Abstract

A complete system-level model for cascades of burst mode 2R optical regenerators (BMOR), each consisting of an optical limiting amplifier (LA) followed by an optical reshaper, is presented for optical packet/burst-switched optical networks. The major distinction compared to continuous-mode 2R OR is that a BMOR can successfully handle the large power variations because of the LA, and the impact of inclusion of this into the system analysis is presented here. The bit error rate is evaluated along a cascade of identical BMORs, interspersed with heterogeneous inter-regenerator links (i.e., varying amplified spontaneous emission noise and net gains) which further complicate the burst mode case relative to the continuous mode. The dependency of performance of the cascade on the characteristics of the LA is investigated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J. Lightwave Technol., vol. 21, no. 11, pp. 2779–2790, 2003.
    [CrossRef]
  2. G. T. Kanellos, D. Petrantonakis, D. Tsiokos, P. Bakopoulos, P. Zakynthinos, N. Pleros, D. Apostolopoulos, G. Maxwell, A. Poustie, and H. Avramopoulos, “All-optical 3R burst-mode reception at 40 Gb/s using four integrated MZI switches,” J. Lightwave Technol., vol. 25, no. 1, pp. 184–192, 2007.
    [CrossRef]
  3. R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40-Gb/s burst-mode optical 2R regenerator,” IEEE Photon. Technol. Lett., vol. 17, no. 10, pp. 2194–2196, 2005.
    [CrossRef]
  4. P. Zakynthinos, G. T. Kanellos, D. Klonidis, D. Apostolopoulos, N. Pleros, A. Poustie, G. Maxwell, I. Tomkos, and H. Avramopoulos, “Cascaded operation of a 2R burst-mode regenerator for optical burst switching network transmission,” IEEE Photon. Technol. Lett., vol. 19, no. 21–24, pp. 1834–1836, 2007.
    [CrossRef]
  5. D. Petrantonakis, P. Zakynthinos, D. Apostolopoulos, A. Poustie, G. Maxwell, and H. Avramopoulos, “All-optical four-wavelength burst mode regeneration using integrated quad SOA-MZI arrays,” IEEE Photon. Technol. Lett., vol. 20, no. 23, pp. 1953–1955, 2008.
    [CrossRef]
  6. C. H. Kim, C. R. Giles, and Y. C. Chung, “Two-stage optical limiting fiber amplifier using a synchronized etalon filter,” IEEE Photon. Technol. Lett., vol. 10, no. 2, pp. 285–287, 1998.
    [CrossRef]
  7. L. Shien-Kuel and C. Sien, “Experimental investigation of a fiber Bragg grating integrated optical limiting amplifier with high dynamic range,” Opt. Eng., vol. 37, no. 7, pp. 2101–2103, 1998.
    [CrossRef]
  8. S. L. Tzeng, H. C. Chang, and Y. K. Chen, “Chirped-fibre-grating-based optical limiting amplifier for simultaneous dispersion compensation and limiting amplification in 10 Gbit/s G.652 fibre link,” Electron. Lett., vol. 35, no. 8, pp. 658–660, 1999.
    [CrossRef]
  9. H. Wessing, B. Sorensen, B. Lavigne, E. Balmefrezol, and O. Leclerc, “Combining control electronics with SOA to equalize packet-to-packet power variations for optical 3R regeneration in optical networks at 10 Gbit/s,” in Optical Fiber Communication Conf., Los Angeles, CA, Feb. 2004, WD2.
  10. M. Presi, S. Gupta, N. Calabretta, G. Ciontestabile, and E. Ciaramella, “DPSK packet-level power equalization by means of nonlinear polarization rotation in a SOA,” in Photonics in Switching, San Francisco, CA, Aug. 2007, pp. 157–158.
  11. Y. Su, L. Wang, A. Agarwal, and P. Kumar, “All-optical limiter using gain flattened fibre parametric amplifier,” Electron. Lett., vol. 36, no. 13, pp. 1103–1105, 2000.
    [CrossRef]
  12. Y. Yamada, Y. Shibata, T. Okugawa, and K. Habara, “High-level fluctuation tolerant optical receiver for optical packet switch and WDM cross-connect,” J. Lightwave Technol., vol. 16, no. 12, pp. 2220–2227, 1998.
    [CrossRef]
  13. X. Yi, W. Chen, and W. Shieh, “An OSNR monitor for optical packet switched networks,” IEEE Photon. Technol. Lett., vol. 18, no. 13–16, pp. 1448–1450, 2006.
    [CrossRef]
  14. P. Ohlen and E. Berglind, “Noise accumulation and EER estimates in concatenated nonlinear optoelectronic repeaters,” IEEE Photon. Technol. Lett., vol. 9, no. 7, pp. 1011–1013, 1997.
    [CrossRef]
  15. F. Ohman and J. Mork, “Modeling of bit error rate in cascaded 2R regenerators,” J. Lightwave Technol., vol. 24, no. 2, pp. 1057–1063, 2006.
    [CrossRef]
  16. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conf. on Optical Communication, Madrid, Spain, Sept. 1998, vol. 1, pp. 475–476.
  17. M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, and B. J. Eggleton, “Bit-error-ratio improvement with 2R optical regenerators,” IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 908–910, 2005.
    [CrossRef]
  18. T. I. Lakoba, “Multicanonical Monte Carlo study of the BER of an all-optically 2R regenerated signal,” IEEE J. Sel. Top. Quantum Electron., vol. 14, no. 3, pp. 599–609, 2008.
    [CrossRef]
  19. M. R. G. Leiria and A. V. T. Cartaxo, “Impact of the signal and nonlinearity extinction ratios on the design of nonideal 2R all-optical regenerators,” J. Lightwave Technol., vol. 26, no. 1–4, pp. 276–285, 2008.
    [CrossRef]
  20. I. Nasieva, A. Kaliazin, and S. K. Turitsyn, “Multicanonical Monte Carlo modelling of BER penalty in transmission systems with optical regeneration,” Opt. Commun., vol. 262, no. 2, pp. 246–249, 2006.
    [CrossRef]
  21. E. Ciaramella and L. Giorgi, “System performance using different types of in-line optical regenerators,” J. Lightwave Technol., vol. 24, no. 10, pp. 3727–3733, 2006.
    [CrossRef]
  22. R. Hainberger, T. Hoshida, S. Watanabe, and H. Onaka, “BER estimation in optical fiber transmission systems employing all-optical 2R regenerator’s,” J. Lightwave Technol., vol. 22, no. 3, pp. 746–754, 2004.
    [CrossRef]

2008 (3)

D. Petrantonakis, P. Zakynthinos, D. Apostolopoulos, A. Poustie, G. Maxwell, and H. Avramopoulos, “All-optical four-wavelength burst mode regeneration using integrated quad SOA-MZI arrays,” IEEE Photon. Technol. Lett., vol. 20, no. 23, pp. 1953–1955, 2008.
[CrossRef]

T. I. Lakoba, “Multicanonical Monte Carlo study of the BER of an all-optically 2R regenerated signal,” IEEE J. Sel. Top. Quantum Electron., vol. 14, no. 3, pp. 599–609, 2008.
[CrossRef]

M. R. G. Leiria and A. V. T. Cartaxo, “Impact of the signal and nonlinearity extinction ratios on the design of nonideal 2R all-optical regenerators,” J. Lightwave Technol., vol. 26, no. 1–4, pp. 276–285, 2008.
[CrossRef]

2007 (2)

G. T. Kanellos, D. Petrantonakis, D. Tsiokos, P. Bakopoulos, P. Zakynthinos, N. Pleros, D. Apostolopoulos, G. Maxwell, A. Poustie, and H. Avramopoulos, “All-optical 3R burst-mode reception at 40 Gb/s using four integrated MZI switches,” J. Lightwave Technol., vol. 25, no. 1, pp. 184–192, 2007.
[CrossRef]

P. Zakynthinos, G. T. Kanellos, D. Klonidis, D. Apostolopoulos, N. Pleros, A. Poustie, G. Maxwell, I. Tomkos, and H. Avramopoulos, “Cascaded operation of a 2R burst-mode regenerator for optical burst switching network transmission,” IEEE Photon. Technol. Lett., vol. 19, no. 21–24, pp. 1834–1836, 2007.
[CrossRef]

2006 (4)

X. Yi, W. Chen, and W. Shieh, “An OSNR monitor for optical packet switched networks,” IEEE Photon. Technol. Lett., vol. 18, no. 13–16, pp. 1448–1450, 2006.
[CrossRef]

F. Ohman and J. Mork, “Modeling of bit error rate in cascaded 2R regenerators,” J. Lightwave Technol., vol. 24, no. 2, pp. 1057–1063, 2006.
[CrossRef]

E. Ciaramella and L. Giorgi, “System performance using different types of in-line optical regenerators,” J. Lightwave Technol., vol. 24, no. 10, pp. 3727–3733, 2006.
[CrossRef]

I. Nasieva, A. Kaliazin, and S. K. Turitsyn, “Multicanonical Monte Carlo modelling of BER penalty in transmission systems with optical regeneration,” Opt. Commun., vol. 262, no. 2, pp. 246–249, 2006.
[CrossRef]

2005 (2)

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, and B. J. Eggleton, “Bit-error-ratio improvement with 2R optical regenerators,” IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 908–910, 2005.
[CrossRef]

R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40-Gb/s burst-mode optical 2R regenerator,” IEEE Photon. Technol. Lett., vol. 17, no. 10, pp. 2194–2196, 2005.
[CrossRef]

2004 (1)

2003 (1)

2000 (1)

Y. Su, L. Wang, A. Agarwal, and P. Kumar, “All-optical limiter using gain flattened fibre parametric amplifier,” Electron. Lett., vol. 36, no. 13, pp. 1103–1105, 2000.
[CrossRef]

1999 (1)

S. L. Tzeng, H. C. Chang, and Y. K. Chen, “Chirped-fibre-grating-based optical limiting amplifier for simultaneous dispersion compensation and limiting amplification in 10 Gbit/s G.652 fibre link,” Electron. Lett., vol. 35, no. 8, pp. 658–660, 1999.
[CrossRef]

1998 (3)

C. H. Kim, C. R. Giles, and Y. C. Chung, “Two-stage optical limiting fiber amplifier using a synchronized etalon filter,” IEEE Photon. Technol. Lett., vol. 10, no. 2, pp. 285–287, 1998.
[CrossRef]

L. Shien-Kuel and C. Sien, “Experimental investigation of a fiber Bragg grating integrated optical limiting amplifier with high dynamic range,” Opt. Eng., vol. 37, no. 7, pp. 2101–2103, 1998.
[CrossRef]

Y. Yamada, Y. Shibata, T. Okugawa, and K. Habara, “High-level fluctuation tolerant optical receiver for optical packet switch and WDM cross-connect,” J. Lightwave Technol., vol. 16, no. 12, pp. 2220–2227, 1998.
[CrossRef]

1997 (1)

P. Ohlen and E. Berglind, “Noise accumulation and EER estimates in concatenated nonlinear optoelectronic repeaters,” IEEE Photon. Technol. Lett., vol. 9, no. 7, pp. 1011–1013, 1997.
[CrossRef]

Agarwal, A.

Y. Su, L. Wang, A. Agarwal, and P. Kumar, “All-optical limiter using gain flattened fibre parametric amplifier,” Electron. Lett., vol. 36, no. 13, pp. 1103–1105, 2000.
[CrossRef]

Akatsu, Y.

R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40-Gb/s burst-mode optical 2R regenerator,” IEEE Photon. Technol. Lett., vol. 17, no. 10, pp. 2194–2196, 2005.
[CrossRef]

Apostolopoulos, D.

D. Petrantonakis, P. Zakynthinos, D. Apostolopoulos, A. Poustie, G. Maxwell, and H. Avramopoulos, “All-optical four-wavelength burst mode regeneration using integrated quad SOA-MZI arrays,” IEEE Photon. Technol. Lett., vol. 20, no. 23, pp. 1953–1955, 2008.
[CrossRef]

P. Zakynthinos, G. T. Kanellos, D. Klonidis, D. Apostolopoulos, N. Pleros, A. Poustie, G. Maxwell, I. Tomkos, and H. Avramopoulos, “Cascaded operation of a 2R burst-mode regenerator for optical burst switching network transmission,” IEEE Photon. Technol. Lett., vol. 19, no. 21–24, pp. 1834–1836, 2007.
[CrossRef]

G. T. Kanellos, D. Petrantonakis, D. Tsiokos, P. Bakopoulos, P. Zakynthinos, N. Pleros, D. Apostolopoulos, G. Maxwell, A. Poustie, and H. Avramopoulos, “All-optical 3R burst-mode reception at 40 Gb/s using four integrated MZI switches,” J. Lightwave Technol., vol. 25, no. 1, pp. 184–192, 2007.
[CrossRef]

Avramopoulos, H.

D. Petrantonakis, P. Zakynthinos, D. Apostolopoulos, A. Poustie, G. Maxwell, and H. Avramopoulos, “All-optical four-wavelength burst mode regeneration using integrated quad SOA-MZI arrays,” IEEE Photon. Technol. Lett., vol. 20, no. 23, pp. 1953–1955, 2008.
[CrossRef]

G. T. Kanellos, D. Petrantonakis, D. Tsiokos, P. Bakopoulos, P. Zakynthinos, N. Pleros, D. Apostolopoulos, G. Maxwell, A. Poustie, and H. Avramopoulos, “All-optical 3R burst-mode reception at 40 Gb/s using four integrated MZI switches,” J. Lightwave Technol., vol. 25, no. 1, pp. 184–192, 2007.
[CrossRef]

P. Zakynthinos, G. T. Kanellos, D. Klonidis, D. Apostolopoulos, N. Pleros, A. Poustie, G. Maxwell, I. Tomkos, and H. Avramopoulos, “Cascaded operation of a 2R burst-mode regenerator for optical burst switching network transmission,” IEEE Photon. Technol. Lett., vol. 19, no. 21–24, pp. 1834–1836, 2007.
[CrossRef]

Bakopoulos, P.

Balmefrezol, E.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J. Lightwave Technol., vol. 21, no. 11, pp. 2779–2790, 2003.
[CrossRef]

H. Wessing, B. Sorensen, B. Lavigne, E. Balmefrezol, and O. Leclerc, “Combining control electronics with SOA to equalize packet-to-packet power variations for optical 3R regeneration in optical networks at 10 Gbit/s,” in Optical Fiber Communication Conf., Los Angeles, CA, Feb. 2004, WD2.

Berglind, E.

P. Ohlen and E. Berglind, “Noise accumulation and EER estimates in concatenated nonlinear optoelectronic repeaters,” IEEE Photon. Technol. Lett., vol. 9, no. 7, pp. 1011–1013, 1997.
[CrossRef]

Blows, J. L.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, and B. J. Eggleton, “Bit-error-ratio improvement with 2R optical regenerators,” IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 908–910, 2005.
[CrossRef]

Brindel, P.

Calabretta, N.

M. Presi, S. Gupta, N. Calabretta, G. Ciontestabile, and E. Ciaramella, “DPSK packet-level power equalization by means of nonlinear polarization rotation in a SOA,” in Photonics in Switching, San Francisco, CA, Aug. 2007, pp. 157–158.

Cartaxo, A. V. T.

Chang, H. C.

S. L. Tzeng, H. C. Chang, and Y. K. Chen, “Chirped-fibre-grating-based optical limiting amplifier for simultaneous dispersion compensation and limiting amplification in 10 Gbit/s G.652 fibre link,” Electron. Lett., vol. 35, no. 8, pp. 658–660, 1999.
[CrossRef]

Chen, W.

X. Yi, W. Chen, and W. Shieh, “An OSNR monitor for optical packet switched networks,” IEEE Photon. Technol. Lett., vol. 18, no. 13–16, pp. 1448–1450, 2006.
[CrossRef]

Chen, Y. K.

S. L. Tzeng, H. C. Chang, and Y. K. Chen, “Chirped-fibre-grating-based optical limiting amplifier for simultaneous dispersion compensation and limiting amplification in 10 Gbit/s G.652 fibre link,” Electron. Lett., vol. 35, no. 8, pp. 658–660, 1999.
[CrossRef]

Chung, Y. C.

C. H. Kim, C. R. Giles, and Y. C. Chung, “Two-stage optical limiting fiber amplifier using a synchronized etalon filter,” IEEE Photon. Technol. Lett., vol. 10, no. 2, pp. 285–287, 1998.
[CrossRef]

Ciaramella, E.

E. Ciaramella and L. Giorgi, “System performance using different types of in-line optical regenerators,” J. Lightwave Technol., vol. 24, no. 10, pp. 3727–3733, 2006.
[CrossRef]

M. Presi, S. Gupta, N. Calabretta, G. Ciontestabile, and E. Ciaramella, “DPSK packet-level power equalization by means of nonlinear polarization rotation in a SOA,” in Photonics in Switching, San Francisco, CA, Aug. 2007, pp. 157–158.

Ciontestabile, G.

M. Presi, S. Gupta, N. Calabretta, G. Ciontestabile, and E. Ciaramella, “DPSK packet-level power equalization by means of nonlinear polarization rotation in a SOA,” in Photonics in Switching, San Francisco, CA, Aug. 2007, pp. 157–158.

Eggleton, B. J.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, and B. J. Eggleton, “Bit-error-ratio improvement with 2R optical regenerators,” IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 908–910, 2005.
[CrossRef]

Giles, C. R.

C. H. Kim, C. R. Giles, and Y. C. Chung, “Two-stage optical limiting fiber amplifier using a synchronized etalon filter,” IEEE Photon. Technol. Lett., vol. 10, no. 2, pp. 285–287, 1998.
[CrossRef]

Giorgi, L.

Gupta, S.

M. Presi, S. Gupta, N. Calabretta, G. Ciontestabile, and E. Ciaramella, “DPSK packet-level power equalization by means of nonlinear polarization rotation in a SOA,” in Photonics in Switching, San Francisco, CA, Aug. 2007, pp. 157–158.

Habara, K.

Hainberger, R.

Hoshida, T.

Ito, T.

R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40-Gb/s burst-mode optical 2R regenerator,” IEEE Photon. Technol. Lett., vol. 17, no. 10, pp. 2194–2196, 2005.
[CrossRef]

Kaliazin, A.

I. Nasieva, A. Kaliazin, and S. K. Turitsyn, “Multicanonical Monte Carlo modelling of BER penalty in transmission systems with optical regeneration,” Opt. Commun., vol. 262, no. 2, pp. 246–249, 2006.
[CrossRef]

Kanellos, G. T.

P. Zakynthinos, G. T. Kanellos, D. Klonidis, D. Apostolopoulos, N. Pleros, A. Poustie, G. Maxwell, I. Tomkos, and H. Avramopoulos, “Cascaded operation of a 2R burst-mode regenerator for optical burst switching network transmission,” IEEE Photon. Technol. Lett., vol. 19, no. 21–24, pp. 1834–1836, 2007.
[CrossRef]

G. T. Kanellos, D. Petrantonakis, D. Tsiokos, P. Bakopoulos, P. Zakynthinos, N. Pleros, D. Apostolopoulos, G. Maxwell, A. Poustie, and H. Avramopoulos, “All-optical 3R burst-mode reception at 40 Gb/s using four integrated MZI switches,” J. Lightwave Technol., vol. 25, no. 1, pp. 184–192, 2007.
[CrossRef]

Kim, C. H.

C. H. Kim, C. R. Giles, and Y. C. Chung, “Two-stage optical limiting fiber amplifier using a synchronized etalon filter,” IEEE Photon. Technol. Lett., vol. 10, no. 2, pp. 285–287, 1998.
[CrossRef]

Klonidis, D.

P. Zakynthinos, G. T. Kanellos, D. Klonidis, D. Apostolopoulos, N. Pleros, A. Poustie, G. Maxwell, I. Tomkos, and H. Avramopoulos, “Cascaded operation of a 2R burst-mode regenerator for optical burst switching network transmission,” IEEE Photon. Technol. Lett., vol. 19, no. 21–24, pp. 1834–1836, 2007.
[CrossRef]

Kumar, P.

Y. Su, L. Wang, A. Agarwal, and P. Kumar, “All-optical limiter using gain flattened fibre parametric amplifier,” Electron. Lett., vol. 36, no. 13, pp. 1103–1105, 2000.
[CrossRef]

Kutz, J. N.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, and B. J. Eggleton, “Bit-error-ratio improvement with 2R optical regenerators,” IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 908–910, 2005.
[CrossRef]

Lakoba, T. I.

T. I. Lakoba, “Multicanonical Monte Carlo study of the BER of an all-optically 2R regenerated signal,” IEEE J. Sel. Top. Quantum Electron., vol. 14, no. 3, pp. 599–609, 2008.
[CrossRef]

Lavigne, B.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J. Lightwave Technol., vol. 21, no. 11, pp. 2779–2790, 2003.
[CrossRef]

H. Wessing, B. Sorensen, B. Lavigne, E. Balmefrezol, and O. Leclerc, “Combining control electronics with SOA to equalize packet-to-packet power variations for optical 3R regeneration in optical networks at 10 Gbit/s,” in Optical Fiber Communication Conf., Los Angeles, CA, Feb. 2004, WD2.

Leclerc, O.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J. Lightwave Technol., vol. 21, no. 11, pp. 2779–2790, 2003.
[CrossRef]

H. Wessing, B. Sorensen, B. Lavigne, E. Balmefrezol, and O. Leclerc, “Combining control electronics with SOA to equalize packet-to-packet power variations for optical 3R regeneration in optical networks at 10 Gbit/s,” in Optical Fiber Communication Conf., Los Angeles, CA, Feb. 2004, WD2.

Leiria, M. R. G.

Mamyshev, P. V.

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conf. on Optical Communication, Madrid, Spain, Sept. 1998, vol. 1, pp. 475–476.

Maxwell, G.

D. Petrantonakis, P. Zakynthinos, D. Apostolopoulos, A. Poustie, G. Maxwell, and H. Avramopoulos, “All-optical four-wavelength burst mode regeneration using integrated quad SOA-MZI arrays,” IEEE Photon. Technol. Lett., vol. 20, no. 23, pp. 1953–1955, 2008.
[CrossRef]

G. T. Kanellos, D. Petrantonakis, D. Tsiokos, P. Bakopoulos, P. Zakynthinos, N. Pleros, D. Apostolopoulos, G. Maxwell, A. Poustie, and H. Avramopoulos, “All-optical 3R burst-mode reception at 40 Gb/s using four integrated MZI switches,” J. Lightwave Technol., vol. 25, no. 1, pp. 184–192, 2007.
[CrossRef]

P. Zakynthinos, G. T. Kanellos, D. Klonidis, D. Apostolopoulos, N. Pleros, A. Poustie, G. Maxwell, I. Tomkos, and H. Avramopoulos, “Cascaded operation of a 2R burst-mode regenerator for optical burst switching network transmission,” IEEE Photon. Technol. Lett., vol. 19, no. 21–24, pp. 1834–1836, 2007.
[CrossRef]

Mok, J. T.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, and B. J. Eggleton, “Bit-error-ratio improvement with 2R optical regenerators,” IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 908–910, 2005.
[CrossRef]

Mork, J.

Moss, D.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, and B. J. Eggleton, “Bit-error-ratio improvement with 2R optical regenerators,” IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 908–910, 2005.
[CrossRef]

Nasieva, I.

I. Nasieva, A. Kaliazin, and S. K. Turitsyn, “Multicanonical Monte Carlo modelling of BER penalty in transmission systems with optical regeneration,” Opt. Commun., vol. 262, no. 2, pp. 246–249, 2006.
[CrossRef]

Ohki, A.

R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40-Gb/s burst-mode optical 2R regenerator,” IEEE Photon. Technol. Lett., vol. 17, no. 10, pp. 2194–2196, 2005.
[CrossRef]

Ohlen, P.

P. Ohlen and E. Berglind, “Noise accumulation and EER estimates in concatenated nonlinear optoelectronic repeaters,” IEEE Photon. Technol. Lett., vol. 9, no. 7, pp. 1011–1013, 1997.
[CrossRef]

Ohman, F.

Okugawa, T.

Onaka, H.

Petrantonakis, D.

D. Petrantonakis, P. Zakynthinos, D. Apostolopoulos, A. Poustie, G. Maxwell, and H. Avramopoulos, “All-optical four-wavelength burst mode regeneration using integrated quad SOA-MZI arrays,” IEEE Photon. Technol. Lett., vol. 20, no. 23, pp. 1953–1955, 2008.
[CrossRef]

G. T. Kanellos, D. Petrantonakis, D. Tsiokos, P. Bakopoulos, P. Zakynthinos, N. Pleros, D. Apostolopoulos, G. Maxwell, A. Poustie, and H. Avramopoulos, “All-optical 3R burst-mode reception at 40 Gb/s using four integrated MZI switches,” J. Lightwave Technol., vol. 25, no. 1, pp. 184–192, 2007.
[CrossRef]

Pierre, L.

Pleros, N.

G. T. Kanellos, D. Petrantonakis, D. Tsiokos, P. Bakopoulos, P. Zakynthinos, N. Pleros, D. Apostolopoulos, G. Maxwell, A. Poustie, and H. Avramopoulos, “All-optical 3R burst-mode reception at 40 Gb/s using four integrated MZI switches,” J. Lightwave Technol., vol. 25, no. 1, pp. 184–192, 2007.
[CrossRef]

P. Zakynthinos, G. T. Kanellos, D. Klonidis, D. Apostolopoulos, N. Pleros, A. Poustie, G. Maxwell, I. Tomkos, and H. Avramopoulos, “Cascaded operation of a 2R burst-mode regenerator for optical burst switching network transmission,” IEEE Photon. Technol. Lett., vol. 19, no. 21–24, pp. 1834–1836, 2007.
[CrossRef]

Poustie, A.

D. Petrantonakis, P. Zakynthinos, D. Apostolopoulos, A. Poustie, G. Maxwell, and H. Avramopoulos, “All-optical four-wavelength burst mode regeneration using integrated quad SOA-MZI arrays,” IEEE Photon. Technol. Lett., vol. 20, no. 23, pp. 1953–1955, 2008.
[CrossRef]

P. Zakynthinos, G. T. Kanellos, D. Klonidis, D. Apostolopoulos, N. Pleros, A. Poustie, G. Maxwell, I. Tomkos, and H. Avramopoulos, “Cascaded operation of a 2R burst-mode regenerator for optical burst switching network transmission,” IEEE Photon. Technol. Lett., vol. 19, no. 21–24, pp. 1834–1836, 2007.
[CrossRef]

G. T. Kanellos, D. Petrantonakis, D. Tsiokos, P. Bakopoulos, P. Zakynthinos, N. Pleros, D. Apostolopoulos, G. Maxwell, A. Poustie, and H. Avramopoulos, “All-optical 3R burst-mode reception at 40 Gb/s using four integrated MZI switches,” J. Lightwave Technol., vol. 25, no. 1, pp. 184–192, 2007.
[CrossRef]

Presi, M.

M. Presi, S. Gupta, N. Calabretta, G. Ciontestabile, and E. Ciaramella, “DPSK packet-level power equalization by means of nonlinear polarization rotation in a SOA,” in Photonics in Switching, San Francisco, CA, Aug. 2007, pp. 157–158.

Rochette, M.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, and B. J. Eggleton, “Bit-error-ratio improvement with 2R optical regenerators,” IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 908–910, 2005.
[CrossRef]

Rouvillain, D.

Sato, R.

R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40-Gb/s burst-mode optical 2R regenerator,” IEEE Photon. Technol. Lett., vol. 17, no. 10, pp. 2194–2196, 2005.
[CrossRef]

Seguineau, F.

Shibata, Y.

R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40-Gb/s burst-mode optical 2R regenerator,” IEEE Photon. Technol. Lett., vol. 17, no. 10, pp. 2194–2196, 2005.
[CrossRef]

Y. Yamada, Y. Shibata, T. Okugawa, and K. Habara, “High-level fluctuation tolerant optical receiver for optical packet switch and WDM cross-connect,” J. Lightwave Technol., vol. 16, no. 12, pp. 2220–2227, 1998.
[CrossRef]

Shieh, W.

X. Yi, W. Chen, and W. Shieh, “An OSNR monitor for optical packet switched networks,” IEEE Photon. Technol. Lett., vol. 18, no. 13–16, pp. 1448–1450, 2006.
[CrossRef]

Shien-Kuel, L.

L. Shien-Kuel and C. Sien, “Experimental investigation of a fiber Bragg grating integrated optical limiting amplifier with high dynamic range,” Opt. Eng., vol. 37, no. 7, pp. 2101–2103, 1998.
[CrossRef]

Sien, C.

L. Shien-Kuel and C. Sien, “Experimental investigation of a fiber Bragg grating integrated optical limiting amplifier with high dynamic range,” Opt. Eng., vol. 37, no. 7, pp. 2101–2103, 1998.
[CrossRef]

Sorensen, B.

H. Wessing, B. Sorensen, B. Lavigne, E. Balmefrezol, and O. Leclerc, “Combining control electronics with SOA to equalize packet-to-packet power variations for optical 3R regeneration in optical networks at 10 Gbit/s,” in Optical Fiber Communication Conf., Los Angeles, CA, Feb. 2004, WD2.

Su, Y.

Y. Su, L. Wang, A. Agarwal, and P. Kumar, “All-optical limiter using gain flattened fibre parametric amplifier,” Electron. Lett., vol. 36, no. 13, pp. 1103–1105, 2000.
[CrossRef]

Tomkos, I.

P. Zakynthinos, G. T. Kanellos, D. Klonidis, D. Apostolopoulos, N. Pleros, A. Poustie, G. Maxwell, I. Tomkos, and H. Avramopoulos, “Cascaded operation of a 2R burst-mode regenerator for optical burst switching network transmission,” IEEE Photon. Technol. Lett., vol. 19, no. 21–24, pp. 1834–1836, 2007.
[CrossRef]

Tsiokos, D.

Turitsyn, S. K.

I. Nasieva, A. Kaliazin, and S. K. Turitsyn, “Multicanonical Monte Carlo modelling of BER penalty in transmission systems with optical regeneration,” Opt. Commun., vol. 262, no. 2, pp. 246–249, 2006.
[CrossRef]

Tzeng, S. L.

S. L. Tzeng, H. C. Chang, and Y. K. Chen, “Chirped-fibre-grating-based optical limiting amplifier for simultaneous dispersion compensation and limiting amplification in 10 Gbit/s G.652 fibre link,” Electron. Lett., vol. 35, no. 8, pp. 658–660, 1999.
[CrossRef]

Wang, L.

Y. Su, L. Wang, A. Agarwal, and P. Kumar, “All-optical limiter using gain flattened fibre parametric amplifier,” Electron. Lett., vol. 36, no. 13, pp. 1103–1105, 2000.
[CrossRef]

Watanabe, S.

Wessing, H.

H. Wessing, B. Sorensen, B. Lavigne, E. Balmefrezol, and O. Leclerc, “Combining control electronics with SOA to equalize packet-to-packet power variations for optical 3R regeneration in optical networks at 10 Gbit/s,” in Optical Fiber Communication Conf., Los Angeles, CA, Feb. 2004, WD2.

Yamada, Y.

Yi, X.

X. Yi, W. Chen, and W. Shieh, “An OSNR monitor for optical packet switched networks,” IEEE Photon. Technol. Lett., vol. 18, no. 13–16, pp. 1448–1450, 2006.
[CrossRef]

Zakynthinos, P.

D. Petrantonakis, P. Zakynthinos, D. Apostolopoulos, A. Poustie, G. Maxwell, and H. Avramopoulos, “All-optical four-wavelength burst mode regeneration using integrated quad SOA-MZI arrays,” IEEE Photon. Technol. Lett., vol. 20, no. 23, pp. 1953–1955, 2008.
[CrossRef]

P. Zakynthinos, G. T. Kanellos, D. Klonidis, D. Apostolopoulos, N. Pleros, A. Poustie, G. Maxwell, I. Tomkos, and H. Avramopoulos, “Cascaded operation of a 2R burst-mode regenerator for optical burst switching network transmission,” IEEE Photon. Technol. Lett., vol. 19, no. 21–24, pp. 1834–1836, 2007.
[CrossRef]

G. T. Kanellos, D. Petrantonakis, D. Tsiokos, P. Bakopoulos, P. Zakynthinos, N. Pleros, D. Apostolopoulos, G. Maxwell, A. Poustie, and H. Avramopoulos, “All-optical 3R burst-mode reception at 40 Gb/s using four integrated MZI switches,” J. Lightwave Technol., vol. 25, no. 1, pp. 184–192, 2007.
[CrossRef]

Electron. Lett. (2)

Y. Su, L. Wang, A. Agarwal, and P. Kumar, “All-optical limiter using gain flattened fibre parametric amplifier,” Electron. Lett., vol. 36, no. 13, pp. 1103–1105, 2000.
[CrossRef]

S. L. Tzeng, H. C. Chang, and Y. K. Chen, “Chirped-fibre-grating-based optical limiting amplifier for simultaneous dispersion compensation and limiting amplification in 10 Gbit/s G.652 fibre link,” Electron. Lett., vol. 35, no. 8, pp. 658–660, 1999.
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. I. Lakoba, “Multicanonical Monte Carlo study of the BER of an all-optically 2R regenerated signal,” IEEE J. Sel. Top. Quantum Electron., vol. 14, no. 3, pp. 599–609, 2008.
[CrossRef]

IEEE Photon. Technol. Lett. (7)

X. Yi, W. Chen, and W. Shieh, “An OSNR monitor for optical packet switched networks,” IEEE Photon. Technol. Lett., vol. 18, no. 13–16, pp. 1448–1450, 2006.
[CrossRef]

P. Ohlen and E. Berglind, “Noise accumulation and EER estimates in concatenated nonlinear optoelectronic repeaters,” IEEE Photon. Technol. Lett., vol. 9, no. 7, pp. 1011–1013, 1997.
[CrossRef]

R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40-Gb/s burst-mode optical 2R regenerator,” IEEE Photon. Technol. Lett., vol. 17, no. 10, pp. 2194–2196, 2005.
[CrossRef]

P. Zakynthinos, G. T. Kanellos, D. Klonidis, D. Apostolopoulos, N. Pleros, A. Poustie, G. Maxwell, I. Tomkos, and H. Avramopoulos, “Cascaded operation of a 2R burst-mode regenerator for optical burst switching network transmission,” IEEE Photon. Technol. Lett., vol. 19, no. 21–24, pp. 1834–1836, 2007.
[CrossRef]

D. Petrantonakis, P. Zakynthinos, D. Apostolopoulos, A. Poustie, G. Maxwell, and H. Avramopoulos, “All-optical four-wavelength burst mode regeneration using integrated quad SOA-MZI arrays,” IEEE Photon. Technol. Lett., vol. 20, no. 23, pp. 1953–1955, 2008.
[CrossRef]

C. H. Kim, C. R. Giles, and Y. C. Chung, “Two-stage optical limiting fiber amplifier using a synchronized etalon filter,” IEEE Photon. Technol. Lett., vol. 10, no. 2, pp. 285–287, 1998.
[CrossRef]

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, and B. J. Eggleton, “Bit-error-ratio improvement with 2R optical regenerators,” IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 908–910, 2005.
[CrossRef]

J. Lightwave Technol. (7)

Y. Yamada, Y. Shibata, T. Okugawa, and K. Habara, “High-level fluctuation tolerant optical receiver for optical packet switch and WDM cross-connect,” J. Lightwave Technol., vol. 16, no. 12, pp. 2220–2227, 1998.
[CrossRef]

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J. Lightwave Technol., vol. 21, no. 11, pp. 2779–2790, 2003.
[CrossRef]

R. Hainberger, T. Hoshida, S. Watanabe, and H. Onaka, “BER estimation in optical fiber transmission systems employing all-optical 2R regenerator’s,” J. Lightwave Technol., vol. 22, no. 3, pp. 746–754, 2004.
[CrossRef]

F. Ohman and J. Mork, “Modeling of bit error rate in cascaded 2R regenerators,” J. Lightwave Technol., vol. 24, no. 2, pp. 1057–1063, 2006.
[CrossRef]

E. Ciaramella and L. Giorgi, “System performance using different types of in-line optical regenerators,” J. Lightwave Technol., vol. 24, no. 10, pp. 3727–3733, 2006.
[CrossRef]

G. T. Kanellos, D. Petrantonakis, D. Tsiokos, P. Bakopoulos, P. Zakynthinos, N. Pleros, D. Apostolopoulos, G. Maxwell, A. Poustie, and H. Avramopoulos, “All-optical 3R burst-mode reception at 40 Gb/s using four integrated MZI switches,” J. Lightwave Technol., vol. 25, no. 1, pp. 184–192, 2007.
[CrossRef]

M. R. G. Leiria and A. V. T. Cartaxo, “Impact of the signal and nonlinearity extinction ratios on the design of nonideal 2R all-optical regenerators,” J. Lightwave Technol., vol. 26, no. 1–4, pp. 276–285, 2008.
[CrossRef]

Opt. Commun. (1)

I. Nasieva, A. Kaliazin, and S. K. Turitsyn, “Multicanonical Monte Carlo modelling of BER penalty in transmission systems with optical regeneration,” Opt. Commun., vol. 262, no. 2, pp. 246–249, 2006.
[CrossRef]

Opt. Eng. (1)

L. Shien-Kuel and C. Sien, “Experimental investigation of a fiber Bragg grating integrated optical limiting amplifier with high dynamic range,” Opt. Eng., vol. 37, no. 7, pp. 2101–2103, 1998.
[CrossRef]

Other (3)

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conf. on Optical Communication, Madrid, Spain, Sept. 1998, vol. 1, pp. 475–476.

H. Wessing, B. Sorensen, B. Lavigne, E. Balmefrezol, and O. Leclerc, “Combining control electronics with SOA to equalize packet-to-packet power variations for optical 3R regeneration in optical networks at 10 Gbit/s,” in Optical Fiber Communication Conf., Los Angeles, CA, Feb. 2004, WD2.

M. Presi, S. Gupta, N. Calabretta, G. Ciontestabile, and E. Ciaramella, “DPSK packet-level power equalization by means of nonlinear polarization rotation in a SOA,” in Photonics in Switching, San Francisco, CA, Aug. 2007, pp. 157–158.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Model of cascaded BMORs (dashed box represents a block diagram of a 2R BMOR).

Fig. 2
Fig. 2

The nonlinear transfer function fTF(x) of the optical reshaper for different γ and infinite rNL.

Fig. 3
Fig. 3

LA setup using three different combinations of (1) v=0.3, Gnetnom=2dB, (2) v=0.4, Gnetnom=5 dB, and (3) v=0.5, Gnetnom=7dB, for m=0.02, 0.1, and 0.16.

Fig. 4
Fig. 4

BER at the output of the 10th BMOR versus γ, for various m values with (a) v=0.3, (b) 0.35, (c) 0.4, and (d) 0.45 for low-power packet Pavin=0.25 and (e) v=0.3, (f) 0.35, (g) 0.4, and (f) 0.45 for high-power packet Pavin=1 for a homogeneous inter-regenerator amplifier cascade with Gnet=5dB and σ=0.04 at the input of the LA, Gnetnom_dB=5dB, infinite rNL, and rsig=10dB.

Fig. 5
Fig. 5

(a) BER, (b) PavinLA, PavinNL, and Pavout along the cascade of i BMORs for a homogeneous inter-regenerator amplifier cascade with Gnet=5dB and σ=0.04 at the input of the LA, Gnetnom_dB=5dB, v=0.4, m=0.1rNL infinite, rsig=10dB γ=0.5, and 0.2 for a low Pavin=0.2 and a high Pavin=1.

Fig. 6
Fig. 6

BER evaluation along the cascade of i BMORs without a LA, with a LA of m=0.1 and v=0.4, and a linear amplifier/attenuator with the same u and v as in the case with a LA, for a homogeneous inter-regenerator amplifier cascade with Gnet=5dB and σ=0.04 at the input of the LA, Gnetnom_dB=5dB, infinite rNL, rsig=10dB, and γ=0.5 and 0.2 for (a) a low Pavin=0.25 and (b) a high Pavin=1.

Fig. 7
Fig. 7

BER evaluation along the cascade of i BMORs, for different values of Gnet and for (a) a low Pavin (=0.25) and (b) a high Pavin (=1), with γ=0.5 and γ=0.2, for a homogeneous inter-regenerator amplifier cascade with σ=0.04 at the input of LA, Gnetnom_dB=5dB, v=0.4, m=0.1, infinite rNL, and rsig=10dB.

Fig. 8
Fig. 8

BER at the output of the 10th BMOR for different Pavin and different σ1 at the input of first LA in the 1st BMOR, with (a) γ=0.5 and (b) γ=0.2 for two different homogeneous inter-regenerator amplifier cascade systems with Gnet=5dB and with σ=0.04 and σ=0.08 (at the input of the LA).

Fig. 9
Fig. 9

BER evaluation along the cascade of i BMORs, along the heterogeneous (alternating) inter-regenerator amplifier cascade with σ=0.04 at the input of the LA, Gnetnom_dB=5dB, v=0.4, m=0.1rNL infinite, rsig=10dB, and Gnc1=[6dB,4dB]alt, Gnc2=[4dB,6dB]alt, Gnc3=[8dB,4dB]alt, Gnc4=[4dB,8dB]alt, Gnc5=[7dB,1dB]alt, and Gnc6=[1dB,7dB]alt, for (a) a low Pavin (=0.25) and (b) a high Pavin (=1) with γ=0.5 and 0.2.

Fig. 10
Fig. 10

BER evaluation along the cascade of i BMORs, along the heterogeneous (alternating) inter-regenerator amplifier cascade with Gnet=5dB, Gnetnom_dB=5dB, v=0.4, m=0.1rNL infinite, rsig=10dB, and σc1=[0.03,0.04]alt, σc2=[0.04,0.03]alt, σc3=[0.03,0.06]alt, σc4=[0.06,0.03]alt, σc5=[0.03,0.09]alt, and σc6=[0.09,0.03]alt, for (a) a low Pavin (=0.25) and (b) a high Pavin (=1) with γ=0.5 and 0.2.

Fig. 11
Fig. 11

BER evaluation along the cascade of i BMORs for (a) a low Pavin (=0.25) and (b) a high Pavin (=1) with γ=0.5 and 0.2, with σ=0.04 at the input of the LA, Gnetnom_dB=5dB, v=0.4, m=0.1rNL infinite, rsig=10dB, and Gnc1=[1dB,9dB]5,4, Gnc2=[9dB,1dB]5,4, Gnc3=[4dB,6dB]5,4, and Gnc4=[6dB,4dB]5,4.

Fig. 12
Fig. 12

BER evaluation along the cascade of i BMORs for (a) a low Pavin (=0.25) and (b) a high Pavin (=1) with γ=0.5 and 0.2, Gnetnom_dB=5dB, v=0.4, m=0.1rNL infinite, rsig=10dB, and Gnc1=[4dB,6dB]5,4, σc1=[0.04,0.08]5,5, and σc3=[0.04,0.05]5,5, and Gnc2=[4dB,6dB]alt, σc2=[0.04,0.08]alt, and σc4=[0.04,0.05]alt.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

yav=fLA(xav),
fTF(x)=atanh(b(x1/2))+c,
pdfj(x)=12σ2xPj12ex+Pj2σ2I1xPjσ2,
pdfj2,i(x2)=1Gnet,ipdfj1,i(x1Gnet,i).
pdfj3,i(x3)=012σi2x3x212ex3+x22σi2I1x3x2σi2pdfj2,i(x2)dx2,
pdfj4,i(x4)=1GLAipdfj3,i(x3GLAi).
pdfj5,i(x5)=1fTFfTF1x5pdfj4,ifTF1x5.
BERn,i=120pth_n,ipdf1n,i(x)+12pth_n,ipdf0n,i(x)dx,
fLA(xav)=mxav+h,