Abstract

We present a study on evaluating the effects of multipath dispersion on indoor optical code division multiple access (CDMA) systems over optical wireless communication. The indoor propagation channel model which takes multiple reflecting surfaces into account is addressed. Theoretical analysis of the pulse response of direct light and reflected light is given. The bit error rate (BER) of this system is analyzed considering reflected light, background light, avalanche photo-diode noise, thermal noise, and multi-user interference. The results prove that the BER of the system is influenced by reflected light and that the effect of reflected light is related to room size and receiver position. With an increase in the number of users, the effect of reflected light becomes stronger and is a significant source of inter-symbol interference. It becomes clear that when optical CDMA is used in an indoor optical wireless system, the effect of reflected light is a key issue to be considered.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, Feb.1997.
    [CrossRef]
  2. J. M. G. Linnartz, L. Feri, H. Yang, S. B. Colak, and T. C. W. Schenk, “Communications and Sensing of Illumination contributions in a power LED lighting system,” in Proc. IEEE Int. Conf. on Communications (ICC), Beijing, China, May 2008.
  3. J. A. Salehi, “Code division multiple-access technique in optical fiber networks-Part I: Fundamental principles,” IEEE Trans. Commun., vol. 37, no. 8, pp. 824–833, Aug.1989.
    [CrossRef]
  4. J. A. Salehi and C. A. Brackett, “Code division multiple-access technique in optical fiber networks-Part II: Systems performance analysis,” IEEE Trans. Commun., vol. 37, no. 8, pp. 834–842, Aug.1989.
    [CrossRef]
  5. A. Salehiomran and J. A. Salehi, “Spatial heterodyning optical code division multiple access technique for near-field free-space optical communication systems,” J. Opt. Commun. Netw., vol. 1, no. 5, pp. 498–511, Oct.2009.
    [CrossRef]
  6. T. Ohtsuki, “Performance analysis of atmospheric optical PPM CDMA systems,” J. Lightwave Technol., vol. 21, no. 2, pp. 406–411, Feb.2003.
    [CrossRef]
  7. K. Sasaki, N. Minato, T. Ushikubo, and Y. Arimoto, “First OCDMA experiment demonstration over free space and optical fiber link,” in Proc. Optical Fiber Communication Conf. (OFC), San Diego, Feb. 2008.
  8. J. Liu, W. Noonpakdee, H. Takano, and S. Shimamoto, “Evaluation of reflected light effect for indoor wireless optical CDMA system,” in Proc. IEEE Wireless Communications and Networking Conf. (WCNC), Cancun, Mexico, Mar. 2011.
  9. T. C. W. Schenk, L. Feri, H. Yang, and J. P. M. G. Linnartz, “Optical wireless CDMA employing solid state lighting LEDs (Invited),” in Proc. IEEE Photonics Society Summer Topicals 2009, July 2009, pp. 23–24.
  10. F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, Nov.1979.
    [CrossRef]
  11. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consumer Electron., vol. 50, no. 1, pp. 100–107, Feb.2004.
    [CrossRef]
  12. H. M. Kwon, “Optical orthogonal code-division multiple-access system-Part I: APD noise and thermal noise,” IEEE Trans. Commun., vol. 42, no. 7, pp. 2470–2479, July1994.
    [CrossRef]
  13. H. M. Kwon, “Optical orthogonal code-division multiple-access system-Part II: multibits/sequence-period OOCDMA,” IEEE Trans. Commun., vol. 42, no. 8, pp. 2592–2599, Aug.1994.
    [CrossRef]
  14. “Siemens Achieves 500 Mb/s Wireless Data Transmission with White LED Light,” Press release, Siemens, Jan.2010.
  15. H. Yin and D. J. Richardson, Optical Code Division Multiple Access Communication Networks: Theory and Applications. Tsinghua University Press, Beijing, and Springer-Verlag GmbH, Berlin, May2009.

2009 (1)

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consumer Electron., vol. 50, no. 1, pp. 100–107, Feb.2004.
[CrossRef]

2003 (1)

1997 (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, Feb.1997.
[CrossRef]

1994 (2)

H. M. Kwon, “Optical orthogonal code-division multiple-access system-Part I: APD noise and thermal noise,” IEEE Trans. Commun., vol. 42, no. 7, pp. 2470–2479, July1994.
[CrossRef]

H. M. Kwon, “Optical orthogonal code-division multiple-access system-Part II: multibits/sequence-period OOCDMA,” IEEE Trans. Commun., vol. 42, no. 8, pp. 2592–2599, Aug.1994.
[CrossRef]

1989 (2)

J. A. Salehi, “Code division multiple-access technique in optical fiber networks-Part I: Fundamental principles,” IEEE Trans. Commun., vol. 37, no. 8, pp. 824–833, Aug.1989.
[CrossRef]

J. A. Salehi and C. A. Brackett, “Code division multiple-access technique in optical fiber networks-Part II: Systems performance analysis,” IEEE Trans. Commun., vol. 37, no. 8, pp. 834–842, Aug.1989.
[CrossRef]

1979 (1)

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, Nov.1979.
[CrossRef]

Arimoto, Y.

K. Sasaki, N. Minato, T. Ushikubo, and Y. Arimoto, “First OCDMA experiment demonstration over free space and optical fiber link,” in Proc. Optical Fiber Communication Conf. (OFC), San Diego, Feb. 2008.

Bapst, U.

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, Nov.1979.
[CrossRef]

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, Feb.1997.
[CrossRef]

Brackett, C. A.

J. A. Salehi and C. A. Brackett, “Code division multiple-access technique in optical fiber networks-Part II: Systems performance analysis,” IEEE Trans. Commun., vol. 37, no. 8, pp. 834–842, Aug.1989.
[CrossRef]

Colak, S. B.

J. M. G. Linnartz, L. Feri, H. Yang, S. B. Colak, and T. C. W. Schenk, “Communications and Sensing of Illumination contributions in a power LED lighting system,” in Proc. IEEE Int. Conf. on Communications (ICC), Beijing, China, May 2008.

Feri, L.

J. M. G. Linnartz, L. Feri, H. Yang, S. B. Colak, and T. C. W. Schenk, “Communications and Sensing of Illumination contributions in a power LED lighting system,” in Proc. IEEE Int. Conf. on Communications (ICC), Beijing, China, May 2008.

T. C. W. Schenk, L. Feri, H. Yang, and J. P. M. G. Linnartz, “Optical wireless CDMA employing solid state lighting LEDs (Invited),” in Proc. IEEE Photonics Society Summer Topicals 2009, July 2009, pp. 23–24.

Gfeller, F. R.

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, Nov.1979.
[CrossRef]

Kahn, J. M.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, Feb.1997.
[CrossRef]

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consumer Electron., vol. 50, no. 1, pp. 100–107, Feb.2004.
[CrossRef]

Kwon, H. M.

H. M. Kwon, “Optical orthogonal code-division multiple-access system-Part I: APD noise and thermal noise,” IEEE Trans. Commun., vol. 42, no. 7, pp. 2470–2479, July1994.
[CrossRef]

H. M. Kwon, “Optical orthogonal code-division multiple-access system-Part II: multibits/sequence-period OOCDMA,” IEEE Trans. Commun., vol. 42, no. 8, pp. 2592–2599, Aug.1994.
[CrossRef]

Linnartz, J. M. G.

J. M. G. Linnartz, L. Feri, H. Yang, S. B. Colak, and T. C. W. Schenk, “Communications and Sensing of Illumination contributions in a power LED lighting system,” in Proc. IEEE Int. Conf. on Communications (ICC), Beijing, China, May 2008.

Linnartz, J. P. M. G.

T. C. W. Schenk, L. Feri, H. Yang, and J. P. M. G. Linnartz, “Optical wireless CDMA employing solid state lighting LEDs (Invited),” in Proc. IEEE Photonics Society Summer Topicals 2009, July 2009, pp. 23–24.

Liu, J.

J. Liu, W. Noonpakdee, H. Takano, and S. Shimamoto, “Evaluation of reflected light effect for indoor wireless optical CDMA system,” in Proc. IEEE Wireless Communications and Networking Conf. (WCNC), Cancun, Mexico, Mar. 2011.

Minato, N.

K. Sasaki, N. Minato, T. Ushikubo, and Y. Arimoto, “First OCDMA experiment demonstration over free space and optical fiber link,” in Proc. Optical Fiber Communication Conf. (OFC), San Diego, Feb. 2008.

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consumer Electron., vol. 50, no. 1, pp. 100–107, Feb.2004.
[CrossRef]

Noonpakdee, W.

J. Liu, W. Noonpakdee, H. Takano, and S. Shimamoto, “Evaluation of reflected light effect for indoor wireless optical CDMA system,” in Proc. IEEE Wireless Communications and Networking Conf. (WCNC), Cancun, Mexico, Mar. 2011.

Ohtsuki, T.

Richardson, D. J.

H. Yin and D. J. Richardson, Optical Code Division Multiple Access Communication Networks: Theory and Applications. Tsinghua University Press, Beijing, and Springer-Verlag GmbH, Berlin, May2009.

Salehi, J. A.

A. Salehiomran and J. A. Salehi, “Spatial heterodyning optical code division multiple access technique for near-field free-space optical communication systems,” J. Opt. Commun. Netw., vol. 1, no. 5, pp. 498–511, Oct.2009.
[CrossRef]

J. A. Salehi, “Code division multiple-access technique in optical fiber networks-Part I: Fundamental principles,” IEEE Trans. Commun., vol. 37, no. 8, pp. 824–833, Aug.1989.
[CrossRef]

J. A. Salehi and C. A. Brackett, “Code division multiple-access technique in optical fiber networks-Part II: Systems performance analysis,” IEEE Trans. Commun., vol. 37, no. 8, pp. 834–842, Aug.1989.
[CrossRef]

Salehiomran, A.

Sasaki, K.

K. Sasaki, N. Minato, T. Ushikubo, and Y. Arimoto, “First OCDMA experiment demonstration over free space and optical fiber link,” in Proc. Optical Fiber Communication Conf. (OFC), San Diego, Feb. 2008.

Schenk, T. C. W.

J. M. G. Linnartz, L. Feri, H. Yang, S. B. Colak, and T. C. W. Schenk, “Communications and Sensing of Illumination contributions in a power LED lighting system,” in Proc. IEEE Int. Conf. on Communications (ICC), Beijing, China, May 2008.

Schenk, T. C. W.

T. C. W. Schenk, L. Feri, H. Yang, and J. P. M. G. Linnartz, “Optical wireless CDMA employing solid state lighting LEDs (Invited),” in Proc. IEEE Photonics Society Summer Topicals 2009, July 2009, pp. 23–24.

Shimamoto, S.

J. Liu, W. Noonpakdee, H. Takano, and S. Shimamoto, “Evaluation of reflected light effect for indoor wireless optical CDMA system,” in Proc. IEEE Wireless Communications and Networking Conf. (WCNC), Cancun, Mexico, Mar. 2011.

Takano, H.

J. Liu, W. Noonpakdee, H. Takano, and S. Shimamoto, “Evaluation of reflected light effect for indoor wireless optical CDMA system,” in Proc. IEEE Wireless Communications and Networking Conf. (WCNC), Cancun, Mexico, Mar. 2011.

Ushikubo, T.

K. Sasaki, N. Minato, T. Ushikubo, and Y. Arimoto, “First OCDMA experiment demonstration over free space and optical fiber link,” in Proc. Optical Fiber Communication Conf. (OFC), San Diego, Feb. 2008.

Yang, H.

J. M. G. Linnartz, L. Feri, H. Yang, S. B. Colak, and T. C. W. Schenk, “Communications and Sensing of Illumination contributions in a power LED lighting system,” in Proc. IEEE Int. Conf. on Communications (ICC), Beijing, China, May 2008.

T. C. W. Schenk, L. Feri, H. Yang, and J. P. M. G. Linnartz, “Optical wireless CDMA employing solid state lighting LEDs (Invited),” in Proc. IEEE Photonics Society Summer Topicals 2009, July 2009, pp. 23–24.

Yin, H.

H. Yin and D. J. Richardson, Optical Code Division Multiple Access Communication Networks: Theory and Applications. Tsinghua University Press, Beijing, and Springer-Verlag GmbH, Berlin, May2009.

IEEE Trans. Commun. (4)

J. A. Salehi, “Code division multiple-access technique in optical fiber networks-Part I: Fundamental principles,” IEEE Trans. Commun., vol. 37, no. 8, pp. 824–833, Aug.1989.
[CrossRef]

J. A. Salehi and C. A. Brackett, “Code division multiple-access technique in optical fiber networks-Part II: Systems performance analysis,” IEEE Trans. Commun., vol. 37, no. 8, pp. 834–842, Aug.1989.
[CrossRef]

H. M. Kwon, “Optical orthogonal code-division multiple-access system-Part I: APD noise and thermal noise,” IEEE Trans. Commun., vol. 42, no. 7, pp. 2470–2479, July1994.
[CrossRef]

H. M. Kwon, “Optical orthogonal code-division multiple-access system-Part II: multibits/sequence-period OOCDMA,” IEEE Trans. Commun., vol. 42, no. 8, pp. 2592–2599, Aug.1994.
[CrossRef]

IEEE Trans. Consumer Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consumer Electron., vol. 50, no. 1, pp. 100–107, Feb.2004.
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (1)

Proc. IEEE (2)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, Feb.1997.
[CrossRef]

F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, Nov.1979.
[CrossRef]

Other (6)

“Siemens Achieves 500 Mb/s Wireless Data Transmission with White LED Light,” Press release, Siemens, Jan.2010.

H. Yin and D. J. Richardson, Optical Code Division Multiple Access Communication Networks: Theory and Applications. Tsinghua University Press, Beijing, and Springer-Verlag GmbH, Berlin, May2009.

J. M. G. Linnartz, L. Feri, H. Yang, S. B. Colak, and T. C. W. Schenk, “Communications and Sensing of Illumination contributions in a power LED lighting system,” in Proc. IEEE Int. Conf. on Communications (ICC), Beijing, China, May 2008.

K. Sasaki, N. Minato, T. Ushikubo, and Y. Arimoto, “First OCDMA experiment demonstration over free space and optical fiber link,” in Proc. Optical Fiber Communication Conf. (OFC), San Diego, Feb. 2008.

J. Liu, W. Noonpakdee, H. Takano, and S. Shimamoto, “Evaluation of reflected light effect for indoor wireless optical CDMA system,” in Proc. IEEE Wireless Communications and Networking Conf. (WCNC), Cancun, Mexico, Mar. 2011.

T. C. W. Schenk, L. Feri, H. Yang, and J. P. M. G. Linnartz, “Optical wireless CDMA employing solid state lighting LEDs (Invited),” in Proc. IEEE Photonics Society Summer Topicals 2009, July 2009, pp. 23–24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(Color online) The configuration of the transmitter and receiver.

Fig. 2
Fig. 2

Optical CDMA system.

Fig. 3
Fig. 3

The configuration of receiver 1 for user 1.

Fig. 4
Fig. 4

(Color online) Propagation link model.

Fig. 5
Fig. 5

An example of interference on the desired signal for a chip-synchronous system.

Fig. 6
Fig. 6

(Color online) Pulse responses for direct light and reflected light in room L (assuming that the source power is 1 W).

Fig. 7
Fig. 7

(Color online) Pulse responses for direct light and reflected light in room S (assuming that the source power is 1 W).

Fig. 8
Fig. 8

(Color online) BER versus user number with and without consideration of reflected light and background noise (in room S, F = 401,W = 3).

Tables (3)

Tables Icon

Table I Reflection Link Parameters

Tables Icon

Table II Simulation Parameters 1

Tables Icon

Table III Simulation Parameters 2

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

r ( t ) = n = 1 N s n ( t τ n ) h ( t ) ,
T c = T w F .
Z = 1 T c 0 T w APD ( r ( t ) c 1 ( t ) + n b ( t ) ) d ( t ) ,
Z = k = 1 W X m , k + i = 1 F W X s , i .
h 0 ( t ) = cos ( ϕ ) cos ( θ ) A R π R 2 rect ( θ FOV ) δ ( t R C ) ,
rect ( x ) = { 1 for | x | 1 , 0 for | x | > 1 .
h k ( t ) = ρ s h r ( t ) d s h ( k 1 ) ( t ) ,
h k ( t ) = ρ s cos ( ϕ r ) cos ( θ r ) π R 2 rect ( θ FOV ) h ( k 1 ) ( t ) δ ( t R C ) d s .
h 1 ( t ) = i = 1 I cos ( ϕ T i ) cos ( θ T i ) A i π R T i 2 ρ cos ( ϕ i R ) cos ( θ i R ) A R π R i R 2 rect ( θ i R FOV ) δ ( t R T i + R i R C ) ,
h ( t ) = h 0 ( t ) + h 1 ( t ) .
R ( t ) = r ( t ) h ( t ) + N p ,
I I = k = 1 W i k .
R I = k = 1 W r k .
P Z ( Z | I I , R I , b = 1 ) = 1 2 π σ b 1 2 e ( Z μ b 1 ) 2 / 2 σ b 1 2 ,
μ b 1 = G T c [ ( W + I I ) λ m + R I λ r + ( W N ( W + I I ) ) λ s + F ( λ b + I b e ) ] + F T c I s e ,
σ b 1 2 = G 2 F e T c [ ( W + I I ) λ m + R I λ r + ( W N ( W + I I ) ) λ s + F ( λ b + I b e ) ] + F ( T c I s e + σ t h 2 ) ,
P m = P T h 0 ( t ) .
P s = P m / M e ,
P r = P T h 1 ( t ) .
P Z ( Z | I I , R I , b = 0 ) = 1 2 π σ b 0 2 e ( Z μ b 0 ) 2 / 2 σ b 0 2 .
μ b 0 = G T c [ I I λ m + R I λ r + ( W N I I ) λ s + F ( λ b + I b e ) ] + F T c I s e ,
σ b 0 2 = G 2 F e T c [ I I λ m + R I λ r + ( W N I I ) λ s + F ( λ b + I b e ) ] + F ( T c I s e + σ t h 2 ) .
P I I ( i ) = i = 0 N 1 ( N 1 i ) p i q N 1 i δ ( I I i ) ,
P R I ( j ) = j = 0 N 1 ( N 1 j ) p j q N 1 j δ ( I I j ) ,
P error = min 1 2 i = 0 N 1 P I I ( i ) j = 0 N 1 P R I ( j ) [ Q ( T h μ b 0 ( i , j ) σ b 0 ( i , j ) ) + Q ( μ b 1 ( i , j ) T h σ b 1 ( i , j ) ) ] .
λ m = η P m h f = λ s M e ,
F e = k eff G + ( 2 1 G ) ( 1 k eff ) ,
σ t h = 2 k b T r T c / ( e 2 R L ) ,