Abstract

As Internet traffic is estimated to substantially grow in the near future, one of the most challenging issues will concern the reduction of its power requirement. For the core/transport section of the Internet, various network architectures can be considered, typically multi-layer architectures composed of an optical wavelength division multiplexing (WDM) transport layer under the classical electronic IP layer. Thus, we consider in this paper four architectures: basic IP over WDM with no optical switching, IP over synchronous digital hierarchy (SDH) over WDM, and IP over WDM with transparent or translucent switching. Energy efficiency in these architectures is expected to be enabled by optical switching technologies, mainly due to the significant reduction in the number of required optical/electronic/optical conversions. However, since optical signals are subject to relevant physical layer impairments when traversing core network devices, signal regeneration is often required, which has to be accomplished either at the electronic layer by routers/digital cross connects (DXCs) or directly at the optical layer through 3R-regenerators. Therefore, it is important to know which network architecture may provide the highest energy efficiency. In this paper we perform a comprehensive comparison between the four above-mentioned optical core network architectures, by performing energy assessment of the devices used at the transport layer of a telecom network and by developing an integer linear programming formulation for an energy-minimized and impairment-aware design of each of the considered architectures. We find that optical technology can enable power savings up to 60% with respect to classical IP-over-WDM architectures with no optical switching, but the best “optical” architecture is not univocal, and it is influenced by some crucial network parameters (connectivity, geographical extension, etc.).

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Tucker, R. Parthiban, J. Baliga, K. Hinton, R. Ayre, and W. Sorin, “Evolution of WDM optical IP networks: a cost and energy perspective,” J. Lightwave Technol., vol. 27, pp. 243–252, 2009.
    [CrossRef]
  2. S. Huang, D. Seshadri, and R. Dutta, “Traffic grooming: a changing role in green optical networks,” in Proc. IEEE Global Telecommunications Conf. (IEEE GLOBECOM 2009), pp. 1–6.
  3. M. Xia, M. Tornatore, Y. Zhang, P. Chowdhury, C. Martel, and B. Mukherjee, “Green provisioning for optical WDM networks,” IEEE J. Sel. Areas Quantum Electron., vol. 17, no. 2, pp. 437–445, Mar.–Apr.2011.
    [CrossRef]
  4. G. Shen and R. S. Tucker, “Energy-minimized design for IP over WDM networks,” J. Opt. Commun. Netw., vol. 1, pp. 176–186, 2009.
    [CrossRef]
  5. E. Yetginer and G. Rouskas, “Power efficient traffic grooming in optical WDM networks,” in Proc. IEEE Global Telecommunications Conf. (IEEE GLOBECOM 2009), pp. 1–6.
  6. L. Chiaraviglio, M. Mellia, and F. Neri, “Reducing power consumption in backbone networks,” in Proc. IEEE Int. Conf. Communications (IEEE ICC 2009), pp. 1–6.
  7. F. Idzikowski, S. Orlowski, C. Raack, H. Woesner, and A. Wolisz, “Saving energy in IP-over-WDM networks by switching off line cards in low-demand scenarios,” in Proc. IEEE Conf. Optical Network Design and Modeling (IEEE ONDM 2010), pp. 1–6.
  8. A. Coiro, M. Listanti, A. Valenti, and F. Matera, “Reducing power consumption in wavelength routed networks by selective switch off of optical links,” IEEE J. Sel. Top. Quantum Electron., vol. 17, pp. 428–436, 2011.
    [CrossRef]
  9. M. Caria, M. Chamania, and A. Jukan, “Trading IP routing stability for energy efficiency: a case for traffic offloading with optical bypass,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2011), pp. 1–6.
  10. A. Autenrieth, A. K. Tilwankar, C. M. Machuca, and J.-P. Elbers, “Power consumption analysis of opaque and transparent optical core networks (Invited),” in Proc. IEEE Int. Conf. Transparent Optical Networks (IEEE ICTON 2011), pp. 1–5.
  11. B. Puype, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Multilayer traffic engineering for energy efficiency,” Photonic Network Commun., vol. 21, pp. 127–140, 2011.
    [CrossRef]
  12. A. Tzanakaki, K. Katrinis, T. Politi, A. Stavdas, M. Pickavet, P. V. Daele, D. Simeonidou, M. J. O’Mahony, S. Aleksić, L. Wosinska, and P. Monti, “Dimensioning the future Pan-European optical network with energy efficiency considerations,” J. Opt. Commun. Netw., vol. 3, pp. 272–280, 2011.
    [CrossRef]
  13. F. Musumeci, F. Vismara, V. Grkovic, M. Tornatore, and A. Pattavina, “On the energy efficiency of optical transport with time driven switching,” in Proc. IEEE Int. Conf. Communications (IEEE ICC 2011), pp. 1–6.
  14. F. Idzikowski, “Power consumption of network elements in IP over WDM networks,” Tech. Rep., Telecommunication Networks Group (TKN), TU Berlin, Germany, 2009.
  15. Infinera Digital Line Module Product Data Sheet, 2010 [Online]. Available: http://www.infinera.com/pdfs/dtn/Infinera_DLM_Data_Sheet.pdf.
  16. Cisco CRS-1 Carrier Routing System 16-Slot Line Card Chassis System Description, 2011 [Online]. Available: http://www.cisco.com/en/US/docs/routers/crs/crs1/16_slot_lc/system_description/reference/guide/sysdsc_a.html.
  17. Infinera DTN™ Switched WDM System Product Brochure, 2010 [Online]. Available: http://www.infinera.com/pdfs/dtn/Infinera_DTN_Brochure.pdf.
  18. M. Murakami and K. Oda, “Power consumption analysis of optical cross-connect equipment for future large capacity optical networks,” in Proc. IEEE Int. Conf. Transparent Optical Networks (IEEE ICTON 2009), pp. 1–4.
  19. Cisco 40-Channel Single-Module ROADM Product Data Sheet, Release 9.1 of the Cisco ONS 15454 Multiservice Transport Platform (MSTP), 2010 [Online]. Available: http://www.cisco.com/en/US/prod/collateral/optical/ps5724/ps2006/data_sheet_c78-578552.html.
  20. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms and Applications. Prentice Hall, 1993.
  21. M. S. Savasini, P. Monti, M. Tacca, A. Fumagalli, and H. Waldman, “Regenerator placement with guaranteed connectivity in optical networks,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2007), pp. 1–6Please check the last author name in Ref. [21]..
  22. G. Rizzelli, F. Musumeci, M. Tornatore, G. Maier, and A. Pattavina, “Wavelength-aware translucent network design,” in Optical Fiber Communication Conf., 2011, OThAA2.
  23. M. Yannuzzi, M. Quagliotti, G. Maier, E. Marin-Tordera, X. Masip-Bruin, S. Sanchez-Lopez, J. Sole-Pareta, W. Erangoli, and G. Tamiri, “Performance of translucent optical networks under dynamic traffic and uncertain physical-layer information,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2009), pp. 1–6.
  24. Y. Miyao and H. Saito, “Optimal design and evaluation of survivable WDM transport networks,” IEEE J. Sel. Areas Commun., vol. 16, pp. 1190–1198, 1998.
    [CrossRef]
  25. A. K. Somani, Survivability and Traffic Grooming in WDM Optical Networks. Cambridge University Press, 2006.

2011 (4)

M. Xia, M. Tornatore, Y. Zhang, P. Chowdhury, C. Martel, and B. Mukherjee, “Green provisioning for optical WDM networks,” IEEE J. Sel. Areas Quantum Electron., vol. 17, no. 2, pp. 437–445, Mar.–Apr.2011.
[CrossRef]

A. Coiro, M. Listanti, A. Valenti, and F. Matera, “Reducing power consumption in wavelength routed networks by selective switch off of optical links,” IEEE J. Sel. Top. Quantum Electron., vol. 17, pp. 428–436, 2011.
[CrossRef]

B. Puype, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Multilayer traffic engineering for energy efficiency,” Photonic Network Commun., vol. 21, pp. 127–140, 2011.
[CrossRef]

A. Tzanakaki, K. Katrinis, T. Politi, A. Stavdas, M. Pickavet, P. V. Daele, D. Simeonidou, M. J. O’Mahony, S. Aleksić, L. Wosinska, and P. Monti, “Dimensioning the future Pan-European optical network with energy efficiency considerations,” J. Opt. Commun. Netw., vol. 3, pp. 272–280, 2011.
[CrossRef]

2009 (2)

1998 (1)

Y. Miyao and H. Saito, “Optimal design and evaluation of survivable WDM transport networks,” IEEE J. Sel. Areas Commun., vol. 16, pp. 1190–1198, 1998.
[CrossRef]

Ahuja, R. K.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms and Applications. Prentice Hall, 1993.

Aleksic, S.

Autenrieth, A.

A. Autenrieth, A. K. Tilwankar, C. M. Machuca, and J.-P. Elbers, “Power consumption analysis of opaque and transparent optical core networks (Invited),” in Proc. IEEE Int. Conf. Transparent Optical Networks (IEEE ICTON 2011), pp. 1–5.

Ayre, R.

Baliga, J.

Caria, M.

M. Caria, M. Chamania, and A. Jukan, “Trading IP routing stability for energy efficiency: a case for traffic offloading with optical bypass,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2011), pp. 1–6.

Chamania, M.

M. Caria, M. Chamania, and A. Jukan, “Trading IP routing stability for energy efficiency: a case for traffic offloading with optical bypass,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2011), pp. 1–6.

Chiaraviglio, L.

L. Chiaraviglio, M. Mellia, and F. Neri, “Reducing power consumption in backbone networks,” in Proc. IEEE Int. Conf. Communications (IEEE ICC 2009), pp. 1–6.

Chowdhury, P.

M. Xia, M. Tornatore, Y. Zhang, P. Chowdhury, C. Martel, and B. Mukherjee, “Green provisioning for optical WDM networks,” IEEE J. Sel. Areas Quantum Electron., vol. 17, no. 2, pp. 437–445, Mar.–Apr.2011.
[CrossRef]

Coiro, A.

A. Coiro, M. Listanti, A. Valenti, and F. Matera, “Reducing power consumption in wavelength routed networks by selective switch off of optical links,” IEEE J. Sel. Top. Quantum Electron., vol. 17, pp. 428–436, 2011.
[CrossRef]

Colle, D.

B. Puype, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Multilayer traffic engineering for energy efficiency,” Photonic Network Commun., vol. 21, pp. 127–140, 2011.
[CrossRef]

Daele, P. V.

Demeester, P.

B. Puype, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Multilayer traffic engineering for energy efficiency,” Photonic Network Commun., vol. 21, pp. 127–140, 2011.
[CrossRef]

Dutta, R.

S. Huang, D. Seshadri, and R. Dutta, “Traffic grooming: a changing role in green optical networks,” in Proc. IEEE Global Telecommunications Conf. (IEEE GLOBECOM 2009), pp. 1–6.

Elbers, J.-P.

A. Autenrieth, A. K. Tilwankar, C. M. Machuca, and J.-P. Elbers, “Power consumption analysis of opaque and transparent optical core networks (Invited),” in Proc. IEEE Int. Conf. Transparent Optical Networks (IEEE ICTON 2011), pp. 1–5.

Erangoli, W.

M. Yannuzzi, M. Quagliotti, G. Maier, E. Marin-Tordera, X. Masip-Bruin, S. Sanchez-Lopez, J. Sole-Pareta, W. Erangoli, and G. Tamiri, “Performance of translucent optical networks under dynamic traffic and uncertain physical-layer information,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2009), pp. 1–6.

Fumagalli, A.

M. S. Savasini, P. Monti, M. Tacca, A. Fumagalli, and H. Waldman, “Regenerator placement with guaranteed connectivity in optical networks,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2007), pp. 1–6Please check the last author name in Ref. [21]..

Grkovic, V.

F. Musumeci, F. Vismara, V. Grkovic, M. Tornatore, and A. Pattavina, “On the energy efficiency of optical transport with time driven switching,” in Proc. IEEE Int. Conf. Communications (IEEE ICC 2011), pp. 1–6.

Hinton, K.

Huang, S.

S. Huang, D. Seshadri, and R. Dutta, “Traffic grooming: a changing role in green optical networks,” in Proc. IEEE Global Telecommunications Conf. (IEEE GLOBECOM 2009), pp. 1–6.

Idzikowski, F.

F. Idzikowski, “Power consumption of network elements in IP over WDM networks,” Tech. Rep., Telecommunication Networks Group (TKN), TU Berlin, Germany, 2009.

F. Idzikowski, S. Orlowski, C. Raack, H. Woesner, and A. Wolisz, “Saving energy in IP-over-WDM networks by switching off line cards in low-demand scenarios,” in Proc. IEEE Conf. Optical Network Design and Modeling (IEEE ONDM 2010), pp. 1–6.

Jukan, A.

M. Caria, M. Chamania, and A. Jukan, “Trading IP routing stability for energy efficiency: a case for traffic offloading with optical bypass,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2011), pp. 1–6.

Katrinis, K.

Listanti, M.

A. Coiro, M. Listanti, A. Valenti, and F. Matera, “Reducing power consumption in wavelength routed networks by selective switch off of optical links,” IEEE J. Sel. Top. Quantum Electron., vol. 17, pp. 428–436, 2011.
[CrossRef]

Machuca, C. M.

A. Autenrieth, A. K. Tilwankar, C. M. Machuca, and J.-P. Elbers, “Power consumption analysis of opaque and transparent optical core networks (Invited),” in Proc. IEEE Int. Conf. Transparent Optical Networks (IEEE ICTON 2011), pp. 1–5.

Magnanti, T. L.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms and Applications. Prentice Hall, 1993.

Maier, G.

M. Yannuzzi, M. Quagliotti, G. Maier, E. Marin-Tordera, X. Masip-Bruin, S. Sanchez-Lopez, J. Sole-Pareta, W. Erangoli, and G. Tamiri, “Performance of translucent optical networks under dynamic traffic and uncertain physical-layer information,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2009), pp. 1–6.

G. Rizzelli, F. Musumeci, M. Tornatore, G. Maier, and A. Pattavina, “Wavelength-aware translucent network design,” in Optical Fiber Communication Conf., 2011, OThAA2.

Marin-Tordera, E.

M. Yannuzzi, M. Quagliotti, G. Maier, E. Marin-Tordera, X. Masip-Bruin, S. Sanchez-Lopez, J. Sole-Pareta, W. Erangoli, and G. Tamiri, “Performance of translucent optical networks under dynamic traffic and uncertain physical-layer information,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2009), pp. 1–6.

Martel, C.

M. Xia, M. Tornatore, Y. Zhang, P. Chowdhury, C. Martel, and B. Mukherjee, “Green provisioning for optical WDM networks,” IEEE J. Sel. Areas Quantum Electron., vol. 17, no. 2, pp. 437–445, Mar.–Apr.2011.
[CrossRef]

Masip-Bruin, X.

M. Yannuzzi, M. Quagliotti, G. Maier, E. Marin-Tordera, X. Masip-Bruin, S. Sanchez-Lopez, J. Sole-Pareta, W. Erangoli, and G. Tamiri, “Performance of translucent optical networks under dynamic traffic and uncertain physical-layer information,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2009), pp. 1–6.

Matera, F.

A. Coiro, M. Listanti, A. Valenti, and F. Matera, “Reducing power consumption in wavelength routed networks by selective switch off of optical links,” IEEE J. Sel. Top. Quantum Electron., vol. 17, pp. 428–436, 2011.
[CrossRef]

Mellia, M.

L. Chiaraviglio, M. Mellia, and F. Neri, “Reducing power consumption in backbone networks,” in Proc. IEEE Int. Conf. Communications (IEEE ICC 2009), pp. 1–6.

Miyao, Y.

Y. Miyao and H. Saito, “Optimal design and evaluation of survivable WDM transport networks,” IEEE J. Sel. Areas Commun., vol. 16, pp. 1190–1198, 1998.
[CrossRef]

Monti, P.

A. Tzanakaki, K. Katrinis, T. Politi, A. Stavdas, M. Pickavet, P. V. Daele, D. Simeonidou, M. J. O’Mahony, S. Aleksić, L. Wosinska, and P. Monti, “Dimensioning the future Pan-European optical network with energy efficiency considerations,” J. Opt. Commun. Netw., vol. 3, pp. 272–280, 2011.
[CrossRef]

M. S. Savasini, P. Monti, M. Tacca, A. Fumagalli, and H. Waldman, “Regenerator placement with guaranteed connectivity in optical networks,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2007), pp. 1–6Please check the last author name in Ref. [21]..

Mukherjee, B.

M. Xia, M. Tornatore, Y. Zhang, P. Chowdhury, C. Martel, and B. Mukherjee, “Green provisioning for optical WDM networks,” IEEE J. Sel. Areas Quantum Electron., vol. 17, no. 2, pp. 437–445, Mar.–Apr.2011.
[CrossRef]

Murakami, M.

M. Murakami and K. Oda, “Power consumption analysis of optical cross-connect equipment for future large capacity optical networks,” in Proc. IEEE Int. Conf. Transparent Optical Networks (IEEE ICTON 2009), pp. 1–4.

Musumeci, F.

G. Rizzelli, F. Musumeci, M. Tornatore, G. Maier, and A. Pattavina, “Wavelength-aware translucent network design,” in Optical Fiber Communication Conf., 2011, OThAA2.

F. Musumeci, F. Vismara, V. Grkovic, M. Tornatore, and A. Pattavina, “On the energy efficiency of optical transport with time driven switching,” in Proc. IEEE Int. Conf. Communications (IEEE ICC 2011), pp. 1–6.

Neri, F.

L. Chiaraviglio, M. Mellia, and F. Neri, “Reducing power consumption in backbone networks,” in Proc. IEEE Int. Conf. Communications (IEEE ICC 2009), pp. 1–6.

O’Mahony, M. J.

Oda, K.

M. Murakami and K. Oda, “Power consumption analysis of optical cross-connect equipment for future large capacity optical networks,” in Proc. IEEE Int. Conf. Transparent Optical Networks (IEEE ICTON 2009), pp. 1–4.

Orlin, J. B.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms and Applications. Prentice Hall, 1993.

Orlowski, S.

F. Idzikowski, S. Orlowski, C. Raack, H. Woesner, and A. Wolisz, “Saving energy in IP-over-WDM networks by switching off line cards in low-demand scenarios,” in Proc. IEEE Conf. Optical Network Design and Modeling (IEEE ONDM 2010), pp. 1–6.

Parthiban, R.

Pattavina, A.

G. Rizzelli, F. Musumeci, M. Tornatore, G. Maier, and A. Pattavina, “Wavelength-aware translucent network design,” in Optical Fiber Communication Conf., 2011, OThAA2.

F. Musumeci, F. Vismara, V. Grkovic, M. Tornatore, and A. Pattavina, “On the energy efficiency of optical transport with time driven switching,” in Proc. IEEE Int. Conf. Communications (IEEE ICC 2011), pp. 1–6.

Pickavet, M.

Politi, T.

Puype, B.

B. Puype, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Multilayer traffic engineering for energy efficiency,” Photonic Network Commun., vol. 21, pp. 127–140, 2011.
[CrossRef]

Quagliotti, M.

M. Yannuzzi, M. Quagliotti, G. Maier, E. Marin-Tordera, X. Masip-Bruin, S. Sanchez-Lopez, J. Sole-Pareta, W. Erangoli, and G. Tamiri, “Performance of translucent optical networks under dynamic traffic and uncertain physical-layer information,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2009), pp. 1–6.

Raack, C.

F. Idzikowski, S. Orlowski, C. Raack, H. Woesner, and A. Wolisz, “Saving energy in IP-over-WDM networks by switching off line cards in low-demand scenarios,” in Proc. IEEE Conf. Optical Network Design and Modeling (IEEE ONDM 2010), pp. 1–6.

Rizzelli, G.

G. Rizzelli, F. Musumeci, M. Tornatore, G. Maier, and A. Pattavina, “Wavelength-aware translucent network design,” in Optical Fiber Communication Conf., 2011, OThAA2.

Rouskas, G.

E. Yetginer and G. Rouskas, “Power efficient traffic grooming in optical WDM networks,” in Proc. IEEE Global Telecommunications Conf. (IEEE GLOBECOM 2009), pp. 1–6.

Saito, H.

Y. Miyao and H. Saito, “Optimal design and evaluation of survivable WDM transport networks,” IEEE J. Sel. Areas Commun., vol. 16, pp. 1190–1198, 1998.
[CrossRef]

Sanchez-Lopez, S.

M. Yannuzzi, M. Quagliotti, G. Maier, E. Marin-Tordera, X. Masip-Bruin, S. Sanchez-Lopez, J. Sole-Pareta, W. Erangoli, and G. Tamiri, “Performance of translucent optical networks under dynamic traffic and uncertain physical-layer information,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2009), pp. 1–6.

Savasini, M. S.

M. S. Savasini, P. Monti, M. Tacca, A. Fumagalli, and H. Waldman, “Regenerator placement with guaranteed connectivity in optical networks,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2007), pp. 1–6Please check the last author name in Ref. [21]..

Seshadri, D.

S. Huang, D. Seshadri, and R. Dutta, “Traffic grooming: a changing role in green optical networks,” in Proc. IEEE Global Telecommunications Conf. (IEEE GLOBECOM 2009), pp. 1–6.

Shen, G.

Simeonidou, D.

Sole-Pareta, J.

M. Yannuzzi, M. Quagliotti, G. Maier, E. Marin-Tordera, X. Masip-Bruin, S. Sanchez-Lopez, J. Sole-Pareta, W. Erangoli, and G. Tamiri, “Performance of translucent optical networks under dynamic traffic and uncertain physical-layer information,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2009), pp. 1–6.

Somani, A. K.

A. K. Somani, Survivability and Traffic Grooming in WDM Optical Networks. Cambridge University Press, 2006.

Sorin, W.

Stavdas, A.

Tacca, M.

M. S. Savasini, P. Monti, M. Tacca, A. Fumagalli, and H. Waldman, “Regenerator placement with guaranteed connectivity in optical networks,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2007), pp. 1–6Please check the last author name in Ref. [21]..

Tamiri, G.

M. Yannuzzi, M. Quagliotti, G. Maier, E. Marin-Tordera, X. Masip-Bruin, S. Sanchez-Lopez, J. Sole-Pareta, W. Erangoli, and G. Tamiri, “Performance of translucent optical networks under dynamic traffic and uncertain physical-layer information,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2009), pp. 1–6.

Tilwankar, A. K.

A. Autenrieth, A. K. Tilwankar, C. M. Machuca, and J.-P. Elbers, “Power consumption analysis of opaque and transparent optical core networks (Invited),” in Proc. IEEE Int. Conf. Transparent Optical Networks (IEEE ICTON 2011), pp. 1–5.

Tornatore, M.

M. Xia, M. Tornatore, Y. Zhang, P. Chowdhury, C. Martel, and B. Mukherjee, “Green provisioning for optical WDM networks,” IEEE J. Sel. Areas Quantum Electron., vol. 17, no. 2, pp. 437–445, Mar.–Apr.2011.
[CrossRef]

F. Musumeci, F. Vismara, V. Grkovic, M. Tornatore, and A. Pattavina, “On the energy efficiency of optical transport with time driven switching,” in Proc. IEEE Int. Conf. Communications (IEEE ICC 2011), pp. 1–6.

G. Rizzelli, F. Musumeci, M. Tornatore, G. Maier, and A. Pattavina, “Wavelength-aware translucent network design,” in Optical Fiber Communication Conf., 2011, OThAA2.

Tucker, R.

Tucker, R. S.

Tzanakaki, A.

Valenti, A.

A. Coiro, M. Listanti, A. Valenti, and F. Matera, “Reducing power consumption in wavelength routed networks by selective switch off of optical links,” IEEE J. Sel. Top. Quantum Electron., vol. 17, pp. 428–436, 2011.
[CrossRef]

Vereecken, W.

B. Puype, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Multilayer traffic engineering for energy efficiency,” Photonic Network Commun., vol. 21, pp. 127–140, 2011.
[CrossRef]

Vismara, F.

F. Musumeci, F. Vismara, V. Grkovic, M. Tornatore, and A. Pattavina, “On the energy efficiency of optical transport with time driven switching,” in Proc. IEEE Int. Conf. Communications (IEEE ICC 2011), pp. 1–6.

Waldman, H.

M. S. Savasini, P. Monti, M. Tacca, A. Fumagalli, and H. Waldman, “Regenerator placement with guaranteed connectivity in optical networks,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2007), pp. 1–6Please check the last author name in Ref. [21]..

Woesner, H.

F. Idzikowski, S. Orlowski, C. Raack, H. Woesner, and A. Wolisz, “Saving energy in IP-over-WDM networks by switching off line cards in low-demand scenarios,” in Proc. IEEE Conf. Optical Network Design and Modeling (IEEE ONDM 2010), pp. 1–6.

Wolisz, A.

F. Idzikowski, S. Orlowski, C. Raack, H. Woesner, and A. Wolisz, “Saving energy in IP-over-WDM networks by switching off line cards in low-demand scenarios,” in Proc. IEEE Conf. Optical Network Design and Modeling (IEEE ONDM 2010), pp. 1–6.

Wosinska, L.

Xia, M.

M. Xia, M. Tornatore, Y. Zhang, P. Chowdhury, C. Martel, and B. Mukherjee, “Green provisioning for optical WDM networks,” IEEE J. Sel. Areas Quantum Electron., vol. 17, no. 2, pp. 437–445, Mar.–Apr.2011.
[CrossRef]

Yannuzzi, M.

M. Yannuzzi, M. Quagliotti, G. Maier, E. Marin-Tordera, X. Masip-Bruin, S. Sanchez-Lopez, J. Sole-Pareta, W. Erangoli, and G. Tamiri, “Performance of translucent optical networks under dynamic traffic and uncertain physical-layer information,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2009), pp. 1–6.

Yetginer, E.

E. Yetginer and G. Rouskas, “Power efficient traffic grooming in optical WDM networks,” in Proc. IEEE Global Telecommunications Conf. (IEEE GLOBECOM 2009), pp. 1–6.

Zhang, Y.

M. Xia, M. Tornatore, Y. Zhang, P. Chowdhury, C. Martel, and B. Mukherjee, “Green provisioning for optical WDM networks,” IEEE J. Sel. Areas Quantum Electron., vol. 17, no. 2, pp. 437–445, Mar.–Apr.2011.
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

Y. Miyao and H. Saito, “Optimal design and evaluation of survivable WDM transport networks,” IEEE J. Sel. Areas Commun., vol. 16, pp. 1190–1198, 1998.
[CrossRef]

IEEE J. Sel. Areas Quantum Electron. (1)

M. Xia, M. Tornatore, Y. Zhang, P. Chowdhury, C. Martel, and B. Mukherjee, “Green provisioning for optical WDM networks,” IEEE J. Sel. Areas Quantum Electron., vol. 17, no. 2, pp. 437–445, Mar.–Apr.2011.
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Coiro, M. Listanti, A. Valenti, and F. Matera, “Reducing power consumption in wavelength routed networks by selective switch off of optical links,” IEEE J. Sel. Top. Quantum Electron., vol. 17, pp. 428–436, 2011.
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (2)

Photonic Network Commun. (1)

B. Puype, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester, “Multilayer traffic engineering for energy efficiency,” Photonic Network Commun., vol. 21, pp. 127–140, 2011.
[CrossRef]

Other (18)

F. Musumeci, F. Vismara, V. Grkovic, M. Tornatore, and A. Pattavina, “On the energy efficiency of optical transport with time driven switching,” in Proc. IEEE Int. Conf. Communications (IEEE ICC 2011), pp. 1–6.

F. Idzikowski, “Power consumption of network elements in IP over WDM networks,” Tech. Rep., Telecommunication Networks Group (TKN), TU Berlin, Germany, 2009.

Infinera Digital Line Module Product Data Sheet, 2010 [Online]. Available: http://www.infinera.com/pdfs/dtn/Infinera_DLM_Data_Sheet.pdf.

Cisco CRS-1 Carrier Routing System 16-Slot Line Card Chassis System Description, 2011 [Online]. Available: http://www.cisco.com/en/US/docs/routers/crs/crs1/16_slot_lc/system_description/reference/guide/sysdsc_a.html.

Infinera DTN™ Switched WDM System Product Brochure, 2010 [Online]. Available: http://www.infinera.com/pdfs/dtn/Infinera_DTN_Brochure.pdf.

M. Murakami and K. Oda, “Power consumption analysis of optical cross-connect equipment for future large capacity optical networks,” in Proc. IEEE Int. Conf. Transparent Optical Networks (IEEE ICTON 2009), pp. 1–4.

Cisco 40-Channel Single-Module ROADM Product Data Sheet, Release 9.1 of the Cisco ONS 15454 Multiservice Transport Platform (MSTP), 2010 [Online]. Available: http://www.cisco.com/en/US/prod/collateral/optical/ps5724/ps2006/data_sheet_c78-578552.html.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms and Applications. Prentice Hall, 1993.

M. S. Savasini, P. Monti, M. Tacca, A. Fumagalli, and H. Waldman, “Regenerator placement with guaranteed connectivity in optical networks,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2007), pp. 1–6Please check the last author name in Ref. [21]..

G. Rizzelli, F. Musumeci, M. Tornatore, G. Maier, and A. Pattavina, “Wavelength-aware translucent network design,” in Optical Fiber Communication Conf., 2011, OThAA2.

M. Yannuzzi, M. Quagliotti, G. Maier, E. Marin-Tordera, X. Masip-Bruin, S. Sanchez-Lopez, J. Sole-Pareta, W. Erangoli, and G. Tamiri, “Performance of translucent optical networks under dynamic traffic and uncertain physical-layer information,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2009), pp. 1–6.

M. Caria, M. Chamania, and A. Jukan, “Trading IP routing stability for energy efficiency: a case for traffic offloading with optical bypass,” in Proc. IEEE Int. Conf. Optical Network Design and Modeling (IEEE ONDM 2011), pp. 1–6.

A. Autenrieth, A. K. Tilwankar, C. M. Machuca, and J.-P. Elbers, “Power consumption analysis of opaque and transparent optical core networks (Invited),” in Proc. IEEE Int. Conf. Transparent Optical Networks (IEEE ICTON 2011), pp. 1–5.

E. Yetginer and G. Rouskas, “Power efficient traffic grooming in optical WDM networks,” in Proc. IEEE Global Telecommunications Conf. (IEEE GLOBECOM 2009), pp. 1–6.

L. Chiaraviglio, M. Mellia, and F. Neri, “Reducing power consumption in backbone networks,” in Proc. IEEE Int. Conf. Communications (IEEE ICC 2009), pp. 1–6.

F. Idzikowski, S. Orlowski, C. Raack, H. Woesner, and A. Wolisz, “Saving energy in IP-over-WDM networks by switching off line cards in low-demand scenarios,” in Proc. IEEE Conf. Optical Network Design and Modeling (IEEE ONDM 2010), pp. 1–6.

A. K. Somani, Survivability and Traffic Grooming in WDM Optical Networks. Cambridge University Press, 2006.

S. Huang, D. Seshadri, and R. Dutta, “Traffic grooming: a changing role in green optical networks,” in Proc. IEEE Global Telecommunications Conf. (IEEE GLOBECOM 2009), pp. 1–6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(Color online) B-IPoWDM. Optical circuits are terminated at each node, where OE and EO conversions and grooming/degrooming of all requests are performed.

Fig. 2
Fig. 2

(Color online) IPoSDH. Low bit-rate requests can be grouped into the same VC, which is transmitted over a wavelength channel together with the other VCs. At each node OE and EO conversions are performed in order to perform electronic switching of VCs (through the DXC). VCs are terminated whenever a connection needs to be added (or dropped) to (from) them.

Fig. 3
Fig. 3

(Color online) Tp-IPoWDM. The requests are groomed and traffic flows bypass IP routers when neither signal regeneration nor traffic grooming/degrooming is needed. In these cases, optical signals are converted into the electronic domain and electronically processed at the IP layer.

Fig. 4
Fig. 4

(Color online) Tl-IPoWDM. The requests are groomed similarly to the TP-IPoWDM case, but when only signal regeneration is needed, 3R-regenerators are used; thus IP routers are bypassed.

Fig. 5
Fig. 5

(Color online) Different layers for the Tl-IPoWDM ILP formulation. Connections between two grooming sites at the IP layer are first mapped over the CG and each logical link in the CG is mapped over a static physical path in the WDM layer. In the three layers, the indices used in the ILP are shown.

Fig. 6
Fig. 6

Network topologies (link lengths are expressed in km): (a) NSFNET; (b) COST239.

Fig. 7
Fig. 7

(Color online) Total power consumption and single contributions for the different architectures and case studies.

Fig. 8
Fig. 8

(Color online) Total power consumption values for increasing traffic (NSFNET).

Fig. 9
Fig. 9

(Color online) Total power consumption values for increasing traffic (COST239, doubled link lengths).

Fig. 10
Fig. 10

(Color online) Total power consumption values for increasing traffic (COST239, real link lengths).

Tables (1)

Tables Icon

Table I Power Contributions for the Different Architectures

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

m i n i m i z e P IP i n N i r | n s ( r ) X n i r t r + 2 P tr ( m , n ) Y m n .
n N m X m n r n N m X n m r = 1 if  m = s ( r ) 1 if  m = d ( r ) 0 otherwise m N , r R ,
r X m n r t r C Y m n C W ( m , n ) A .
minimize 2 P tr ( m , n ) W m n + P IP i j i r | i s ( r ) X i j r t r + S P SDH i j i [ v i j + ( m , n ) P m n i j ] + 4 P SR i j i V i j .
j i X i j r j i X j i r = 1 if  i = s ( r ) 1 if  i = d ( r ) 0 otherwise i N , r R ,
n N m P m n i j n N m P n m i j = v i j if  m = i v i j if  m = j 0 otherwise m , i , j N | i j ,
r X i j r t r v i j S i , j N | i j ,
v i j V i j C / S i , j N | i j ,
i j i P m n i j W m n C / S ( m , n ) A ,
W m n W ( m , n ) A .
minimize { P o l i j i [ v i j l + ( m , n ) P m n l i j ]
+ 2 P tr i j i V i j + P IP i j i r | i s ( r ) X i j r t r } .
j i X i j r j i X j i r = 1 if  i = s ( r ) 1 if  i = d ( r ) 0 otherwise i N , r R ,
n N m P m n l i j n | m N n P n m l i j = v i j l if  m = i v i j l if  m = j 0 otherwise m , i , j N | i j , l L ,
r X i j r t r C V i j i , j N | i j ,
l v i j l = V i j i , j N | i j ,
i j i P m n l i j 1 ( m , n ) A , l L .
minimize { P IP i j i r | i s ( r ) X i j r t r + 2 P tr i j i V i j + P reg l i j i ( p , q ) | i p Y i j l p q + P o i j i [ V i j + l ( p , q ) ( m , n ) P p q Y i j l p q ] } .
j i X i j r j i X j i r = 1 if  i = s ( r ) 1 if  i = d ( r ) 0 otherwise i N , r R ,
r X i j r t r C V i j i , j N | i j ,
l q | ( p , q ) A Y i j l p q l q | ( q , p ) A Y i j l q p = V i j if  p = i V i j if  p = j 0 otherwise p , i , j N | i j ,
i j i ( p , q ) | ( m , n ) P p q Y i j l p q 1 l L , ( m , n ) A .
OSNR end = 10 log 10 ( R total ) , where  1 R total = i 1 R i .
OSNR end = 10 log 10 H R node + ( m , n ) 1 R m n
H R node + ( m , n ) 1 R m n 1 0 2 ,
1 R node ( m , n ) [ P m n l i j + v i j l ] + ( m , n ) P m n l i j R m n 1 0 2 i , j N | i j , l L .