Abstract

Online scheduling algorithms incur no idle time problem but with less bandwidth efficiency, while offline scheduling algorithms focus on bandwidth efficiency but with idle time overhead. Although a just-in-time (JIT) scheduling algorithm for multi-channel Ethernet passive optical networks (EPONs) has been proposed to increase the bandwidth efficiency without the idle time overhead, its applicability to single-channel EPONs is problematic. A new algorithm called fitting scheduling timing–elastic weighted granting (FST–EWG) is proposed and is suitable for single-channel EPONs. First, the FST determines the fitting timing for performing the dynamic bandwidth allocation scheduling algorithm in an attempt to consider as many optical network unit (ONU) demands as possible and to avoid the unnecessary idle time as much as possible. Then the EWG can efficiently re-allocate the excess bandwidth of light-load ONUs to all heavy-load ONUs. The computation complexity of the proposed FST–EWG is linear and is denoted as O(N), where N is the number of ONUs. Simulation results show that FST–EWG efficiently allocates bandwidth compared to previously proposed algorithms in terms of average packet delay and packet dropping probability, especially for higher load. In addition, by adding the non-strict priority intra-ONU scheduling, FST–EWG also outperforms the previously proposed DBAM method in terms of EF average delay and EF delay variation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Broadband optical access systems based on passive optical network (PON),” ITU-T Recommendation G. 983.1, 1998.
  2. “ONT management and control interface specification for B-PON,” ITU-T Recommendation G.983.2, 2000.
  3. “Gigabit-capable passive optical networks (GPON): General characteristics,” ITU-T Recommendation G.984.1, 2003.
  4. G. Kramer, B. Mukherjee, and G. Pesavento, “Ethernet PON (EPON): Design and analysis of an optical access network,” Photonic Network Commun., vol. 3, no. 3, pp. 307–319, July2001.
    [CrossRef]
  5. T. Holmberg, “Analysis of EPONs under the static priority scheduling scheme with fixed transmission times,” in IEEE Conf. on Next Generation Internet Design and Engineering (NGI), Apr. 2006, pp. 192–199.
  6. IEEE Std 802.3ah, IEEE Standard, 2004.
  7. G. Kramer, B. Mukherjee, and G. Esavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, pp. 89–107, Jan.2002.
    [CrossRef]
  8. G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT a dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol. 40, no. 2, pp. 74–80, 2002.
  9. J. Zheng and H. T. Mouftah, “Media access control for Ethernet passive optical networks: an overview,” IEEE Commun. Mag., vol. 43, no. 2, pp. 145–150, 2005.
    [CrossRef]
  10. M. McGarry, M. Reisslein, C. Colbourn, M. Maier, F. Aurzada, and M. Scheutzow, “Just-in-time scheduling for multichannel EPONs,” J. Lightwave Technol., vol. 26, no. 10, pp. 1204–1216, 2008.
    [CrossRef]
  11. C. M. Assi, Y. Ye, and S. Dixit, “Dynamic bandwidth allocation for quality-of-service over Ethernet PONs,” IEEE J. Sel. Areas Commun., vol. 21, pp. 1467–1477, 2003.
    [CrossRef]
  12. A. Shami, X. Bai, C. Assi, and N. Ghani, “Quality of service in two-stage Ethernet passive optical access networks,” in Int. Conf. on Computer Communications and Networks, 2004, pp. 352–357.
  13. A. Shami, X. Bai, N. Ghani, C. Assi, and H. Mouftah, “QoS control schemes for two-stage Ethernet passive optical access networks,” IEEE J. Sel. Areas Commun., vol. 23, pp. 1467–1478, 2005.
    [CrossRef]
  14. Z. Jun and Z. Shaoren, “Dynamic bandwidth allocation with high efficiency for EPONs,” in IEEE Int. Conf. on Communications, 2006, pp. 2699–2703.
  15. J. Zheng, “Efficient bandwidth allocation algorithm for Ethernet passive optical networks,” IEE Commun. Proc., vol. 153, pp. 464–468, 2006.
    [CrossRef]
  16. S. Y. Choi, S. Lee, T. Lee, M. Chung, and H. Choo, “Double-phase polling algorithm based on partitioned ONU subgroups for high utilization in EPONs,” J. Opt. Commun. Netw., vol. 1, pp. 484–497, 2009.
    [CrossRef]
  17. S. Lee, T. Lee, M. Chung, and H. Choo, “Double-phase polling algorithm based on partitioned ONU-subgroup for high utilization of fiber channel with EPON,” in Telecommunication Networks and Applications Conf., 2007, pp. 503–508.
  18. X. Bai, A. Shami, and C. Assi, “On the fairness of dynamic bandwidth allocation schemes in Ethernet passive optical networks,” Computer Commun., vol. 29, pp. 2123–2135, 2006.
    [CrossRef]
  19. W. Liu, D. Liu, G. Zhu, and B. Hu, “Fairness guaranteed scheme: a novel algorithm for dynamic bandwidth allocation in EPON,” Proc. SPIE, vol. 6354, 63542U, 2006.
  20. B. Chen, J. Chen, and S. He, “Efficient and fine scheduling algorithm for bandwidth allocation in Ethernet passive optical networks,” IEEE J. Sel. Top. Quantum Electron., vol. 12, pp. 653–660, 2006.
    [CrossRef]
  21. H. Naser and H. T. Mouftah, “A joint-ONU interleaved-based dynamic scheduling algorithm for Ethernet passive optical networks,” IEEE/ACM Trans. Netw., vol. 14, pp. 889–899, 2006.
    [CrossRef]
  22. H. Naser and H. T. Moiuftah, “A fast class-of-service packet scheduling for Ethernet passive optical networks,” in IEEE Int. Conf. on Communictions, 2006, pp. 2681–2686.
  23. W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-similarity through high-variability: Statistical analysis of Ethernet LAN traffic at the source level,” IEEE/ACM Trans. Netw., vol. 5, no. 1, pp. 71–86, Feb.1997.
    [CrossRef]
  24. M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, 1998.
    [CrossRef]
  25. D. Sala and A. Gummalla, “PON functional requirements: Services and performance,” IEEE 802.3ah meeting, 2001 [Online]. Available: http://grouper.ieee.org/groups/802/3/efm/public/jul01/presentations/sala_1_0701.pdf.
  26. A. Shami, X. Bai, C. Assi, and N. Ghani, “Jitter performance in Ethernet passive optical networks,” J. Lightwave Technol., vol. 23, no. 4, pp. 1745–1753, 2005.
    [CrossRef]
  27. Y. Luo and N. Ansari, “Bandwidth allocation for multiservice access on EPONs,” IEEE Commun. Mag., vol. 43, no. 2, pp. S16–S21, Feb.2005.
    [CrossRef]

2009

2008

2006

J. Zheng, “Efficient bandwidth allocation algorithm for Ethernet passive optical networks,” IEE Commun. Proc., vol. 153, pp. 464–468, 2006.
[CrossRef]

X. Bai, A. Shami, and C. Assi, “On the fairness of dynamic bandwidth allocation schemes in Ethernet passive optical networks,” Computer Commun., vol. 29, pp. 2123–2135, 2006.
[CrossRef]

W. Liu, D. Liu, G. Zhu, and B. Hu, “Fairness guaranteed scheme: a novel algorithm for dynamic bandwidth allocation in EPON,” Proc. SPIE, vol. 6354, 63542U, 2006.

B. Chen, J. Chen, and S. He, “Efficient and fine scheduling algorithm for bandwidth allocation in Ethernet passive optical networks,” IEEE J. Sel. Top. Quantum Electron., vol. 12, pp. 653–660, 2006.
[CrossRef]

H. Naser and H. T. Mouftah, “A joint-ONU interleaved-based dynamic scheduling algorithm for Ethernet passive optical networks,” IEEE/ACM Trans. Netw., vol. 14, pp. 889–899, 2006.
[CrossRef]

2005

A. Shami, X. Bai, C. Assi, and N. Ghani, “Jitter performance in Ethernet passive optical networks,” J. Lightwave Technol., vol. 23, no. 4, pp. 1745–1753, 2005.
[CrossRef]

Y. Luo and N. Ansari, “Bandwidth allocation for multiservice access on EPONs,” IEEE Commun. Mag., vol. 43, no. 2, pp. S16–S21, Feb.2005.
[CrossRef]

A. Shami, X. Bai, N. Ghani, C. Assi, and H. Mouftah, “QoS control schemes for two-stage Ethernet passive optical access networks,” IEEE J. Sel. Areas Commun., vol. 23, pp. 1467–1478, 2005.
[CrossRef]

J. Zheng and H. T. Mouftah, “Media access control for Ethernet passive optical networks: an overview,” IEEE Commun. Mag., vol. 43, no. 2, pp. 145–150, 2005.
[CrossRef]

2003

C. M. Assi, Y. Ye, and S. Dixit, “Dynamic bandwidth allocation for quality-of-service over Ethernet PONs,” IEEE J. Sel. Areas Commun., vol. 21, pp. 1467–1477, 2003.
[CrossRef]

2002

G. Kramer, B. Mukherjee, and G. Esavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, pp. 89–107, Jan.2002.
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT a dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol. 40, no. 2, pp. 74–80, 2002.

2001

G. Kramer, B. Mukherjee, and G. Pesavento, “Ethernet PON (EPON): Design and analysis of an optical access network,” Photonic Network Commun., vol. 3, no. 3, pp. 307–319, July2001.
[CrossRef]

1998

M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, 1998.
[CrossRef]

1997

W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-similarity through high-variability: Statistical analysis of Ethernet LAN traffic at the source level,” IEEE/ACM Trans. Netw., vol. 5, no. 1, pp. 71–86, Feb.1997.
[CrossRef]

Ansari, N.

Y. Luo and N. Ansari, “Bandwidth allocation for multiservice access on EPONs,” IEEE Commun. Mag., vol. 43, no. 2, pp. S16–S21, Feb.2005.
[CrossRef]

Assi, C.

X. Bai, A. Shami, and C. Assi, “On the fairness of dynamic bandwidth allocation schemes in Ethernet passive optical networks,” Computer Commun., vol. 29, pp. 2123–2135, 2006.
[CrossRef]

A. Shami, X. Bai, C. Assi, and N. Ghani, “Jitter performance in Ethernet passive optical networks,” J. Lightwave Technol., vol. 23, no. 4, pp. 1745–1753, 2005.
[CrossRef]

A. Shami, X. Bai, N. Ghani, C. Assi, and H. Mouftah, “QoS control schemes for two-stage Ethernet passive optical access networks,” IEEE J. Sel. Areas Commun., vol. 23, pp. 1467–1478, 2005.
[CrossRef]

A. Shami, X. Bai, C. Assi, and N. Ghani, “Quality of service in two-stage Ethernet passive optical access networks,” in Int. Conf. on Computer Communications and Networks, 2004, pp. 352–357.

Assi, C. M.

C. M. Assi, Y. Ye, and S. Dixit, “Dynamic bandwidth allocation for quality-of-service over Ethernet PONs,” IEEE J. Sel. Areas Commun., vol. 21, pp. 1467–1477, 2003.
[CrossRef]

Aurzada, F.

Bai, X.

X. Bai, A. Shami, and C. Assi, “On the fairness of dynamic bandwidth allocation schemes in Ethernet passive optical networks,” Computer Commun., vol. 29, pp. 2123–2135, 2006.
[CrossRef]

A. Shami, X. Bai, C. Assi, and N. Ghani, “Jitter performance in Ethernet passive optical networks,” J. Lightwave Technol., vol. 23, no. 4, pp. 1745–1753, 2005.
[CrossRef]

A. Shami, X. Bai, N. Ghani, C. Assi, and H. Mouftah, “QoS control schemes for two-stage Ethernet passive optical access networks,” IEEE J. Sel. Areas Commun., vol. 23, pp. 1467–1478, 2005.
[CrossRef]

A. Shami, X. Bai, C. Assi, and N. Ghani, “Quality of service in two-stage Ethernet passive optical access networks,” in Int. Conf. on Computer Communications and Networks, 2004, pp. 352–357.

Chen, B.

B. Chen, J. Chen, and S. He, “Efficient and fine scheduling algorithm for bandwidth allocation in Ethernet passive optical networks,” IEEE J. Sel. Top. Quantum Electron., vol. 12, pp. 653–660, 2006.
[CrossRef]

Chen, J.

B. Chen, J. Chen, and S. He, “Efficient and fine scheduling algorithm for bandwidth allocation in Ethernet passive optical networks,” IEEE J. Sel. Top. Quantum Electron., vol. 12, pp. 653–660, 2006.
[CrossRef]

Choi, S. Y.

Choo, H.

S. Y. Choi, S. Lee, T. Lee, M. Chung, and H. Choo, “Double-phase polling algorithm based on partitioned ONU subgroups for high utilization in EPONs,” J. Opt. Commun. Netw., vol. 1, pp. 484–497, 2009.
[CrossRef]

S. Lee, T. Lee, M. Chung, and H. Choo, “Double-phase polling algorithm based on partitioned ONU-subgroup for high utilization of fiber channel with EPON,” in Telecommunication Networks and Applications Conf., 2007, pp. 503–508.

Chung, M.

S. Y. Choi, S. Lee, T. Lee, M. Chung, and H. Choo, “Double-phase polling algorithm based on partitioned ONU subgroups for high utilization in EPONs,” J. Opt. Commun. Netw., vol. 1, pp. 484–497, 2009.
[CrossRef]

S. Lee, T. Lee, M. Chung, and H. Choo, “Double-phase polling algorithm based on partitioned ONU-subgroup for high utilization of fiber channel with EPON,” in Telecommunication Networks and Applications Conf., 2007, pp. 503–508.

Colbourn, C.

Dixit, S.

C. M. Assi, Y. Ye, and S. Dixit, “Dynamic bandwidth allocation for quality-of-service over Ethernet PONs,” IEEE J. Sel. Areas Commun., vol. 21, pp. 1467–1477, 2003.
[CrossRef]

Esavento, G.

G. Kramer, B. Mukherjee, and G. Esavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, pp. 89–107, Jan.2002.
[CrossRef]

Ghani, N.

A. Shami, X. Bai, N. Ghani, C. Assi, and H. Mouftah, “QoS control schemes for two-stage Ethernet passive optical access networks,” IEEE J. Sel. Areas Commun., vol. 23, pp. 1467–1478, 2005.
[CrossRef]

A. Shami, X. Bai, C. Assi, and N. Ghani, “Jitter performance in Ethernet passive optical networks,” J. Lightwave Technol., vol. 23, no. 4, pp. 1745–1753, 2005.
[CrossRef]

A. Shami, X. Bai, C. Assi, and N. Ghani, “Quality of service in two-stage Ethernet passive optical access networks,” in Int. Conf. on Computer Communications and Networks, 2004, pp. 352–357.

Gummalla, A.

D. Sala and A. Gummalla, “PON functional requirements: Services and performance,” IEEE 802.3ah meeting, 2001 [Online]. Available: http://grouper.ieee.org/groups/802/3/efm/public/jul01/presentations/sala_1_0701.pdf.

He, S.

B. Chen, J. Chen, and S. He, “Efficient and fine scheduling algorithm for bandwidth allocation in Ethernet passive optical networks,” IEEE J. Sel. Top. Quantum Electron., vol. 12, pp. 653–660, 2006.
[CrossRef]

Holmberg, T.

T. Holmberg, “Analysis of EPONs under the static priority scheduling scheme with fixed transmission times,” in IEEE Conf. on Next Generation Internet Design and Engineering (NGI), Apr. 2006, pp. 192–199.

Hu, B.

W. Liu, D. Liu, G. Zhu, and B. Hu, “Fairness guaranteed scheme: a novel algorithm for dynamic bandwidth allocation in EPON,” Proc. SPIE, vol. 6354, 63542U, 2006.

Jun, Z.

Z. Jun and Z. Shaoren, “Dynamic bandwidth allocation with high efficiency for EPONs,” in IEEE Int. Conf. on Communications, 2006, pp. 2699–2703.

Kramer, G.

G. Kramer, B. Mukherjee, and G. Esavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, pp. 89–107, Jan.2002.
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT a dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol. 40, no. 2, pp. 74–80, 2002.

G. Kramer, B. Mukherjee, and G. Pesavento, “Ethernet PON (EPON): Design and analysis of an optical access network,” Photonic Network Commun., vol. 3, no. 3, pp. 307–319, July2001.
[CrossRef]

Lee, S.

S. Y. Choi, S. Lee, T. Lee, M. Chung, and H. Choo, “Double-phase polling algorithm based on partitioned ONU subgroups for high utilization in EPONs,” J. Opt. Commun. Netw., vol. 1, pp. 484–497, 2009.
[CrossRef]

S. Lee, T. Lee, M. Chung, and H. Choo, “Double-phase polling algorithm based on partitioned ONU-subgroup for high utilization of fiber channel with EPON,” in Telecommunication Networks and Applications Conf., 2007, pp. 503–508.

Lee, T.

S. Y. Choi, S. Lee, T. Lee, M. Chung, and H. Choo, “Double-phase polling algorithm based on partitioned ONU subgroups for high utilization in EPONs,” J. Opt. Commun. Netw., vol. 1, pp. 484–497, 2009.
[CrossRef]

S. Lee, T. Lee, M. Chung, and H. Choo, “Double-phase polling algorithm based on partitioned ONU-subgroup for high utilization of fiber channel with EPON,” in Telecommunication Networks and Applications Conf., 2007, pp. 503–508.

Liu, D.

W. Liu, D. Liu, G. Zhu, and B. Hu, “Fairness guaranteed scheme: a novel algorithm for dynamic bandwidth allocation in EPON,” Proc. SPIE, vol. 6354, 63542U, 2006.

Liu, W.

W. Liu, D. Liu, G. Zhu, and B. Hu, “Fairness guaranteed scheme: a novel algorithm for dynamic bandwidth allocation in EPON,” Proc. SPIE, vol. 6354, 63542U, 2006.

Luo, Y.

Y. Luo and N. Ansari, “Bandwidth allocation for multiservice access on EPONs,” IEEE Commun. Mag., vol. 43, no. 2, pp. S16–S21, Feb.2005.
[CrossRef]

Maier, M.

Matsumoto, M.

M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, 1998.
[CrossRef]

McGarry, M.

Moiuftah, H. T.

H. Naser and H. T. Moiuftah, “A fast class-of-service packet scheduling for Ethernet passive optical networks,” in IEEE Int. Conf. on Communictions, 2006, pp. 2681–2686.

Mouftah, H.

A. Shami, X. Bai, N. Ghani, C. Assi, and H. Mouftah, “QoS control schemes for two-stage Ethernet passive optical access networks,” IEEE J. Sel. Areas Commun., vol. 23, pp. 1467–1478, 2005.
[CrossRef]

Mouftah, H. T.

H. Naser and H. T. Mouftah, “A joint-ONU interleaved-based dynamic scheduling algorithm for Ethernet passive optical networks,” IEEE/ACM Trans. Netw., vol. 14, pp. 889–899, 2006.
[CrossRef]

J. Zheng and H. T. Mouftah, “Media access control for Ethernet passive optical networks: an overview,” IEEE Commun. Mag., vol. 43, no. 2, pp. 145–150, 2005.
[CrossRef]

Mukherjee, B.

G. Kramer, B. Mukherjee, and G. Esavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, pp. 89–107, Jan.2002.
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT a dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol. 40, no. 2, pp. 74–80, 2002.

G. Kramer, B. Mukherjee, and G. Pesavento, “Ethernet PON (EPON): Design and analysis of an optical access network,” Photonic Network Commun., vol. 3, no. 3, pp. 307–319, July2001.
[CrossRef]

Naser, H.

H. Naser and H. T. Mouftah, “A joint-ONU interleaved-based dynamic scheduling algorithm for Ethernet passive optical networks,” IEEE/ACM Trans. Netw., vol. 14, pp. 889–899, 2006.
[CrossRef]

H. Naser and H. T. Moiuftah, “A fast class-of-service packet scheduling for Ethernet passive optical networks,” in IEEE Int. Conf. on Communictions, 2006, pp. 2681–2686.

Nishimura, T.

M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, 1998.
[CrossRef]

Pesavento, G.

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT a dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol. 40, no. 2, pp. 74–80, 2002.

G. Kramer, B. Mukherjee, and G. Pesavento, “Ethernet PON (EPON): Design and analysis of an optical access network,” Photonic Network Commun., vol. 3, no. 3, pp. 307–319, July2001.
[CrossRef]

Reisslein, M.

Sala, D.

D. Sala and A. Gummalla, “PON functional requirements: Services and performance,” IEEE 802.3ah meeting, 2001 [Online]. Available: http://grouper.ieee.org/groups/802/3/efm/public/jul01/presentations/sala_1_0701.pdf.

Scheutzow, M.

Shami, A.

X. Bai, A. Shami, and C. Assi, “On the fairness of dynamic bandwidth allocation schemes in Ethernet passive optical networks,” Computer Commun., vol. 29, pp. 2123–2135, 2006.
[CrossRef]

A. Shami, X. Bai, C. Assi, and N. Ghani, “Jitter performance in Ethernet passive optical networks,” J. Lightwave Technol., vol. 23, no. 4, pp. 1745–1753, 2005.
[CrossRef]

A. Shami, X. Bai, N. Ghani, C. Assi, and H. Mouftah, “QoS control schemes for two-stage Ethernet passive optical access networks,” IEEE J. Sel. Areas Commun., vol. 23, pp. 1467–1478, 2005.
[CrossRef]

A. Shami, X. Bai, C. Assi, and N. Ghani, “Quality of service in two-stage Ethernet passive optical access networks,” in Int. Conf. on Computer Communications and Networks, 2004, pp. 352–357.

Shaoren, Z.

Z. Jun and Z. Shaoren, “Dynamic bandwidth allocation with high efficiency for EPONs,” in IEEE Int. Conf. on Communications, 2006, pp. 2699–2703.

Sherman, R.

W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-similarity through high-variability: Statistical analysis of Ethernet LAN traffic at the source level,” IEEE/ACM Trans. Netw., vol. 5, no. 1, pp. 71–86, Feb.1997.
[CrossRef]

Taqqu, M. S.

W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-similarity through high-variability: Statistical analysis of Ethernet LAN traffic at the source level,” IEEE/ACM Trans. Netw., vol. 5, no. 1, pp. 71–86, Feb.1997.
[CrossRef]

Willinger, W.

W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-similarity through high-variability: Statistical analysis of Ethernet LAN traffic at the source level,” IEEE/ACM Trans. Netw., vol. 5, no. 1, pp. 71–86, Feb.1997.
[CrossRef]

Wilson, D. V.

W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-similarity through high-variability: Statistical analysis of Ethernet LAN traffic at the source level,” IEEE/ACM Trans. Netw., vol. 5, no. 1, pp. 71–86, Feb.1997.
[CrossRef]

Ye, Y.

C. M. Assi, Y. Ye, and S. Dixit, “Dynamic bandwidth allocation for quality-of-service over Ethernet PONs,” IEEE J. Sel. Areas Commun., vol. 21, pp. 1467–1477, 2003.
[CrossRef]

Zheng, J.

J. Zheng, “Efficient bandwidth allocation algorithm for Ethernet passive optical networks,” IEE Commun. Proc., vol. 153, pp. 464–468, 2006.
[CrossRef]

J. Zheng and H. T. Mouftah, “Media access control for Ethernet passive optical networks: an overview,” IEEE Commun. Mag., vol. 43, no. 2, pp. 145–150, 2005.
[CrossRef]

Zhu, G.

W. Liu, D. Liu, G. Zhu, and B. Hu, “Fairness guaranteed scheme: a novel algorithm for dynamic bandwidth allocation in EPON,” Proc. SPIE, vol. 6354, 63542U, 2006.

ACM Trans. Model. Comput. Simul.

M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, 1998.
[CrossRef]

Computer Commun.

X. Bai, A. Shami, and C. Assi, “On the fairness of dynamic bandwidth allocation schemes in Ethernet passive optical networks,” Computer Commun., vol. 29, pp. 2123–2135, 2006.
[CrossRef]

IEE Commun. Proc.

J. Zheng, “Efficient bandwidth allocation algorithm for Ethernet passive optical networks,” IEE Commun. Proc., vol. 153, pp. 464–468, 2006.
[CrossRef]

IEEE Commun. Mag.

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT a dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol. 40, no. 2, pp. 74–80, 2002.

J. Zheng and H. T. Mouftah, “Media access control for Ethernet passive optical networks: an overview,” IEEE Commun. Mag., vol. 43, no. 2, pp. 145–150, 2005.
[CrossRef]

Y. Luo and N. Ansari, “Bandwidth allocation for multiservice access on EPONs,” IEEE Commun. Mag., vol. 43, no. 2, pp. S16–S21, Feb.2005.
[CrossRef]

IEEE J. Sel. Areas Commun.

C. M. Assi, Y. Ye, and S. Dixit, “Dynamic bandwidth allocation for quality-of-service over Ethernet PONs,” IEEE J. Sel. Areas Commun., vol. 21, pp. 1467–1477, 2003.
[CrossRef]

A. Shami, X. Bai, N. Ghani, C. Assi, and H. Mouftah, “QoS control schemes for two-stage Ethernet passive optical access networks,” IEEE J. Sel. Areas Commun., vol. 23, pp. 1467–1478, 2005.
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

B. Chen, J. Chen, and S. He, “Efficient and fine scheduling algorithm for bandwidth allocation in Ethernet passive optical networks,” IEEE J. Sel. Top. Quantum Electron., vol. 12, pp. 653–660, 2006.
[CrossRef]

IEEE/ACM Trans. Netw.

H. Naser and H. T. Mouftah, “A joint-ONU interleaved-based dynamic scheduling algorithm for Ethernet passive optical networks,” IEEE/ACM Trans. Netw., vol. 14, pp. 889–899, 2006.
[CrossRef]

W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-similarity through high-variability: Statistical analysis of Ethernet LAN traffic at the source level,” IEEE/ACM Trans. Netw., vol. 5, no. 1, pp. 71–86, Feb.1997.
[CrossRef]

J. Lightwave Technol.

J. Opt. Commun. Netw.

Photonic Network Commun.

G. Kramer, B. Mukherjee, and G. Pesavento, “Ethernet PON (EPON): Design and analysis of an optical access network,” Photonic Network Commun., vol. 3, no. 3, pp. 307–319, July2001.
[CrossRef]

G. Kramer, B. Mukherjee, and G. Esavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, pp. 89–107, Jan.2002.
[CrossRef]

Proc. SPIE

W. Liu, D. Liu, G. Zhu, and B. Hu, “Fairness guaranteed scheme: a novel algorithm for dynamic bandwidth allocation in EPON,” Proc. SPIE, vol. 6354, 63542U, 2006.

Other

H. Naser and H. T. Moiuftah, “A fast class-of-service packet scheduling for Ethernet passive optical networks,” in IEEE Int. Conf. on Communictions, 2006, pp. 2681–2686.

S. Lee, T. Lee, M. Chung, and H. Choo, “Double-phase polling algorithm based on partitioned ONU-subgroup for high utilization of fiber channel with EPON,” in Telecommunication Networks and Applications Conf., 2007, pp. 503–508.

Z. Jun and Z. Shaoren, “Dynamic bandwidth allocation with high efficiency for EPONs,” in IEEE Int. Conf. on Communications, 2006, pp. 2699–2703.

T. Holmberg, “Analysis of EPONs under the static priority scheduling scheme with fixed transmission times,” in IEEE Conf. on Next Generation Internet Design and Engineering (NGI), Apr. 2006, pp. 192–199.

IEEE Std 802.3ah, IEEE Standard, 2004.

“Broadband optical access systems based on passive optical network (PON),” ITU-T Recommendation G. 983.1, 1998.

“ONT management and control interface specification for B-PON,” ITU-T Recommendation G.983.2, 2000.

“Gigabit-capable passive optical networks (GPON): General characteristics,” ITU-T Recommendation G.984.1, 2003.

A. Shami, X. Bai, C. Assi, and N. Ghani, “Quality of service in two-stage Ethernet passive optical access networks,” in Int. Conf. on Computer Communications and Networks, 2004, pp. 352–357.

D. Sala and A. Gummalla, “PON functional requirements: Services and performance,” IEEE 802.3ah meeting, 2001 [Online]. Available: http://grouper.ieee.org/groups/802/3/efm/public/jul01/presentations/sala_1_0701.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(Color online) EPON architecture.

Fig. 2
Fig. 2

IPACT.

Fig. 4
Fig. 4

EA–DBA1.

Fig. 5
Fig. 5

IEA–DBA1.

Fig. 6
Fig. 6

DPA–DBA1.

Fig. 7
Fig. 7

(Color online) Summary of the related work.

Fig. 8
Fig. 8

Upstream idle time illustrated using symbols.

Fig. 9
Fig. 9

Scheduling timing: (a) latest, (b) earliest, (c) fitting.

Fig. 10
Fig. 10

(Color online) Average packet delay.

Fig. 11
Fig. 11

(Color online) Packet dropping probability.

Fig. 12
Fig. 12

(Color online) (a) EF and AF packet delay and (b) average cycle time.

Fig. 13
Fig. 13

(Color online) EF delay variation.

Tables (2)

Tables Icon

Table I Symbol Definitions

Tables Icon

Table II Performance Improvement

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

T idle = t s begin t s 1 end = T DBA T guard + R T T + T GATE + T process .
T idle = 0 t s 1 end = t s begin .
t s LST = t s 1 end R T T T process T GATE T DBA .
t s FST = t s LST = t s 1 end R T T T process T GATE m × T REPORT computation , s .
t s FST = t s 1 begin + T s 1 schedule R T T T process T GATE ( N 1 ) × T REPORT computation i f m = F s schedule > 0  where  F s schedule = i | t s 1 FST < t i REPORT t s FST S c h e d u l e i | t s 1 FST < t i REPORT t s FST e l s e S c h e d u l e t h e f i r s t r e c e i v e d r e p o r t i a f t e r t s 1 FST
b cycle grant = T max cycle N * T REPORT + T guard * C .
b i guarantee = w i h F N latest w h * b cycle grant .
i F s schedule b i request b i guarantee b i grant = b i request
b s excess = i F s schedule b i guarantee i F s schedule b i grant .
i F s schedule b i request > b i guarantee b i grant = min b i request , w i h F s schedule b h request > b h guarantee w h b s excess .
i f j F s schedule , i F s schedule , b j grant = 0 b j request w j b i request w i t h e n b j grant = min b j request , w j i F s schedule , b i grant = 0 w i b s excess b s excess = b s excess b j grant .
b s excess = b s 1 excess + i F s schedule b i guarantee i F s schedule b i grant .
b i excess = max h = i N i 1 b h guarantee b h grant , 0 .
b s excess = max b cycle grant i F N + F s schedule latest t i REPORT t s 1 FST b i grant , 0 + i F s schedule b i guarantee i F s schedule b i grant .
b k grant = min b k request , w k i F s schedule , b i grant = 0 w i max b cycle grant i F N + F s schedule latest t i REPORT t s 1 FST b i grant , 0 + i F s schedule w i i F N latest w i b cycle grant i F s schedule b i grant .