Abstract

In this paper, we propose a new peak-to-average power ratio reduction technique based on a constant envelope orthogonal frequency division multiplexing (CE-OFDM) approach to mitigate fiber induced nonlinearities in direct-detection optical OFDM (DDO-OFDM) systems. Simulation results show that the proposed 10 Gbps DDO-CE-OFDM system using 16-quadrature amplitude modulation (16-QAM), 2.66 GHz signal bandwidth, and different values of electrical phase modulation index outperforms DDO-OFDM systems as it increases the fiber nonlinearity tolerance in fiber links without optical dispersion compensation. The bit error rate of the proposed transmission scheme is decreased by a factor of 1000 if compared to conventional DDO-OFDM systems, for 10 dBm of optical input power and considering a span of 960 km of standard single-mode fiber.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. van Nee and R. Presad, OFDM for Wireless Multimedia Communications. Artech House, 2000.
  2. W. Shieh and I. Djordjevic, OFDM for Optical Communications. Academic Press, 2009.
  3. A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for optical dispersion compensation,” in Optical Fiber Communication Conf., 2007, OTuA4.
  4. S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, “20-Gb/s OFDM transmission over 4160-km SSMF enabled by RF-pilot tone phase noise compensation,” in Optical Fiber Communication Conf., 2007, PDP15.
  5. D. J. C. Coura, J. A. L. Silva, and M. E. V. Segatto, “A bandwidth scalable OFDM passive optical network for future access network,” Photonic Network Commun., vol. 6, pp. 409–416, 2009.
    [CrossRef]
  6. B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “100 Gbit/s transmission using single-band direct-detection optical OFDM,” in Optical Fiber Communication Conf., 2009.
  7. S. L. Jansen, I. Morita, T. C. W Schenk, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol., vol. 11, pp. 6–11, 2008.
    [CrossRef]
  8. S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF,” J. Lightwave Technol., vol. 27, pp. 177–188, 2009.
    [CrossRef]
  9. R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25 Gb/s real-time optical OFDM transceiver supporting 25 km SMF end-to-end transmission,” Opt. Express, vol. 18, pp. 5541–5555, 2010.
    [CrossRef] [PubMed]
  10. J. Leibrich, A. Ali, H. Paul, W. Rosenkranz, and K.-D. Kammeyer, “Impact of modulator bias on the OSNR requirement of direct-detection optical OFDM,” IEEE Photon. Technol. Lett., vol. 15, pp. 1033–1035, 2009.
    [CrossRef]
  11. W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, and S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone-assisted optical OFDM systems,” J. Lightwave Technol., vol. 27, pp. 1332–1339, 2009.
    [CrossRef]
  12. S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun., vol. 2, pp. 56–65, 2005.
  13. J. Armstrong, “Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering,” Electron. Lett., vol. 38, p. 246, 2002.
    [CrossRef]
  14. S. C. Thompson, A. U. Ahmedt, J. G. Proakis, and J. R. Zeidler, “Constant envelope OFDM phase modulation: spectral containment, signal space properties and performance,” in IEEE Military Communications Conf., 2004, pp. 1129–1135.
  15. S. C. Thompson, A. U. Ahmedt, J. G. Proakis, J. R. Zeidler, and M. Geile, “Constant envelope OFDM,” IEEE Trans. Commun., vol. 56, pp. 1300–1312, 2008.
    [CrossRef]
  16. J. A. Silva, T. M. Alves, A. Cartaxo, and M. E. Segatto, “Experimental demonstration of a direct-detection constant envelope OFDM system,” in Signal Processing in Photonic Communications, 2010, SPThB2.
  17. X. Zheng and J. M. Tang, “Phase modulation enabled relaxation of DAC/ADC requirements and optical OFDM performance improvement over SMF-based IMDD systems,” in 36th European Conf. and Exhibition on Optical Communication, 2010, pp. 1–3.
  18. A. Abdalla, M. Lima, and A. Teixeira, “Reduced bandwidth transmitter and simple detection scheme for improved constant envelope OFDM,” Electron. Lett., vol. 47, pp. 391–392, 2011.
    [CrossRef]
  19. S.-H. Fan, J. Yu, and G.-k. Chang, “Optical OFDM scheme using uniform power transmission to mitigate peak-to-average power effect over 1040 km single-mode fiber,” J. Opt. Commun. Netw., vol. 2, pp. 711–715, 2010Please provide page number in Refs. [19, 22]..
    [CrossRef]
  20. Z. Dong, Z. Cao, J. Lu, Y. Li, L. Chen, and  S. Wen, “Transmission performance of optical OFDM signals with low peak-to-average power ratio by a phase modulator,” Opt. Commun., vol. 286, pp. 4194–4197, 2009Please check last author name in Ref. [20]..
    [CrossRef]
  21. J. V. Hoyningen-Huene, J. Leibrich, A. Ali, and W. Rosenkranz, “Constant envelope optical OFDM for improved nonlinear and phase noise tolerance,” in Optical Fiber Communication Conf., 2011, OWE3.
  22. C.-D. Chung, “Spectral precoding for constant-envelope OFDM,” IEEE Trans. Commun., vol. 58, pp. 555–567, 2010.
    [CrossRef]
  23. A. Ali, H. Paul, J. Leibrich, W. Rosenkranz, and K.-D. Kammeyer, “Optical biasing in direct detection optical-OFDM for improving receiver sensitivity,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2010, pp. 1–3.
  24. B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol., vol. 26, pp. 196–203, 2008.
    [CrossRef]

2011 (1)

A. Abdalla, M. Lima, and A. Teixeira, “Reduced bandwidth transmitter and simple detection scheme for improved constant envelope OFDM,” Electron. Lett., vol. 47, pp. 391–392, 2011.
[CrossRef]

2010 (3)

2009 (5)

J. Leibrich, A. Ali, H. Paul, W. Rosenkranz, and K.-D. Kammeyer, “Impact of modulator bias on the OSNR requirement of direct-detection optical OFDM,” IEEE Photon. Technol. Lett., vol. 15, pp. 1033–1035, 2009.
[CrossRef]

W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, and S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone-assisted optical OFDM systems,” J. Lightwave Technol., vol. 27, pp. 1332–1339, 2009.
[CrossRef]

D. J. C. Coura, J. A. L. Silva, and M. E. V. Segatto, “A bandwidth scalable OFDM passive optical network for future access network,” Photonic Network Commun., vol. 6, pp. 409–416, 2009.
[CrossRef]

S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF,” J. Lightwave Technol., vol. 27, pp. 177–188, 2009.
[CrossRef]

Z. Dong, Z. Cao, J. Lu, Y. Li, L. Chen, and  S. Wen, “Transmission performance of optical OFDM signals with low peak-to-average power ratio by a phase modulator,” Opt. Commun., vol. 286, pp. 4194–4197, 2009Please check last author name in Ref. [20]..
[CrossRef]

2008 (3)

B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol., vol. 26, pp. 196–203, 2008.
[CrossRef]

S. C. Thompson, A. U. Ahmedt, J. G. Proakis, J. R. Zeidler, and M. Geile, “Constant envelope OFDM,” IEEE Trans. Commun., vol. 56, pp. 1300–1312, 2008.
[CrossRef]

S. L. Jansen, I. Morita, T. C. W Schenk, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol., vol. 11, pp. 6–11, 2008.
[CrossRef]

2005 (1)

S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun., vol. 2, pp. 56–65, 2005.

2002 (1)

J. Armstrong, “Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering,” Electron. Lett., vol. 38, p. 246, 2002.
[CrossRef]

Abdalla, A.

A. Abdalla, M. Lima, and A. Teixeira, “Reduced bandwidth transmitter and simple detection scheme for improved constant envelope OFDM,” Electron. Lett., vol. 47, pp. 391–392, 2011.
[CrossRef]

Ahmedt, A. U.

S. C. Thompson, A. U. Ahmedt, J. G. Proakis, J. R. Zeidler, and M. Geile, “Constant envelope OFDM,” IEEE Trans. Commun., vol. 56, pp. 1300–1312, 2008.
[CrossRef]

S. C. Thompson, A. U. Ahmedt, J. G. Proakis, and J. R. Zeidler, “Constant envelope OFDM phase modulation: spectral containment, signal space properties and performance,” in IEEE Military Communications Conf., 2004, pp. 1129–1135.

Ali, A.

J. Leibrich, A. Ali, H. Paul, W. Rosenkranz, and K.-D. Kammeyer, “Impact of modulator bias on the OSNR requirement of direct-detection optical OFDM,” IEEE Photon. Technol. Lett., vol. 15, pp. 1033–1035, 2009.
[CrossRef]

A. Ali, H. Paul, J. Leibrich, W. Rosenkranz, and K.-D. Kammeyer, “Optical biasing in direct detection optical-OFDM for improving receiver sensitivity,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2010, pp. 1–3.

J. V. Hoyningen-Huene, J. Leibrich, A. Ali, and W. Rosenkranz, “Constant envelope optical OFDM for improved nonlinear and phase noise tolerance,” in Optical Fiber Communication Conf., 2011, OWE3.

Alves, T. M.

J. A. Silva, T. M. Alves, A. Cartaxo, and M. E. Segatto, “Experimental demonstration of a direct-detection constant envelope OFDM system,” in Signal Processing in Photonic Communications, 2010, SPThB2.

Arbab, V. R.

Armstrong, J.

B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol., vol. 26, pp. 196–203, 2008.
[CrossRef]

J. Armstrong, “Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering,” Electron. Lett., vol. 38, p. 246, 2002.
[CrossRef]

A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for optical dispersion compensation,” in Optical Fiber Communication Conf., 2007, OTuA4.

Cao, Z.

Z. Dong, Z. Cao, J. Lu, Y. Li, L. Chen, and  S. Wen, “Transmission performance of optical OFDM signals with low peak-to-average power ratio by a phase modulator,” Opt. Commun., vol. 286, pp. 4194–4197, 2009Please check last author name in Ref. [20]..
[CrossRef]

Cartaxo, A.

J. A. Silva, T. M. Alves, A. Cartaxo, and M. E. Segatto, “Experimental demonstration of a direct-detection constant envelope OFDM system,” in Signal Processing in Photonic Communications, 2010, SPThB2.

Chang, G.-k.

Chen, L.

Z. Dong, Z. Cao, J. Lu, Y. Li, L. Chen, and  S. Wen, “Transmission performance of optical OFDM signals with low peak-to-average power ratio by a phase modulator,” Opt. Commun., vol. 286, pp. 4194–4197, 2009Please check last author name in Ref. [20]..
[CrossRef]

Chi, S.

Christen, L. C.

Chung, C.-D.

C.-D. Chung, “Spectral precoding for constant-envelope OFDM,” IEEE Trans. Commun., vol. 58, pp. 555–567, 2010.
[CrossRef]

Coura, D. J. C.

D. J. C. Coura, J. A. L. Silva, and M. E. V. Segatto, “A bandwidth scalable OFDM passive optical network for future access network,” Photonic Network Commun., vol. 6, pp. 409–416, 2009.
[CrossRef]

Djordjevic, I.

W. Shieh and I. Djordjevic, OFDM for Optical Communications. Academic Press, 2009.

Dong, Z.

Z. Dong, Z. Cao, J. Lu, Y. Li, L. Chen, and  S. Wen, “Transmission performance of optical OFDM signals with low peak-to-average power ratio by a phase modulator,” Opt. Commun., vol. 286, pp. 4194–4197, 2009Please check last author name in Ref. [20]..
[CrossRef]

Du, L. B.

B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “100 Gbit/s transmission using single-band direct-detection optical OFDM,” in Optical Fiber Communication Conf., 2009.

Fan, S.-H.

Feng, K.-M.

Geile, M.

S. C. Thompson, A. U. Ahmedt, J. G. Proakis, J. R. Zeidler, and M. Geile, “Constant envelope OFDM,” IEEE Trans. Commun., vol. 56, pp. 1300–1312, 2008.
[CrossRef]

Giacoumidis, E.

Giddings, R. P.

Han, S. H.

S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun., vol. 2, pp. 56–65, 2005.

Hoyningen-Huene, J. V.

J. V. Hoyningen-Huene, J. Leibrich, A. Ali, and W. Rosenkranz, “Constant envelope optical OFDM for improved nonlinear and phase noise tolerance,” in Optical Fiber Communication Conf., 2011, OWE3.

Hugues-Salas, E.

Jansen, S. L.

S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF,” J. Lightwave Technol., vol. 27, pp. 177–188, 2009.
[CrossRef]

S. L. Jansen, I. Morita, T. C. W Schenk, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol., vol. 11, pp. 6–11, 2008.
[CrossRef]

S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, “20-Gb/s OFDM transmission over 4160-km SSMF enabled by RF-pilot tone phase noise compensation,” in Optical Fiber Communication Conf., 2007, PDP15.

Jin, X. Q.

Kammeyer, K.-D.

J. Leibrich, A. Ali, H. Paul, W. Rosenkranz, and K.-D. Kammeyer, “Impact of modulator bias on the OSNR requirement of direct-detection optical OFDM,” IEEE Photon. Technol. Lett., vol. 15, pp. 1033–1035, 2009.
[CrossRef]

A. Ali, H. Paul, J. Leibrich, W. Rosenkranz, and K.-D. Kammeyer, “Optical biasing in direct detection optical-OFDM for improving receiver sensitivity,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2010, pp. 1–3.

Lee, J. H.

S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun., vol. 2, pp. 56–65, 2005.

Leibrich, J.

J. Leibrich, A. Ali, H. Paul, W. Rosenkranz, and K.-D. Kammeyer, “Impact of modulator bias on the OSNR requirement of direct-detection optical OFDM,” IEEE Photon. Technol. Lett., vol. 15, pp. 1033–1035, 2009.
[CrossRef]

A. Ali, H. Paul, J. Leibrich, W. Rosenkranz, and K.-D. Kammeyer, “Optical biasing in direct detection optical-OFDM for improving receiver sensitivity,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2010, pp. 1–3.

J. V. Hoyningen-Huene, J. Leibrich, A. Ali, and W. Rosenkranz, “Constant envelope optical OFDM for improved nonlinear and phase noise tolerance,” in Optical Fiber Communication Conf., 2011, OWE3.

Li, Y.

Z. Dong, Z. Cao, J. Lu, Y. Li, L. Chen, and  S. Wen, “Transmission performance of optical OFDM signals with low peak-to-average power ratio by a phase modulator,” Opt. Commun., vol. 286, pp. 4194–4197, 2009Please check last author name in Ref. [20]..
[CrossRef]

Lima, M.

A. Abdalla, M. Lima, and A. Teixeira, “Reduced bandwidth transmitter and simple detection scheme for improved constant envelope OFDM,” Electron. Lett., vol. 47, pp. 391–392, 2011.
[CrossRef]

Lowery, A. J.

B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol., vol. 26, pp. 196–203, 2008.
[CrossRef]

A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for optical dispersion compensation,” in Optical Fiber Communication Conf., 2007, OTuA4.

B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “100 Gbit/s transmission using single-band direct-detection optical OFDM,” in Optical Fiber Communication Conf., 2009.

Lu, J.

Z. Dong, Z. Cao, J. Lu, Y. Li, L. Chen, and  S. Wen, “Transmission performance of optical OFDM signals with low peak-to-average power ratio by a phase modulator,” Opt. Commun., vol. 286, pp. 4194–4197, 2009Please check last author name in Ref. [20]..
[CrossRef]

Morita, I.

S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF,” J. Lightwave Technol., vol. 27, pp. 177–188, 2009.
[CrossRef]

S. L. Jansen, I. Morita, T. C. W Schenk, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol., vol. 11, pp. 6–11, 2008.
[CrossRef]

S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, “20-Gb/s OFDM transmission over 4160-km SSMF enabled by RF-pilot tone phase noise compensation,” in Optical Fiber Communication Conf., 2007, PDP15.

Paul, H.

J. Leibrich, A. Ali, H. Paul, W. Rosenkranz, and K.-D. Kammeyer, “Impact of modulator bias on the OSNR requirement of direct-detection optical OFDM,” IEEE Photon. Technol. Lett., vol. 15, pp. 1033–1035, 2009.
[CrossRef]

A. Ali, H. Paul, J. Leibrich, W. Rosenkranz, and K.-D. Kammeyer, “Optical biasing in direct detection optical-OFDM for improving receiver sensitivity,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2010, pp. 1–3.

Peng, W.-R.

Presad, R.

R. van Nee and R. Presad, OFDM for Wireless Multimedia Communications. Artech House, 2000.

Proakis, J. G.

S. C. Thompson, A. U. Ahmedt, J. G. Proakis, J. R. Zeidler, and M. Geile, “Constant envelope OFDM,” IEEE Trans. Commun., vol. 56, pp. 1300–1312, 2008.
[CrossRef]

S. C. Thompson, A. U. Ahmedt, J. G. Proakis, and J. R. Zeidler, “Constant envelope OFDM phase modulation: spectral containment, signal space properties and performance,” in IEEE Military Communications Conf., 2004, pp. 1129–1135.

Rosenkranz, W.

J. Leibrich, A. Ali, H. Paul, W. Rosenkranz, and K.-D. Kammeyer, “Impact of modulator bias on the OSNR requirement of direct-detection optical OFDM,” IEEE Photon. Technol. Lett., vol. 15, pp. 1033–1035, 2009.
[CrossRef]

A. Ali, H. Paul, J. Leibrich, W. Rosenkranz, and K.-D. Kammeyer, “Optical biasing in direct detection optical-OFDM for improving receiver sensitivity,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2010, pp. 1–3.

J. V. Hoyningen-Huene, J. Leibrich, A. Ali, and W. Rosenkranz, “Constant envelope optical OFDM for improved nonlinear and phase noise tolerance,” in Optical Fiber Communication Conf., 2011, OWE3.

Schenk, T. C. W

S. L. Jansen, I. Morita, T. C. W Schenk, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol., vol. 11, pp. 6–11, 2008.
[CrossRef]

Schenk, T. C. W.

Schmidt, B. J. C.

B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol., vol. 26, pp. 196–203, 2008.
[CrossRef]

B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “100 Gbit/s transmission using single-band direct-detection optical OFDM,” in Optical Fiber Communication Conf., 2009.

Segatto, M. E.

J. A. Silva, T. M. Alves, A. Cartaxo, and M. E. Segatto, “Experimental demonstration of a direct-detection constant envelope OFDM system,” in Signal Processing in Photonic Communications, 2010, SPThB2.

Segatto, M. E. V.

D. J. C. Coura, J. A. L. Silva, and M. E. V. Segatto, “A bandwidth scalable OFDM passive optical network for future access network,” Photonic Network Commun., vol. 6, pp. 409–416, 2009.
[CrossRef]

Shamee, B.

Shieh, W.

W. Shieh and I. Djordjevic, OFDM for Optical Communications. Academic Press, 2009.

Silva, J. A.

J. A. Silva, T. M. Alves, A. Cartaxo, and M. E. Segatto, “Experimental demonstration of a direct-detection constant envelope OFDM system,” in Signal Processing in Photonic Communications, 2010, SPThB2.

Silva, J. A. L.

D. J. C. Coura, J. A. L. Silva, and M. E. V. Segatto, “A bandwidth scalable OFDM passive optical network for future access network,” Photonic Network Commun., vol. 6, pp. 409–416, 2009.
[CrossRef]

Takeda, N.

S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF,” J. Lightwave Technol., vol. 27, pp. 177–188, 2009.
[CrossRef]

S. L. Jansen, I. Morita, T. C. W Schenk, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol., vol. 11, pp. 6–11, 2008.
[CrossRef]

S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, “20-Gb/s OFDM transmission over 4160-km SSMF enabled by RF-pilot tone phase noise compensation,” in Optical Fiber Communication Conf., 2007, PDP15.

Tanaka, H.

S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF,” J. Lightwave Technol., vol. 27, pp. 177–188, 2009.
[CrossRef]

S. L. Jansen, I. Morita, T. C. W Schenk, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol., vol. 11, pp. 6–11, 2008.
[CrossRef]

S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, “20-Gb/s OFDM transmission over 4160-km SSMF enabled by RF-pilot tone phase noise compensation,” in Optical Fiber Communication Conf., 2007, PDP15.

Tang, J. M.

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25 Gb/s real-time optical OFDM transceiver supporting 25 km SMF end-to-end transmission,” Opt. Express, vol. 18, pp. 5541–5555, 2010.
[CrossRef] [PubMed]

X. Zheng and J. M. Tang, “Phase modulation enabled relaxation of DAC/ADC requirements and optical OFDM performance improvement over SMF-based IMDD systems,” in 36th European Conf. and Exhibition on Optical Communication, 2010, pp. 1–3.

Teixeira, A.

A. Abdalla, M. Lima, and A. Teixeira, “Reduced bandwidth transmitter and simple detection scheme for improved constant envelope OFDM,” Electron. Lett., vol. 47, pp. 391–392, 2011.
[CrossRef]

Thompson, S. C.

S. C. Thompson, A. U. Ahmedt, J. G. Proakis, J. R. Zeidler, and M. Geile, “Constant envelope OFDM,” IEEE Trans. Commun., vol. 56, pp. 1300–1312, 2008.
[CrossRef]

S. C. Thompson, A. U. Ahmedt, J. G. Proakis, and J. R. Zeidler, “Constant envelope OFDM phase modulation: spectral containment, signal space properties and performance,” in IEEE Military Communications Conf., 2004, pp. 1129–1135.

van Nee, R.

R. van Nee and R. Presad, OFDM for Wireless Multimedia Communications. Artech House, 2000.

Wei, J. L.

Wen,  S.

Z. Dong, Z. Cao, J. Lu, Y. Li, L. Chen, and  S. Wen, “Transmission performance of optical OFDM signals with low peak-to-average power ratio by a phase modulator,” Opt. Commun., vol. 286, pp. 4194–4197, 2009Please check last author name in Ref. [20]..
[CrossRef]

Willner, A. E.

Wu, X.

Yang, J.-Y.

Yu, J.

Zan, Z.

B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “100 Gbit/s transmission using single-band direct-detection optical OFDM,” in Optical Fiber Communication Conf., 2009.

Zeidler, J. R.

S. C. Thompson, A. U. Ahmedt, J. G. Proakis, J. R. Zeidler, and M. Geile, “Constant envelope OFDM,” IEEE Trans. Commun., vol. 56, pp. 1300–1312, 2008.
[CrossRef]

S. C. Thompson, A. U. Ahmedt, J. G. Proakis, and J. R. Zeidler, “Constant envelope OFDM phase modulation: spectral containment, signal space properties and performance,” in IEEE Military Communications Conf., 2004, pp. 1129–1135.

Zheng, X.

X. Zheng and J. M. Tang, “Phase modulation enabled relaxation of DAC/ADC requirements and optical OFDM performance improvement over SMF-based IMDD systems,” in 36th European Conf. and Exhibition on Optical Communication, 2010, pp. 1–3.

J. Lightwave Technol. (1)

B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol., vol. 26, pp. 196–203, 2008.
[CrossRef]

Electron. Lett. (2)

J. Armstrong, “Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering,” Electron. Lett., vol. 38, p. 246, 2002.
[CrossRef]

A. Abdalla, M. Lima, and A. Teixeira, “Reduced bandwidth transmitter and simple detection scheme for improved constant envelope OFDM,” Electron. Lett., vol. 47, pp. 391–392, 2011.
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Leibrich, A. Ali, H. Paul, W. Rosenkranz, and K.-D. Kammeyer, “Impact of modulator bias on the OSNR requirement of direct-detection optical OFDM,” IEEE Photon. Technol. Lett., vol. 15, pp. 1033–1035, 2009.
[CrossRef]

IEEE Trans. Commun. (2)

S. C. Thompson, A. U. Ahmedt, J. G. Proakis, J. R. Zeidler, and M. Geile, “Constant envelope OFDM,” IEEE Trans. Commun., vol. 56, pp. 1300–1312, 2008.
[CrossRef]

C.-D. Chung, “Spectral precoding for constant-envelope OFDM,” IEEE Trans. Commun., vol. 58, pp. 555–567, 2010.
[CrossRef]

IEEE Wireless Commun. (1)

S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun., vol. 2, pp. 56–65, 2005.

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

Opt. Commun. (1)

Z. Dong, Z. Cao, J. Lu, Y. Li, L. Chen, and  S. Wen, “Transmission performance of optical OFDM signals with low peak-to-average power ratio by a phase modulator,” Opt. Commun., vol. 286, pp. 4194–4197, 2009Please check last author name in Ref. [20]..
[CrossRef]

Opt. Express (1)

Photonic Network Commun. (1)

D. J. C. Coura, J. A. L. Silva, and M. E. V. Segatto, “A bandwidth scalable OFDM passive optical network for future access network,” Photonic Network Commun., vol. 6, pp. 409–416, 2009.
[CrossRef]

Other (10)

B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “100 Gbit/s transmission using single-band direct-detection optical OFDM,” in Optical Fiber Communication Conf., 2009.

R. van Nee and R. Presad, OFDM for Wireless Multimedia Communications. Artech House, 2000.

W. Shieh and I. Djordjevic, OFDM for Optical Communications. Academic Press, 2009.

A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for optical dispersion compensation,” in Optical Fiber Communication Conf., 2007, OTuA4.

S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, “20-Gb/s OFDM transmission over 4160-km SSMF enabled by RF-pilot tone phase noise compensation,” in Optical Fiber Communication Conf., 2007, PDP15.

J. V. Hoyningen-Huene, J. Leibrich, A. Ali, and W. Rosenkranz, “Constant envelope optical OFDM for improved nonlinear and phase noise tolerance,” in Optical Fiber Communication Conf., 2011, OWE3.

S. C. Thompson, A. U. Ahmedt, J. G. Proakis, and J. R. Zeidler, “Constant envelope OFDM phase modulation: spectral containment, signal space properties and performance,” in IEEE Military Communications Conf., 2004, pp. 1129–1135.

A. Ali, H. Paul, J. Leibrich, W. Rosenkranz, and K.-D. Kammeyer, “Optical biasing in direct detection optical-OFDM for improving receiver sensitivity,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2010, pp. 1–3.

J. A. Silva, T. M. Alves, A. Cartaxo, and M. E. Segatto, “Experimental demonstration of a direct-detection constant envelope OFDM system,” in Signal Processing in Photonic Communications, 2010, SPThB2.

X. Zheng and J. M. Tang, “Phase modulation enabled relaxation of DAC/ADC requirements and optical OFDM performance improvement over SMF-based IMDD systems,” in 36th European Conf. and Exhibition on Optical Communication, 2010, pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(Color online) Power spectrum of conventional OFDM and CE-OFDM signals generated with Ns=64 data subcarriers mapped on 16-QAM.

Fig. 2
Fig. 2

(Color online) BER versus SNR performance of the simulated CE-OFDM system over AWGN channels. (N=2048 IFFT/FFT size, Ns=1023 subcarriers, 16-QAM subcarrier modulation).

Fig. 3
Fig. 3

(Color online) DDO-CE-OFDM system model.

Fig. 4
Fig. 4

(Color online) Required OSNR for BER=103 as function of the CSPR.

Fig. 5
Fig. 5

(Color online) Mean PAPR along link distance for common DDO-OFDM and different electrical phase modulation index 2πh of the proposed DDO-CE-OFDM.

Fig. 6
Fig. 6

(Color online) System performance after 80 km of SSMF. (a) OSNR = 15 dB, and (b) OSNR = 20 dB.

Fig. 7
Fig. 7

(Color online) System performance after 160 km of SSMF. (a) OSNR = 15 dB, and (b) OSNR = 20 dB.

Fig. 8
Fig. 8

(Color online) System performance after 240 km of SSMF. (a) OSNR = 15 dB, and (b) OSNR = 20 dB.

Fig. 9
Fig. 9

(Color online) System performance after 960 km of SSMF with OSNR = 25 dB.

Fig. 10
Fig. 10

(Color online) BER as a function of the OSNR after nonlinear propagation along 960 km of SSMF.

Tables (1)

Tables Icon

Table I Electrical Parameters of the DDO-CE-OFDM System

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

s(t)={Aejϕ(t)ej2πfct}=Acos[2πfct+ϕ(t)],
ϕ(t)=θn+2πhCNx(t),
BER2M1Mlog2MQ2πh6log2MM21SNR,
0,X[1],X[2],,X[Ns],0,X*[Ns],,X*[2],X*[1],
CSPR[dB]=10   log10PcPin,