Abstract

New reconfigurable optical add–drop (ROADM) architectures based on rapidly tunable transponders and wavelength selective switches are being actively studied in the Defense Advanced Research Projects Agency (DARPA) core optical networks project and elsewhere. They are making new optical network architectures possible, and could change optical network cost structures. This paper focuses on two principal issues arising from these new designs: (i) What should be the relationships between the routing, wavelength assignment, transponder placement, and restoration planning functions for these networks? (ii) How should the new cost structures affect their design? We show for a representative large core network employing shared mesh restoration to offer dynamic wavelength services that integrating these functions and dealing with trade-offs between them using a cost-based methodology can significantly reduce total network cost when compared with non-integrated methods or methods that focus on optimizing specific physical metrics such as wavelength mileage or regenerator counts.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Simmons, Optical Network Planning and Design. Springer, New York, 2008.
  2. H. Zang, P. Jui, and B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength routed optical networks,” Opt. Netw. Mag., vol. 1, no. 1, pp. 47–60, Jan.2000.
  3. J. Strand, “Optical network architecture evolution,” in Optical Fiber Telecommunications IV: Systems and Impairments, I. P. Kaminow and T. Li, Eds. Academic Press, San Diego, 2002, pp. 57–154.
  4. W. D. Grover, Mesh-Based Survivable Networks: Options and Strategies for Optical, MPLS, SONET, and ATM Networking. Prentice Hall, Upper Saddle River, NJ, 2004.
  5. J.-P. Vasseur, M. Pickavet, and P. Demeester, Network Recovery: Protection and Restoration of Optical, SONET-SDH, IP and MPLS. Morgan Kaufmann, San Francisco, 2004.
  6. M. D. Feuer, D. C. Kilper, and S. L. Woodward, “ROADMs and their system applications,” in Optical Fiber Telecommunications VB: Systems and Networks, I. P. Kaminow, T. Li, and A. E. Willner, Eds. Academic Press, 2008, pp. 293–344.
  7. S. Gringeri, B. Basch, V. Shukla, and R. Egorov, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, July2010.
    [CrossRef]
  8. A. L. Chiu, G. Choudhury, G. Clapp, R. D. Doverspike, J. W. Gannett, J. G. Klincewicz, R. A. Skoog, J. Strand, A. Von Lehmen, and D. Xu, “Network design and architectures for highly dynamic next-generation IP-over-optical long distance networks,” J. Lightwave Technol., vol. 27, no. 12, pp. 1878–1890, June2009.
    [CrossRef]
  9. http://www.darpa.mil/sto/programs/coronet/ (accessed 12 August 2010).
  10. A. L. Chiu, G. Choudhury, M. D. Feuer, J. L. Strand, and S. L. Woodward, “Integrated restoration for next-generation IP-over-optical networks,” J. Lightwave Technol., vol. 29, no. 2, pp. 916–924, Feb.2011.
    [CrossRef]
  11. A. L. Chiu, G. Choudhury, G. Clapp, R. D. Doverspike, M. D. Feuer, J. G. Klincewicz, J. M. Simmons, R. A. Skoog, J. Strand, A. Von Lehmen, and S. L. Woodward, “Architectures and protocols for capacity-efficient, highly-dynamic and highly-resilient core networks [Invited],” J. Opt. Commun. Netw., vol. 4, no. 1, pp. 1–15, Jan.2012.
    [CrossRef]
  12. Sample Optical Network Topology Files [Online]. Available: http://www.monarchna.com/topology.html (accessed 1/5/2012).
  13. A. Chiu, R. Doverspike, G. Li, and J. Strand, “Restoration signaling protocol design for next-generation optical network,” in Proc. of Optical Fiber Conf. (OFC 2009), San Diego, CA, 2009.
  14. G. Li, A. Chiu, and J. Strand, “Resilience design in all-optical ULH networks,” J. Opt. Netw., vol. 5, no. 8, pp. 625–636, Oct.2006.
    [CrossRef]
  15. J. Strand and A. Chiu, “Realizing the advantages of optical reconfigurability and restoration with integrated optical cross-connects,” J. Lightwave Technol., vol. 21, no. 11, pp. 2871–2882, Nov.2003Please provide page range in Ref. [15]..
    [CrossRef]
  16. J. Strand and A. Chiu, “Impairments and other constraints on optical layer routing,” IETF RFC 4054, May2006.
  17. N. McKeown, “How should the Internet evolve?” presented at the Kailath Symposium, Nov. 2010, Stanford University [Online]. Available: http://tiny-tera.stanford.edu/ nickm/talks/Kailath%20Symposium%20Nov%202010.ppt.
  18. R. Bhandari, Survivable Networks: Algorithms for Diverse Routing. Springer, New York, 1999, pp. 175–183.
  19. J. Y. Yen, “Finding the K shortest loopless paths in a network,” Manage. Sci., vol. 17, pp. 712–716, 1971.
    [CrossRef]

2012 (1)

2011 (1)

2010 (1)

S. Gringeri, B. Basch, V. Shukla, and R. Egorov, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, July2010.
[CrossRef]

2009 (1)

2006 (1)

2003 (1)

2000 (1)

H. Zang, P. Jui, and B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength routed optical networks,” Opt. Netw. Mag., vol. 1, no. 1, pp. 47–60, Jan.2000.

1971 (1)

J. Y. Yen, “Finding the K shortest loopless paths in a network,” Manage. Sci., vol. 17, pp. 712–716, 1971.
[CrossRef]

Basch, B.

S. Gringeri, B. Basch, V. Shukla, and R. Egorov, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, July2010.
[CrossRef]

Bhandari, R.

R. Bhandari, Survivable Networks: Algorithms for Diverse Routing. Springer, New York, 1999, pp. 175–183.

Chiu, A.

G. Li, A. Chiu, and J. Strand, “Resilience design in all-optical ULH networks,” J. Opt. Netw., vol. 5, no. 8, pp. 625–636, Oct.2006.
[CrossRef]

J. Strand and A. Chiu, “Realizing the advantages of optical reconfigurability and restoration with integrated optical cross-connects,” J. Lightwave Technol., vol. 21, no. 11, pp. 2871–2882, Nov.2003Please provide page range in Ref. [15]..
[CrossRef]

J. Strand and A. Chiu, “Impairments and other constraints on optical layer routing,” IETF RFC 4054, May2006.

A. Chiu, R. Doverspike, G. Li, and J. Strand, “Restoration signaling protocol design for next-generation optical network,” in Proc. of Optical Fiber Conf. (OFC 2009), San Diego, CA, 2009.

Chiu, A. L.

Choudhury, G.

Clapp, G.

Demeester, P.

J.-P. Vasseur, M. Pickavet, and P. Demeester, Network Recovery: Protection and Restoration of Optical, SONET-SDH, IP and MPLS. Morgan Kaufmann, San Francisco, 2004.

Doverspike, R.

A. Chiu, R. Doverspike, G. Li, and J. Strand, “Restoration signaling protocol design for next-generation optical network,” in Proc. of Optical Fiber Conf. (OFC 2009), San Diego, CA, 2009.

Doverspike, R. D.

Egorov, R.

S. Gringeri, B. Basch, V. Shukla, and R. Egorov, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, July2010.
[CrossRef]

Feuer, M. D.

Feuer, M. D.

A. L. Chiu, G. Choudhury, M. D. Feuer, J. L. Strand, and S. L. Woodward, “Integrated restoration for next-generation IP-over-optical networks,” J. Lightwave Technol., vol. 29, no. 2, pp. 916–924, Feb.2011.
[CrossRef]

M. D. Feuer, D. C. Kilper, and S. L. Woodward, “ROADMs and their system applications,” in Optical Fiber Telecommunications VB: Systems and Networks, I. P. Kaminow, T. Li, and A. E. Willner, Eds. Academic Press, 2008, pp. 293–344.

Gannett, J. W.

Gringeri, S.

S. Gringeri, B. Basch, V. Shukla, and R. Egorov, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, July2010.
[CrossRef]

Grover, W. D.

W. D. Grover, Mesh-Based Survivable Networks: Options and Strategies for Optical, MPLS, SONET, and ATM Networking. Prentice Hall, Upper Saddle River, NJ, 2004.

Jui, P.

H. Zang, P. Jui, and B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength routed optical networks,” Opt. Netw. Mag., vol. 1, no. 1, pp. 47–60, Jan.2000.

Kilper, D. C.

M. D. Feuer, D. C. Kilper, and S. L. Woodward, “ROADMs and their system applications,” in Optical Fiber Telecommunications VB: Systems and Networks, I. P. Kaminow, T. Li, and A. E. Willner, Eds. Academic Press, 2008, pp. 293–344.

Klincewicz, J. G.

Li, G.

G. Li, A. Chiu, and J. Strand, “Resilience design in all-optical ULH networks,” J. Opt. Netw., vol. 5, no. 8, pp. 625–636, Oct.2006.
[CrossRef]

A. Chiu, R. Doverspike, G. Li, and J. Strand, “Restoration signaling protocol design for next-generation optical network,” in Proc. of Optical Fiber Conf. (OFC 2009), San Diego, CA, 2009.

McKeown, N.

N. McKeown, “How should the Internet evolve?” presented at the Kailath Symposium, Nov. 2010, Stanford University [Online]. Available: http://tiny-tera.stanford.edu/ nickm/talks/Kailath%20Symposium%20Nov%202010.ppt.

Mukherjee, B.

H. Zang, P. Jui, and B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength routed optical networks,” Opt. Netw. Mag., vol. 1, no. 1, pp. 47–60, Jan.2000.

Pickavet, M.

J.-P. Vasseur, M. Pickavet, and P. Demeester, Network Recovery: Protection and Restoration of Optical, SONET-SDH, IP and MPLS. Morgan Kaufmann, San Francisco, 2004.

Shukla, V.

S. Gringeri, B. Basch, V. Shukla, and R. Egorov, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, July2010.
[CrossRef]

Simmons, J. M.

Skoog, R. A.

Strand, J.

A. L. Chiu, G. Choudhury, G. Clapp, R. D. Doverspike, M. D. Feuer, J. G. Klincewicz, J. M. Simmons, R. A. Skoog, J. Strand, A. Von Lehmen, and S. L. Woodward, “Architectures and protocols for capacity-efficient, highly-dynamic and highly-resilient core networks [Invited],” J. Opt. Commun. Netw., vol. 4, no. 1, pp. 1–15, Jan.2012.
[CrossRef]

A. L. Chiu, G. Choudhury, G. Clapp, R. D. Doverspike, J. W. Gannett, J. G. Klincewicz, R. A. Skoog, J. Strand, A. Von Lehmen, and D. Xu, “Network design and architectures for highly dynamic next-generation IP-over-optical long distance networks,” J. Lightwave Technol., vol. 27, no. 12, pp. 1878–1890, June2009.
[CrossRef]

G. Li, A. Chiu, and J. Strand, “Resilience design in all-optical ULH networks,” J. Opt. Netw., vol. 5, no. 8, pp. 625–636, Oct.2006.
[CrossRef]

J. Strand and A. Chiu, “Realizing the advantages of optical reconfigurability and restoration with integrated optical cross-connects,” J. Lightwave Technol., vol. 21, no. 11, pp. 2871–2882, Nov.2003Please provide page range in Ref. [15]..
[CrossRef]

J. Strand, “Optical network architecture evolution,” in Optical Fiber Telecommunications IV: Systems and Impairments, I. P. Kaminow and T. Li, Eds. Academic Press, San Diego, 2002, pp. 57–154.

A. Chiu, R. Doverspike, G. Li, and J. Strand, “Restoration signaling protocol design for next-generation optical network,” in Proc. of Optical Fiber Conf. (OFC 2009), San Diego, CA, 2009.

J. Strand and A. Chiu, “Impairments and other constraints on optical layer routing,” IETF RFC 4054, May2006.

Strand, J. L.

Vasseur, J.-P.

J.-P. Vasseur, M. Pickavet, and P. Demeester, Network Recovery: Protection and Restoration of Optical, SONET-SDH, IP and MPLS. Morgan Kaufmann, San Francisco, 2004.

Von Lehmen, A.

Woodward, S. L.

Xu, D.

Yen, J. Y.

J. Y. Yen, “Finding the K shortest loopless paths in a network,” Manage. Sci., vol. 17, pp. 712–716, 1971.
[CrossRef]

Zang, H.

H. Zang, P. Jui, and B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength routed optical networks,” Opt. Netw. Mag., vol. 1, no. 1, pp. 47–60, Jan.2000.

IEEE Commun. Mag. (1)

S. Gringeri, B. Basch, V. Shukla, and R. Egorov, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, July2010.
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

J. Opt. Netw. (1)

Manage. Sci. (1)

J. Y. Yen, “Finding the K shortest loopless paths in a network,” Manage. Sci., vol. 17, pp. 712–716, 1971.
[CrossRef]

Opt. Netw. Mag. (1)

H. Zang, P. Jui, and B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength routed optical networks,” Opt. Netw. Mag., vol. 1, no. 1, pp. 47–60, Jan.2000.

Other (11)

J. Strand, “Optical network architecture evolution,” in Optical Fiber Telecommunications IV: Systems and Impairments, I. P. Kaminow and T. Li, Eds. Academic Press, San Diego, 2002, pp. 57–154.

W. D. Grover, Mesh-Based Survivable Networks: Options and Strategies for Optical, MPLS, SONET, and ATM Networking. Prentice Hall, Upper Saddle River, NJ, 2004.

J.-P. Vasseur, M. Pickavet, and P. Demeester, Network Recovery: Protection and Restoration of Optical, SONET-SDH, IP and MPLS. Morgan Kaufmann, San Francisco, 2004.

M. D. Feuer, D. C. Kilper, and S. L. Woodward, “ROADMs and their system applications,” in Optical Fiber Telecommunications VB: Systems and Networks, I. P. Kaminow, T. Li, and A. E. Willner, Eds. Academic Press, 2008, pp. 293–344.

Sample Optical Network Topology Files [Online]. Available: http://www.monarchna.com/topology.html (accessed 1/5/2012).

A. Chiu, R. Doverspike, G. Li, and J. Strand, “Restoration signaling protocol design for next-generation optical network,” in Proc. of Optical Fiber Conf. (OFC 2009), San Diego, CA, 2009.

J. M. Simmons, Optical Network Planning and Design. Springer, New York, 2008.

http://www.darpa.mil/sto/programs/coronet/ (accessed 12 August 2010).

J. Strand and A. Chiu, “Impairments and other constraints on optical layer routing,” IETF RFC 4054, May2006.

N. McKeown, “How should the Internet evolve?” presented at the Kailath Symposium, Nov. 2010, Stanford University [Online]. Available: http://tiny-tera.stanford.edu/ nickm/talks/Kailath%20Symposium%20Nov%202010.ppt.

R. Bhandari, Survivable Networks: Algorithms for Diverse Routing. Springer, New York, 1999, pp. 175–183.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) All-optical switch (AOS) architecture: AOS = ROADM + FXC.

Fig. 2
Fig. 2

(Color online) Blocking for alternative-path selection strategies (load normalized so that the non-blocking threshold for min path cost = 100).

Fig. 3
Fig. 3

(Color online) Wavelength-km required for each strategy (unconstrained capacity: WL-km normalized so that the min path cost total = 100).

Fig. 4
Fig. 4

(Color online) Transponder strategy comparison (#TDR normalized so that min TDR cost total = 100).

Fig. 5
Fig. 5

(Color online) Wavelength assignment strategy comparison (#TDR and total cost normalized so that min TDR cost = 100).

Tables (1)

Tables Icon

Table I Transponder Placement Strategies (normalized state independent TDR = 100)