Abstract

The communication capacity limit of conventional optical fiber is being approached, and spatial multiplexing on strands of optical fiber is being pursued because of its potential to significantly increase the capacity of optical transmission systems and networks. Here, we estimate price-points under several scenarios for some of the critical enabling components of potential ultra-high-capacity optical fiber transmission systems based on multi-core fibers. For the input parameters and scenarios considered—including the case when the existing conduit is exhausted, we find the modeled price-point of multi-core fiber to be in the range 0–15% higher than the price of fiber ribbon cable. We also illustrate how larger increases in the value (price-point) of future network elements can occur if the efficiencies of installation are substantially improved.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of optical fiber networks,” Phys. Rev. Lett., vol. 101, p. 163901, 2008.
    [CrossRef] [PubMed]
  2. B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express, vol. 18, no. 11, pp. 11117–11122, 2010.
    [CrossRef] [PubMed]
  3. Corning Cable Systems [Online]. Available: http://www.corning.com/cablesystems/worldwide.aspx, accessed January 23, 2012.
  4. OFS Fitel [Online]. Available: www.ofsoptics.com, accessed January 23, 2012.
  5. Sumitomo Electric [Online]. Available: www.sumitomoelectric.com, accessed January 23, 2012.
  6. S. K. Korotky, “Network global expectation model: A statistical formalism for quickly quantifying network needs and costs,” J. Lightwave Technol., vol. 22, no. 3, pp. 703–722, 2004.
    [CrossRef]
  7. G. C. Weitz, “Prediction and minimization of fiber optic cable pulling tensions,” J. Sel. Area Commun., vol. SAC-4, pp. 686–690, 1986.
    [CrossRef]
  8. W. Griffioen, “Installation of optical fiber cables by jetting,” in Progress in Optical Fibers Research. Z. Guo, Ed., Nova Science Publishers, NY, 2007.
  9. J. Hayes, The Fiber Optic Association Reference Guide to Fiber Optics and Study Guide to FOA Certification. BookSurge Publishing, 2009, pp. 87–90 [Online]. Available: http://www.thefoa.org/tech/ref/termination/fusion.html. accessed March 13, 2012.
  10. U.S. Department of Transportation, Intelligent Transportation Systems Joint Program Office, ITS Unit Costs Database, October 30, 2010 [Online]. Available: http://www.itscosts.its.dot.gov/its/benecost.nsf/Images/Reports/$File/CostElements%202010-10-30.pdf, accessed 2012.

2010 (1)

2008 (1)

R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of optical fiber networks,” Phys. Rev. Lett., vol. 101, p. 163901, 2008.
[CrossRef] [PubMed]

2004 (1)

1986 (1)

G. C. Weitz, “Prediction and minimization of fiber optic cable pulling tensions,” J. Sel. Area Commun., vol. SAC-4, pp. 686–690, 1986.
[CrossRef]

Dimarcello, F. V.

Essiambre, R.-J.

R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of optical fiber networks,” Phys. Rev. Lett., vol. 101, p. 163901, 2008.
[CrossRef] [PubMed]

Fini, J. M.

Fishteyn, M.

Foschini, G. J.

R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of optical fiber networks,” Phys. Rev. Lett., vol. 101, p. 163901, 2008.
[CrossRef] [PubMed]

Griffioen, W.

W. Griffioen, “Installation of optical fiber cables by jetting,” in Progress in Optical Fibers Research. Z. Guo, Ed., Nova Science Publishers, NY, 2007.

Hayes, J.

J. Hayes, The Fiber Optic Association Reference Guide to Fiber Optics and Study Guide to FOA Certification. BookSurge Publishing, 2009, pp. 87–90 [Online]. Available: http://www.thefoa.org/tech/ref/termination/fusion.html. accessed March 13, 2012.

Korotky, S. K.

Kramer, G.

R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of optical fiber networks,” Phys. Rev. Lett., vol. 101, p. 163901, 2008.
[CrossRef] [PubMed]

Monberg, E. M.

Taunay, T. F.

Weitz, G. C.

G. C. Weitz, “Prediction and minimization of fiber optic cable pulling tensions,” J. Sel. Area Commun., vol. SAC-4, pp. 686–690, 1986.
[CrossRef]

Winzer, P. J.

R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of optical fiber networks,” Phys. Rev. Lett., vol. 101, p. 163901, 2008.
[CrossRef] [PubMed]

Yan, M. F.

Zhu, B.

J. Lightwave Technol. (1)

J. Sel. Area Commun. (1)

G. C. Weitz, “Prediction and minimization of fiber optic cable pulling tensions,” J. Sel. Area Commun., vol. SAC-4, pp. 686–690, 1986.
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (1)

R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of optical fiber networks,” Phys. Rev. Lett., vol. 101, p. 163901, 2008.
[CrossRef] [PubMed]

Other (6)

Corning Cable Systems [Online]. Available: http://www.corning.com/cablesystems/worldwide.aspx, accessed January 23, 2012.

OFS Fitel [Online]. Available: www.ofsoptics.com, accessed January 23, 2012.

Sumitomo Electric [Online]. Available: www.sumitomoelectric.com, accessed January 23, 2012.

W. Griffioen, “Installation of optical fiber cables by jetting,” in Progress in Optical Fibers Research. Z. Guo, Ed., Nova Science Publishers, NY, 2007.

J. Hayes, The Fiber Optic Association Reference Guide to Fiber Optics and Study Guide to FOA Certification. BookSurge Publishing, 2009, pp. 87–90 [Online]. Available: http://www.thefoa.org/tech/ref/termination/fusion.html. accessed March 13, 2012.

U.S. Department of Transportation, Intelligent Transportation Systems Joint Program Office, ITS Unit Costs Database, October 30, 2010 [Online]. Available: http://www.itscosts.its.dot.gov/its/benecost.nsf/Images/Reports/$File/CostElements%202010-10-30.pdf, accessed 2012.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Wavelength-, polarization-, and space-division multiplexed optical transmission system architectures. (a) Multiplicity of wavelength-division multiplexed systems using multiple single-core fibers. (b) Wavelength- and space-division multiplexed system using single multi-core fibers. MCF: multi-core fiber; OA: optical amplifier; OT: optical transponder; RFO: ribbon fan-out; SCF: single-core fiber; SDM: space- division multiplexer/demultiplexer; WDM: wavelength-division multiplexer/demultiplexer.

Fig. 2
Fig. 2

(Color online) Fiber ribbon cable. Figure 2 shows photographs of a lightguide cable produced circa 1984. This cable carries 144 single-core fibers in the form of 12-fiber ribbons. Visible in the photographs are the 12 color-coded fibers contained within each ribbon. The fibers within a ribbon are spaced on 250 µm centers, and the 144 fibers fit within a cross-sectional area of approximately 3 mm × 3 mm. In addition to the fiber ribbons, the cable consists of an inner tube to carry the fiber and outer strength members for supporting and pulling the cable.

Fig. 3
Fig. 3

Illustration of a multi-core fiber. Depicted is the cross-section of a hypothetical multi-core fiber consisting of 12 hexagonally packed single-mode waveguides.

Fig. 4
Fig. 4

Illustration of pricing domains for Scenario 4.

Tables (1)

Tables Icon

Table I Model Variables Specifying Average Quantities and Unit Prices for Scenarios 1–4

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

δ = 2 L / N .
s A / ( N 1 ) .
n span = s / r .
P = l k n l k p k ,
P = k p k l n l k = L k p k 1 L l n l k = L k p k n k l = N δ 2 k p k n k l .
P = N δ s r k p k n k j ,
P SCFN = ( N δ s / r ) [ n SCFR p SCFR + n SCFC p SCFC + n SRFO p SRFO + n SCFC p SCFI + n SCOA p SCOA + n SCOA p SOAI ]
P MCFN = ( N δ s / r ) [ n MCFS p MCFS + n MCFC p MCFC + n MSDM p MSDM + n MCFC p MCFI + n MCOA p MCOA + n MCOA p MOAI ] .
P MCFN = P SCFN .
P SCFN = ( N δ s / r ) [ 1 p SCFR + 1 p SCFC + 2 p SRFO + p SCFI + m p SCOA + m p SOAI ]
P MCFN = ( N δ s / r ) [ 1 p MCFS + 1 p MCFC + 2 ( r / s ) p MSDM + p MCFI + 1 p MCOA + 1 p MOAI ] .
[ 2 p MCFS + 2 ( r / s ) p MSDM + ( 1 + α ) p MCOA ] [ 2 p SCFR + 2 p SRFO + m ( 1 + α ) p SCOA ] .
Fiber: p MCFS p SCFR
Spatial multiplexers: p MSDM p SRFO s / r
Amplifiers: p MCOA m p SCOA .
P SCFN = ( N δ s / r ) [ 144 p SCFR + 2 p SCFC + 288 p SRFO + p SCFI + 144 m p SCOA + 144 m p SOAI ]
P MCFN = ( N δ s / r ) [ 144 p MCFS + 1 p MCFC + 288 ( r / s ) p MSDM + p MCFI + 144 p MCOA + 144 p MOAI ] .
Fiber: p MCFS p SCFR + p SCFC / 144
Spatial multiplexers: p MSDM p SRFO s / r
Amplifiers: p MCOA m p SCOA .
P SCFN = ( N δ s / r ) [ 144 p SCFR + 2 p SCFC + 288 p SRFO + p SCFI + 144 m p SCOA + 144 m p SOAI + 1 p CNDI ]
P MCFN = ( N δ s / r ) [ 144 p MCFS + 1 p MCFC + 288 ( r / s ) p MSDM + p MCFI + 144 p MCOA + 144 p MOAI ] .
Fiber: p MCFS p SCFR + ( 11 / 144 ) p SCFC
Spatial multiplexers: p MSDM p SRFO s / r
Amplifiers: p MCOA m p SCOA .
P SCFN = ( N δ s / r ) [ 2 p SRFO + m p SCOA + m p SOAI ]
P MCFN = ( N δ s / r ) [ 1 p MCFS + 1 p MCFC + 2 ( r / s ) p MSDM + p MCFI + 1 p MCOA + 1 p MOAI ] .
p MCFS + p MCFC + p MCFI + p MCOA + p MOAI m p SCOA + m c SOAI .
p MCOA = m p SCOA
p MCFS + p MCFC + p MCFI = p SCFR + p SCFC + p SCFI .
p MOAI m p SOAI ( p SCFR + p SCFC + p SCFI ) .
p MOAI / ( m p SOAI ) 1 [ ( p SCFR + p SCFC + p SCFI ) / ( m p SCOA ) ] / ( p SOAI / p SCOA ) .
p MOAI / ( 12 p SOAI ) 1 [ 1 / 2 ] / ( p SOAI / p SCOA ) .