Abstract

In this paper, a code division multiple access (CDMA) enabled dynamic bandwidth allocation (CDBA) algorithm is proposed for the upstream access scheme for Ethernet passive optical networks. The CDBA algorithm is based on two major components. The first is the parallel transmission capacity offered by CDMA according to the quality-of-service requirement, and the second is the scheduling algorithm, which uses the round robin technique. The CDBA algorithm is presented and its cycle time is derived. The performance of the proposed algorithm is studied, assuming that the traffic load is symmetric and that the packet arrivals are Poisson distributed. Extensive simulations have been performed in order to compare the proposed CDBA algorithm with existing dynamic bandwidth allocation algorithms that achieve good bandwidth utilization by use of polling schemes. It is shown that the CDBA algorithm can significantly improve the network performance in terms of packet delay, throughput, and queue size management as compared with the well-known interleaved polling with adaptive cycle time algorithm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Commun. Mag., vol. 40, no. 2, pp. 66–73, Feb.2002.
    [CrossRef]
  2. M. P. McGarry, M. Reisslein, and M. Maier, “Ethernet passive optical network architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol. 10, no. 3, pp. 46–60, 2008.
    [CrossRef]
  3. S. Hussain and X. Fernando, “EPON: an extensive review for up-to-date dynamic bandwidth allocation schemes,” in IEEE CCECE, 2008, pp. 511–516.
  4. G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, no. 1, pp. 89–107, Jan.2002.
    [CrossRef]
  5. B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, M. Gagnaire, and P. Demeester, “Analytical model for IPACT dynamic bandwidth allocation algorithm for EPONs,” J. Opt. Netw., vol. 6, no. 6, pp. 677–688, June2007.
    [CrossRef]
  6. K. Fouli, T. Berisa, and M. Maier, “Optical coding for enhanced real-time dynamic bandwidth allocation in passive optical networks,” J. Lightwave Technol., vol. 27, no. 23, pp. 5376–5384, Dec.2009.
    [CrossRef]
  7. Y. Nakahira, R. Watanabe, and M. Kashima, “Channel allocation to improve bandwidth utilization performance for CDMA-PONs,” in IEEE/OSA OFC/NFOEC, 2009, pp. 1–3.
  8. M. Gharaei, S. Cordette, C. Lepers, I. Fsaifes, and P. Gallion, “Multiple optical private network over EPON using optical CDMA technique,” in IEEE/OSA OFC/NFOEC, 2010, pp. 1–3.
  9. G.-C. Yang and W. C. Kwong, “Prime codes with applications to CDMA optical and wireless networks,” in Artech House Mobile Communication Series. 2002.
  10. G.-C. Yang and W. C. Kwong, “Performance analysis of optical CDMA with prime codes,” Electron. Lett., vol. 31, no. 7, pp. 569–570, 1995.
    [CrossRef]
  11. W.-P. Chen, S.-W. Kau, W.-S. Hwang, and H.-T. Hu, “A sorted-based report DBA algorithm for EPON system,” IEEE ISDA, vol. 2, pp. 223–228, 2008.
  12. R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of fairness and discrimination for resource allocation in shared computer systems,” DEC Research Report TR-201, Sept.1984.
  13. N. A. M. Radzi, N. M. Din, M. H. Al-Mansoori, I. S. Mustafa, and S. K. Sadon, “Intelligent dynamic bandwidth allocation algorithm in upstream EPONs,” J. Opt. Commun. Netw., vol. 2, no. 3, pp. 148–158, Mar.2010.
    [CrossRef]

2010 (1)

2009 (1)

2008 (2)

W.-P. Chen, S.-W. Kau, W.-S. Hwang, and H.-T. Hu, “A sorted-based report DBA algorithm for EPON system,” IEEE ISDA, vol. 2, pp. 223–228, 2008.

M. P. McGarry, M. Reisslein, and M. Maier, “Ethernet passive optical network architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol. 10, no. 3, pp. 46–60, 2008.
[CrossRef]

2007 (1)

2002 (2)

G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Commun. Mag., vol. 40, no. 2, pp. 66–73, Feb.2002.
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, no. 1, pp. 89–107, Jan.2002.
[CrossRef]

1995 (1)

G.-C. Yang and W. C. Kwong, “Performance analysis of optical CDMA with prime codes,” Electron. Lett., vol. 31, no. 7, pp. 569–570, 1995.
[CrossRef]

Al-Mansoori, M. H.

Berisa, T.

Chen, W.-P.

W.-P. Chen, S.-W. Kau, W.-S. Hwang, and H.-T. Hu, “A sorted-based report DBA algorithm for EPON system,” IEEE ISDA, vol. 2, pp. 223–228, 2008.

Chiu, D.

R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of fairness and discrimination for resource allocation in shared computer systems,” DEC Research Report TR-201, Sept.1984.

Colle, D.

Cordette, S.

M. Gharaei, S. Cordette, C. Lepers, I. Fsaifes, and P. Gallion, “Multiple optical private network over EPON using optical CDMA technique,” in IEEE/OSA OFC/NFOEC, 2010, pp. 1–3.

Demeester, P.

Din, N. M.

Fernando, X.

S. Hussain and X. Fernando, “EPON: an extensive review for up-to-date dynamic bandwidth allocation schemes,” in IEEE CCECE, 2008, pp. 511–516.

Fouli, K.

Fsaifes, I.

M. Gharaei, S. Cordette, C. Lepers, I. Fsaifes, and P. Gallion, “Multiple optical private network over EPON using optical CDMA technique,” in IEEE/OSA OFC/NFOEC, 2010, pp. 1–3.

Gagnaire, M.

Gallion, P.

M. Gharaei, S. Cordette, C. Lepers, I. Fsaifes, and P. Gallion, “Multiple optical private network over EPON using optical CDMA technique,” in IEEE/OSA OFC/NFOEC, 2010, pp. 1–3.

Gharaei, M.

M. Gharaei, S. Cordette, C. Lepers, I. Fsaifes, and P. Gallion, “Multiple optical private network over EPON using optical CDMA technique,” in IEEE/OSA OFC/NFOEC, 2010, pp. 1–3.

Hawe, W.

R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of fairness and discrimination for resource allocation in shared computer systems,” DEC Research Report TR-201, Sept.1984.

Hu, H.-T.

W.-P. Chen, S.-W. Kau, W.-S. Hwang, and H.-T. Hu, “A sorted-based report DBA algorithm for EPON system,” IEEE ISDA, vol. 2, pp. 223–228, 2008.

Hussain, S.

S. Hussain and X. Fernando, “EPON: an extensive review for up-to-date dynamic bandwidth allocation schemes,” in IEEE CCECE, 2008, pp. 511–516.

Hwang, W.-S.

W.-P. Chen, S.-W. Kau, W.-S. Hwang, and H.-T. Hu, “A sorted-based report DBA algorithm for EPON system,” IEEE ISDA, vol. 2, pp. 223–228, 2008.

Jain, R.

R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of fairness and discrimination for resource allocation in shared computer systems,” DEC Research Report TR-201, Sept.1984.

Kashima, M.

Y. Nakahira, R. Watanabe, and M. Kashima, “Channel allocation to improve bandwidth utilization performance for CDMA-PONs,” in IEEE/OSA OFC/NFOEC, 2009, pp. 1–3.

Kau, S.-W.

W.-P. Chen, S.-W. Kau, W.-S. Hwang, and H.-T. Hu, “A sorted-based report DBA algorithm for EPON system,” IEEE ISDA, vol. 2, pp. 223–228, 2008.

Kramer, G.

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, no. 1, pp. 89–107, Jan.2002.
[CrossRef]

G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Commun. Mag., vol. 40, no. 2, pp. 66–73, Feb.2002.
[CrossRef]

Kwong, W. C.

G.-C. Yang and W. C. Kwong, “Performance analysis of optical CDMA with prime codes,” Electron. Lett., vol. 31, no. 7, pp. 569–570, 1995.
[CrossRef]

G.-C. Yang and W. C. Kwong, “Prime codes with applications to CDMA optical and wireless networks,” in Artech House Mobile Communication Series. 2002.

Lannoo, B.

Lepers, C.

M. Gharaei, S. Cordette, C. Lepers, I. Fsaifes, and P. Gallion, “Multiple optical private network over EPON using optical CDMA technique,” in IEEE/OSA OFC/NFOEC, 2010, pp. 1–3.

Maier, M.

K. Fouli, T. Berisa, and M. Maier, “Optical coding for enhanced real-time dynamic bandwidth allocation in passive optical networks,” J. Lightwave Technol., vol. 27, no. 23, pp. 5376–5384, Dec.2009.
[CrossRef]

M. P. McGarry, M. Reisslein, and M. Maier, “Ethernet passive optical network architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol. 10, no. 3, pp. 46–60, 2008.
[CrossRef]

McGarry, M. P.

M. P. McGarry, M. Reisslein, and M. Maier, “Ethernet passive optical network architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol. 10, no. 3, pp. 46–60, 2008.
[CrossRef]

Mukherjee, B.

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, no. 1, pp. 89–107, Jan.2002.
[CrossRef]

Mustafa, I. S.

Nakahira, Y.

Y. Nakahira, R. Watanabe, and M. Kashima, “Channel allocation to improve bandwidth utilization performance for CDMA-PONs,” in IEEE/OSA OFC/NFOEC, 2009, pp. 1–3.

Pesavento, G.

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, no. 1, pp. 89–107, Jan.2002.
[CrossRef]

G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Commun. Mag., vol. 40, no. 2, pp. 66–73, Feb.2002.
[CrossRef]

Pickavet, M.

Radzi, N. A. M.

Reisslein, M.

M. P. McGarry, M. Reisslein, and M. Maier, “Ethernet passive optical network architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol. 10, no. 3, pp. 46–60, 2008.
[CrossRef]

Sadon, S. K.

Verslegers, L.

Watanabe, R.

Y. Nakahira, R. Watanabe, and M. Kashima, “Channel allocation to improve bandwidth utilization performance for CDMA-PONs,” in IEEE/OSA OFC/NFOEC, 2009, pp. 1–3.

Yang, G.-C.

G.-C. Yang and W. C. Kwong, “Performance analysis of optical CDMA with prime codes,” Electron. Lett., vol. 31, no. 7, pp. 569–570, 1995.
[CrossRef]

G.-C. Yang and W. C. Kwong, “Prime codes with applications to CDMA optical and wireless networks,” in Artech House Mobile Communication Series. 2002.

Electron. Lett. (1)

G.-C. Yang and W. C. Kwong, “Performance analysis of optical CDMA with prime codes,” Electron. Lett., vol. 31, no. 7, pp. 569–570, 1995.
[CrossRef]

IEEE Commun. Mag. (1)

G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Commun. Mag., vol. 40, no. 2, pp. 66–73, Feb.2002.
[CrossRef]

IEEE Commun. Surv. Tutorials (1)

M. P. McGarry, M. Reisslein, and M. Maier, “Ethernet passive optical network architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol. 10, no. 3, pp. 46–60, 2008.
[CrossRef]

IEEE ISDA (1)

W.-P. Chen, S.-W. Kau, W.-S. Hwang, and H.-T. Hu, “A sorted-based report DBA algorithm for EPON system,” IEEE ISDA, vol. 2, pp. 223–228, 2008.

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (1)

J. Opt. Netw. (1)

Photonic Network Commun. (1)

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, no. 1, pp. 89–107, Jan.2002.
[CrossRef]

Other (5)

Y. Nakahira, R. Watanabe, and M. Kashima, “Channel allocation to improve bandwidth utilization performance for CDMA-PONs,” in IEEE/OSA OFC/NFOEC, 2009, pp. 1–3.

M. Gharaei, S. Cordette, C. Lepers, I. Fsaifes, and P. Gallion, “Multiple optical private network over EPON using optical CDMA technique,” in IEEE/OSA OFC/NFOEC, 2010, pp. 1–3.

G.-C. Yang and W. C. Kwong, “Prime codes with applications to CDMA optical and wireless networks,” in Artech House Mobile Communication Series. 2002.

R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of fairness and discrimination for resource allocation in shared computer systems,” DEC Research Report TR-201, Sept.1984.

S. Hussain and X. Fernando, “EPON: an extensive review for up-to-date dynamic bandwidth allocation schemes,” in IEEE CCECE, 2008, pp. 511–516.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

CDBA-based EPON architecture.

Fig. 2
Fig. 2

CDBA timing diagram as seen by the OLT: (a) for heavily loaded ONUs, (b) for lightly loaded ONUs.

Fig. 3
Fig. 3

The flowchart of the CDBA algorithm.

Fig. 4
Fig. 4

Mean delay versus QoS for different arrival rates for the two schemes.

Fig. 5
Fig. 5

The mean delay versus the normalized load for IPACT and CDBA with different QoSs.

Fig. 6
Fig. 6

The mean aggregate throughput rate of EPON for IPACT and CDBA with different QoSs.

Fig. 7
Fig. 7

The delay–throughput characteristic of EPON with CDBA for different QoSs.

Fig. 8
Fig. 8

The fairness index of both CDBA schemes for different QoS requirements.

Fig. 9
Fig. 9

The queue activity for a target ONU for different QoS requirements using scheme1 and scheme2.

Fig. 10
Fig. 10

The mean queue size for different QoS requirements for (a) scheme1, (b) scheme2.

Fig. 11
Fig. 11

The cycle time evolution traced at QoS = 28 dB and average arrival rate of 57.5 Mb/s for (a) scheme1, (b) scheme2.

Fig. 12
Fig. 12

The mean cycle time for several QoS requirements under IPACT and CDBA for (a) scheme1, (b) scheme2.

Tables (4)

Tables Icon

Table I Example of CDBA Algorithm for N = 5 , K = 3 Under Scheme1 Service Operation

Tables Icon

Table II Example of CDBA Algorithm for N = 5 , K = 4 Under Scheme2 Service Operation

Tables Icon

Table III Example of CDBA Algorithm for N = 5 , K = 4 Under Scheme2 Service Operation

Tables Icon

Table IV Simulation Parameters

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

SIR = α K ,
K = α SIR ,
T subcycle = B + B eth W max R U + 1 υ B req / R U + T guard ,
T cycle * = N min K , N K T subcycle + T ρ , if N mod min K , N K = 0 N T subcycle + T ρ , otherwise,
u = j K + i mod N + 1 .
i = j K + i N q q , j Z  and  N , K N * .
J max = q N K q , j Z  and  N , K N * .
J max = N .
J max = N K .
K = r 1 δ r 1 Z
N = r 2 δ r 2 Z .
N K = r 1 r 2 δ ,
δ = γ N K γ Z .
J max = N N K .
θ * = N M W max B / T cycle * = J max K W max B / T cycle * (bits/s),
M = 1 , for N mod K = 0 K / N K , for N mod ( N K ) = 0 K , otherwise.
M = number of subcycles × K number of shifted positions = J max × K N .
J max = N / K , for  N mod K = 0 N / N K , for  N mod N K = 0 N , otherwise .
θ u = M W max B / T cycle *  (bits/s),
M = 1 , for  N mod K = 0 K / N K , for  N mod N K = 0 K , otherwise.
θ H = N θ u = N M W max B / T cycle * = J max K W max B / T cycle * .
θ L = j 1 K + K W max B T cycle * = j K 1 W max B T cycle * .
T cycle = min { J , J max } × T subcycle + υ T ρ .
F = u = 1 N θ u 2 / N u = 1 N θ u 2 , θ u 0 ,
Q u s = Q u s 1 k u s W max + λ u B T cycle s s Z + , 1 k u s M ,
p m , n u = Pr Q u s = n | Q u s 1 = m .
p m , 0 u = a = 0 k u s W max m Pr A = a = a = 0 k u s W max m λ u B T cycle s a a ! e λ u B T cycle s ,
p m , n u = Pr A = k u s W max + n m = λ u B T cycle s k u s W max + n m k u s W max + n m ! e λ u B T cycle s ,
π ( u ) P ( u ) = π ( u ) , i { 0 , , C } π i ( u ) = 1 .
Q ̄ u = π u Q u T + Q 1 u + Q 2 u ,
W ¯ = u B Q ̄ u N W max λ u (s).
θ u = k ̄ u W max B / T ̄ cycle (bits/s).
θ = u θ u (bits/s).