in Optical Fiber Communication Conf. (OFC), Mar. 2009, JThA40.

Veljanovski, V.

D. van den Borne, V. Veljanovski, U. Gaubatz, C. Paquet, Y. Painchaud, E. Gottwald, G. D. Khoe, and H. de Waardt, “42.8-Gb/s RZ-DQPSK transmission with FBG-based in-line dispersion compensation,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1069–1071, 2007.
[Crossref]

D. van den Borne, V. Veljanovski, E. de Man, U. Gaubatz, C. Zuccaro, C. Paquet, Y. Painchaud, S. L. Jansen, E. Gottwald, G. D. Khoe, and H. de Waardt, “Cost-effective 10.7-Gbit/s long-haul transmission using fiber Bragg gratings for in-line dispersion compensation,” in Optical Fiber Communication Conf. (OFC), Mar. 2006, OthS5.

V. Veljanovski, M. Alfiad, D. van den Borne, S. L. Jansen, and T. Wuth, “Equalization of FBG-induced group-delay ripples penalties using a coherent receiver and digital signal processing,” in Optical Fiber Communication Conf. (OFC), Mar. 2009, JThA40.

Wei, X.

X. Liu, L. F. Mollenauer, and X. Wei, “Impact of group-delay ripple in transmission systems including phase-modulated formats,” IEEE Photon. Electron. Lett., vol. 16, no. 1, pp. 305–307, 2004.
[Crossref]

Willner, A. E.

Wu, T.

Wu, X.

Wuth, T.

V. Veljanovski, M. Alfiad, D. van den Borne, S. L. Jansen, and T. Wuth, “Equalization of FBG-induced group-delay ripples penalties using a coherent receiver and digital signal processing,” in Optical Fiber Communication Conf. (OFC), Mar. 2009, JThA40.

Xie, C.

Yang, J.-Y.

Zuccaro, C.

D. van den Borne, V. Veljanovski, E. de Man, U. Gaubatz, C. Zuccaro, C. Paquet, Y. Painchaud, S. L. Jansen, E. Gottwald, G. D. Khoe, and H. de Waardt, “Cost-effective 10.7-Gbit/s long-haul transmission using fiber Bragg gratings for in-line dispersion compensation,” in Optical Fiber Communication Conf. (OFC), Mar. 2006, OthS5.

IEEE Photon. Electron. Lett. (2)

M. H. Eiselt, C. B. Clausen, and R. Tkach, “Performance characterization of components with group delay fluctuation,” IEEE Photon. Electron. Lett., vol. 15, no. 8, pp. 1076–1078, 2003.
[Crossref]

X. Liu, L. F. Mollenauer, and X. Wei, “Impact of group-delay ripple in transmission systems including phase-modulated formats,” IEEE Photon. Electron. Lett., vol. 16, no. 1, pp. 305–307, 2004.
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. van den Borne, V. Veljanovski, U. Gaubatz, C. Paquet, Y. Painchaud, E. Gottwald, G. D. Khoe, and H. de Waardt, “42.8-Gb/s RZ-DQPSK transmission with FBG-based in-line dispersion compensation,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1069–1071, 2007.
[Crossref]

Opt. Express (2)

Other (6)

V. Veljanovski, M. Alfiad, D. van den Borne, S. L. Jansen, and T. Wuth, “Equalization of FBG-induced group-delay ripples penalties using a coherent receiver and digital signal processing,” in Optical Fiber Communication Conf. (OFC), Mar. 2009, JThA40.

A. Dochhan, G. Göger, S. Smolorz, H. Rohde, and W. Rosenkranz, “The influence of FBG phase ripple distortions - comparison for different modulation formats,” in Optical Fiber Communication Conf. (OFC), Mar. 2008, JWA60.

M. Filer and S. Tibuleac, “Estimation of phase ripple penalties for 40 Gb/s NRZ-DPSK transmission,” in Optical Fiber Communication Conf. (OFC), Mar. 2009, NWD2.

J.-P. Elbers and C. Fürst, “Group-delay ripple induced performance degradation in optical DQPSK transmission,” in European Conf. in Optical Communication (ECOC), Mar. 2006, We3.P.107.

H. Bissessur, C. Bastide, and A. Hugbart, “Performance characterization of components with phase ripple for different 40 Gb/s formats,” in Optical Fiber Communication Conf. (OFC), Mar. 2005, OFN4.

D. van den Borne, V. Veljanovski, E. de Man, U. Gaubatz, C. Zuccaro, C. Paquet, Y. Painchaud, S. L. Jansen, E. Gottwald, G. D. Khoe, and H. de Waardt, “Cost-effective 10.7-Gbit/s long-haul transmission using fiber Bragg gratings for in-line dispersion compensation,” in Optical Fiber Communication Conf. (OFC), Mar. 2006, OthS5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(Color online) Measured group delay (thin lines) and insertion loss (thick lines) of (a) continuous and (b) 100-GHz-spaced channelized FBG modules, including averaged GDR over 28 GHz bandwidth (insets).

Fig. 2
Fig. 2

(Color online) The GDR histograms of (a)–(d) four individual 120 km continuous modules and (e) a concatenation of 8 (5×120 km+3×80 km) continuous modules.

Fig. 3
Fig. 3

The experimental setup of 40 GBd M-ary RZ-DPSK (M=2, 4, 8) systems with differential detection. Acronyms are given in the text.

Fig. 4
Fig. 4

The experimental setup of a 112 Gbit/s DP-QPSK system with coherent detection and a DSP flowchart.

Fig. 5
Fig. 5

(Color online) OSNR penalty for BER=103 of 10 GBd (broken lines) and 40 GBd (solid lines) M-ary RZ-DPSK signals as a function of transmission distances with (up to) five 120 km continuous FBG modules for dispersion compensation.

Fig. 6
Fig. 6

(Color online) BER performances (center channel only) of 5×80 Gbit/s 100-GHz-spaced WDM RZ-DQPSK signals as a function of delivered OSNR over 480 km SMFs with (a) FBG modules and (b) DCFs for dispersion compensation. The broken lines represent the back-to-back BER performance of the WDM signals (center channel).

Fig. 7
Fig. 7

(Color online) Q-factors at 15 dB OSNR (circles) and normalized insertion loss (solid line) as a function of signal wavelengths centered on the ITU grid after a concatenation of 9×120 km channelized FBG modules.

Fig. 8
Fig. 8

(Color online) Q-factors at 15 dB OSNR (circles) and normalized insertion loss (solid line) with respect to wavelength detuning from the ITU grid after a concatenation of 9×120 km channelized FBG modules, including the 112 Gbit/s DP-QPSK spectrum (dashed line).

Fig. 9
Fig. 9

(Color online) Q-factors at 15 dB OSNR (circles) and averaged GDR (solid line) as a function of signal wavelengths after a concatenation of 8 (5×120 km+3×80 km) continuous FBG modules.

Fig. 10
Fig. 10

(Color online) Q-factors after 840 km transmission with a 381-tap EDC (circles) and a concatenation of 8 (5×120 km+3×80 km) continuous modules (squares) as a function of total launch power.

Fig. 11
Fig. 11

(Color online) Q-factors at 15 dB OSNR as a function of signal wavelength after a concatenation of 8 (5×120 km+3×80 km) continuous FBG modules with three different values of equalizer Ntap.

Fig. 12
Fig. 12

(Color online) Peak-to-peak variation (circles) and standard deviation (squares) of Q-factors as a function of the equalizer Ntap.

Tables (1)

Tables Icon

Table I Properties of the FBG Modules and DCFs for 120  km SMF