Abstract

The evolution of the Ethernet passive optical network (EPON) to the enhanced 10G-EPON standard looks poised to maintain its position as the leading fiber to the home technology worldwide. Fair bandwidth allocation will be a challenge in the near future in plants where 1G and 10G customer premises equipment coexists. In this paper we propose a distributed algorithm, distributed dynamic scheduling for EPON (DDSPON), to dynamically allocate the bandwidth requested by the user equipment with quality of service (QoS) constraints. The proposed algorithm is scalable and simple to re-configure, which facilitates a smoother transition from legacy 1G to 10G networks. By using the DDSPON, enhanced optical network units (ONUs) will take full advantage of the 10 Gb/s rate while legacy 1G ONUs maintain their service level agreement; as a result, the individual performance is maximized for both groups of ONUs. We also present an analytical model to evaluate the algorithm performance in a coexistent 1G/10G network. Finally, we also illustrate the enhancement of the DDSPON to provision the QoS to different services under the DiffServ architecture. Analysis and simulation results validate the effectiveness of the proposed mechanisms.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Malik, “10G EPON—Unleashing the bandwidth potential,” White Paper, ZTE, 2009 [Online]. Available: http://www.telecomasia.net/pdf/ZTE/ZTE_101909.pdf.
  2. E. Keith, “EPON remains the leading FTTH technology, but for how long?” Market Advisory Report, Current Analysis, 2011 [Online]. Available: http://www.currentanalysis.com/f/2011/epon-ftth/.
  3. J. Chen, B. Chen, and L. Wosinska, “Joint bandwidth scheduling to support differentiated services and multiple service providers in 1G and 10G EPONS,” J. Opt. Commun. Netw., vol. 1, no. 4, pp. 343–351, Sept.2009.
    [CrossRef]
  4. Q. Li, H. Li, and Y.-F. Ji, “Flexible scheduling ensuring inter-ONU-group fairness in 1G/10G EPON coexistence system,” J. China Univ. Posts Telecommun., vol. 16, no. 4, pp. 16–22, 2009 [Online]. Available: http://www.sciencedirect.com/.
  5. M. Tanaka, M. Takemoto, A. Takahashi, and K. Shimokasa, “Dynamic bandwidth allocation algorithm with fairness in 1G/10G coexistence EPON system,” IEICE Trans. Commun., vol. 92, no. 3, pp. 819–827, 2009.
    [CrossRef]
  6. M. De Andrade, L. Gutierrez, and S. Sallent, “DDSPON: A distributed dynamic scheduling for EPON,” in IEEE Int. Conf. on Signal Processing and Communications (ICSPC), Nov. 2007, pp. 840–843.
  7. I. 802.3ah, “IEEE Standard for Information Technology. ‘Ethernet in the First Mile’,” IEEE Std 802.3ak-2004 (Amendment to IEEE Std 802.3-2002 as amended by IEEE Stds 802.3ae-2002, 802.3af-2003 and 802.3aj-2003), 2004.
  8. I. 802.3av, “IEEE Standard for Information Technology. ‘Ethernet in the First Mile’,” IEEE Std 802.3ak-2004 (Amendment to IEEE Std 802.3-2002 as amended by IEEE Stds 802.3ae-2002, 802.3af-2003 and 802.3aj-2003), 2009.
  9. M. Mcgarry, M. Reisslein, and M. Maier, “Ethernet passive optical network architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol. 10, no. 3, pp. 46–60, 2008.
    [CrossRef]
  10. J. Zheng and H. Mouftah, “A survey of dynamic bandwidth allocation algorithms for Ethernet passive optical networks,” Opt. Switching Netw., vol. 6, no. 3, pp. 151–162, 2009.
    [CrossRef]
  11. G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, no. 1, pp. 89–107, 2002.
    [CrossRef]
  12. C. Park, D. Han, and K. Rim, “Packet delay analysis of symmetric gated polling system for DBA scheme in an EPON,” Telecommun. Syst., vol. 30, no. 1, pp. 13–34, 2005.
    [CrossRef]
  13. S. Bhatia, D. Garbuzov, and R. Bartos, “Analysis of the gated IPACT scheme for EPONs,” in IEEE Int. Conf. on Communications (ICC), 2006, vol. 6, pp. 2693–2698.
  14. G. Kramer, B. Mukherjee, and A. Maislos, Ethernet Passive Optical Networks. Wiley Online Library, 2005.
  15. M. Thanh Ngo, A. Gravey, and D. Bhadauria, “A mean value analysis approach for evaluating the performance of EPON with gated IPACT,” in Int. Conf. on Optical Network Design and Modeling (ONDM), 2008, pp. 1–6.
  16. B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, M. Gagnaire, and P. Demeester, “Analytical model for the IPACT dynamic bandwidth allocation algorithm for EPONs,” J. Opt. Netw., vol. 6, no. 6, pp. 677–688, 2007.
    [CrossRef]
  17. B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, P. Demeester, and M. Gagnaire, “Thorough analysis of the IPACT dynamic bandwidth allocation algorithm for EPONs,” in 4th Int. Conf. on Broadband Communications, Networks and Systems (BROADNETS), 2007, pp. 486–494.
  18. S. Bharati and P. Saengudomlert, “Analysis of mean packet delay for dynamic bandwidth allocation algorithms in EPONs,” J. Lightwave Technol., vol. 28, no. 23, pp. 3454–3462, 2010.
  19. T. Holmberg, “Analysis of EPONs under the static priority scheduling scheme with fixed transmission times,” in Conf. on Next Generation Internet Design and Engineering, 2006, p. 8.
  20. J. Vardakas and M. Logothetis, “Packet delay analysis for priority-based passive optical networks,” in 1st Int. Conf. on Emerging Network Intelligence, Oct. 2009, pp. 103–107.
  21. A. Prado and A. Abelem, “Performance analysis of Ethernet passive optical networks with high load through a hybrid analytical/simulated model,” in EUROCON—Int. Conf. on Computer as a Tool (EUROCON), Apr. 2011, pp. 1–4.
  22. F. Aurzada, M. Scheutzow, M. Reisslein, N. Ghazisaidi, and M. Maier, “Capacity and delay analysis of next-generation passive optical networks (NGPONs),” IEEE Trans. Commun., vol. 59, no. 5, pp. 1378–1388, May2011.
    [CrossRef]
  23. L. Gutierrez, P. Garfias, and S. Sallent, “Analytical model of the IPACT DBA for EPONs with limited service,” Comput. Netw., 2012, submitted for publication.
  24. M. Woodward, Communication and Computer Networks: Modelling With Discrete-Time Queues. IEEE Computer Society Press, Los Alamitos, CA, 1994.
  25. S. Tasaka, Performance Analysis of Multiple Access Protocols. The MIT Press, 1986.
  26. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated services,” IETF RFC 2475, 1998.

2012 (1)

L. Gutierrez, P. Garfias, and S. Sallent, “Analytical model of the IPACT DBA for EPONs with limited service,” Comput. Netw., 2012, submitted for publication.

2011 (1)

F. Aurzada, M. Scheutzow, M. Reisslein, N. Ghazisaidi, and M. Maier, “Capacity and delay analysis of next-generation passive optical networks (NGPONs),” IEEE Trans. Commun., vol. 59, no. 5, pp. 1378–1388, May2011.
[CrossRef]

2010 (1)

2009 (4)

J. Chen, B. Chen, and L. Wosinska, “Joint bandwidth scheduling to support differentiated services and multiple service providers in 1G and 10G EPONS,” J. Opt. Commun. Netw., vol. 1, no. 4, pp. 343–351, Sept.2009.
[CrossRef]

Q. Li, H. Li, and Y.-F. Ji, “Flexible scheduling ensuring inter-ONU-group fairness in 1G/10G EPON coexistence system,” J. China Univ. Posts Telecommun., vol. 16, no. 4, pp. 16–22, 2009 [Online]. Available: http://www.sciencedirect.com/.

M. Tanaka, M. Takemoto, A. Takahashi, and K. Shimokasa, “Dynamic bandwidth allocation algorithm with fairness in 1G/10G coexistence EPON system,” IEICE Trans. Commun., vol. 92, no. 3, pp. 819–827, 2009.
[CrossRef]

J. Zheng and H. Mouftah, “A survey of dynamic bandwidth allocation algorithms for Ethernet passive optical networks,” Opt. Switching Netw., vol. 6, no. 3, pp. 151–162, 2009.
[CrossRef]

2008 (1)

M. Mcgarry, M. Reisslein, and M. Maier, “Ethernet passive optical network architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol. 10, no. 3, pp. 46–60, 2008.
[CrossRef]

2007 (1)

2005 (1)

C. Park, D. Han, and K. Rim, “Packet delay analysis of symmetric gated polling system for DBA scheme in an EPON,” Telecommun. Syst., vol. 30, no. 1, pp. 13–34, 2005.
[CrossRef]

2002 (1)

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, no. 1, pp. 89–107, 2002.
[CrossRef]

Abelem, A.

A. Prado and A. Abelem, “Performance analysis of Ethernet passive optical networks with high load through a hybrid analytical/simulated model,” in EUROCON—Int. Conf. on Computer as a Tool (EUROCON), Apr. 2011, pp. 1–4.

Aurzada, F.

F. Aurzada, M. Scheutzow, M. Reisslein, N. Ghazisaidi, and M. Maier, “Capacity and delay analysis of next-generation passive optical networks (NGPONs),” IEEE Trans. Commun., vol. 59, no. 5, pp. 1378–1388, May2011.
[CrossRef]

Bartos, R.

S. Bhatia, D. Garbuzov, and R. Bartos, “Analysis of the gated IPACT scheme for EPONs,” in IEEE Int. Conf. on Communications (ICC), 2006, vol. 6, pp. 2693–2698.

Bhadauria, D.

M. Thanh Ngo, A. Gravey, and D. Bhadauria, “A mean value analysis approach for evaluating the performance of EPON with gated IPACT,” in Int. Conf. on Optical Network Design and Modeling (ONDM), 2008, pp. 1–6.

Bharati, S.

Bhatia, S.

S. Bhatia, D. Garbuzov, and R. Bartos, “Analysis of the gated IPACT scheme for EPONs,” in IEEE Int. Conf. on Communications (ICC), 2006, vol. 6, pp. 2693–2698.

Black, D.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated services,” IETF RFC 2475, 1998.

Blake, S.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated services,” IETF RFC 2475, 1998.

Carlson, M.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated services,” IETF RFC 2475, 1998.

Chen, B.

Chen, J.

Colle, D.

B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, M. Gagnaire, and P. Demeester, “Analytical model for the IPACT dynamic bandwidth allocation algorithm for EPONs,” J. Opt. Netw., vol. 6, no. 6, pp. 677–688, 2007.
[CrossRef]

B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, P. Demeester, and M. Gagnaire, “Thorough analysis of the IPACT dynamic bandwidth allocation algorithm for EPONs,” in 4th Int. Conf. on Broadband Communications, Networks and Systems (BROADNETS), 2007, pp. 486–494.

Davies, E.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated services,” IETF RFC 2475, 1998.

De Andrade, M.

M. De Andrade, L. Gutierrez, and S. Sallent, “DDSPON: A distributed dynamic scheduling for EPON,” in IEEE Int. Conf. on Signal Processing and Communications (ICSPC), Nov. 2007, pp. 840–843.

Demeester, P.

B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, M. Gagnaire, and P. Demeester, “Analytical model for the IPACT dynamic bandwidth allocation algorithm for EPONs,” J. Opt. Netw., vol. 6, no. 6, pp. 677–688, 2007.
[CrossRef]

B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, P. Demeester, and M. Gagnaire, “Thorough analysis of the IPACT dynamic bandwidth allocation algorithm for EPONs,” in 4th Int. Conf. on Broadband Communications, Networks and Systems (BROADNETS), 2007, pp. 486–494.

Gagnaire, M.

B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, M. Gagnaire, and P. Demeester, “Analytical model for the IPACT dynamic bandwidth allocation algorithm for EPONs,” J. Opt. Netw., vol. 6, no. 6, pp. 677–688, 2007.
[CrossRef]

B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, P. Demeester, and M. Gagnaire, “Thorough analysis of the IPACT dynamic bandwidth allocation algorithm for EPONs,” in 4th Int. Conf. on Broadband Communications, Networks and Systems (BROADNETS), 2007, pp. 486–494.

Garbuzov, D.

S. Bhatia, D. Garbuzov, and R. Bartos, “Analysis of the gated IPACT scheme for EPONs,” in IEEE Int. Conf. on Communications (ICC), 2006, vol. 6, pp. 2693–2698.

Garfias, P.

L. Gutierrez, P. Garfias, and S. Sallent, “Analytical model of the IPACT DBA for EPONs with limited service,” Comput. Netw., 2012, submitted for publication.

Ghazisaidi, N.

F. Aurzada, M. Scheutzow, M. Reisslein, N. Ghazisaidi, and M. Maier, “Capacity and delay analysis of next-generation passive optical networks (NGPONs),” IEEE Trans. Commun., vol. 59, no. 5, pp. 1378–1388, May2011.
[CrossRef]

Gravey, A.

M. Thanh Ngo, A. Gravey, and D. Bhadauria, “A mean value analysis approach for evaluating the performance of EPON with gated IPACT,” in Int. Conf. on Optical Network Design and Modeling (ONDM), 2008, pp. 1–6.

Gutierrez, L.

L. Gutierrez, P. Garfias, and S. Sallent, “Analytical model of the IPACT DBA for EPONs with limited service,” Comput. Netw., 2012, submitted for publication.

M. De Andrade, L. Gutierrez, and S. Sallent, “DDSPON: A distributed dynamic scheduling for EPON,” in IEEE Int. Conf. on Signal Processing and Communications (ICSPC), Nov. 2007, pp. 840–843.

Han, D.

C. Park, D. Han, and K. Rim, “Packet delay analysis of symmetric gated polling system for DBA scheme in an EPON,” Telecommun. Syst., vol. 30, no. 1, pp. 13–34, 2005.
[CrossRef]

Holmberg, T.

T. Holmberg, “Analysis of EPONs under the static priority scheduling scheme with fixed transmission times,” in Conf. on Next Generation Internet Design and Engineering, 2006, p. 8.

Ji, Y.-F.

Q. Li, H. Li, and Y.-F. Ji, “Flexible scheduling ensuring inter-ONU-group fairness in 1G/10G EPON coexistence system,” J. China Univ. Posts Telecommun., vol. 16, no. 4, pp. 16–22, 2009 [Online]. Available: http://www.sciencedirect.com/.

Keith, E.

E. Keith, “EPON remains the leading FTTH technology, but for how long?” Market Advisory Report, Current Analysis, 2011 [Online]. Available: http://www.currentanalysis.com/f/2011/epon-ftth/.

Kramer, G.

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, no. 1, pp. 89–107, 2002.
[CrossRef]

G. Kramer, B. Mukherjee, and A. Maislos, Ethernet Passive Optical Networks. Wiley Online Library, 2005.

Lannoo, B.

B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, M. Gagnaire, and P. Demeester, “Analytical model for the IPACT dynamic bandwidth allocation algorithm for EPONs,” J. Opt. Netw., vol. 6, no. 6, pp. 677–688, 2007.
[CrossRef]

B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, P. Demeester, and M. Gagnaire, “Thorough analysis of the IPACT dynamic bandwidth allocation algorithm for EPONs,” in 4th Int. Conf. on Broadband Communications, Networks and Systems (BROADNETS), 2007, pp. 486–494.

Li, H.

Q. Li, H. Li, and Y.-F. Ji, “Flexible scheduling ensuring inter-ONU-group fairness in 1G/10G EPON coexistence system,” J. China Univ. Posts Telecommun., vol. 16, no. 4, pp. 16–22, 2009 [Online]. Available: http://www.sciencedirect.com/.

Li, Q.

Q. Li, H. Li, and Y.-F. Ji, “Flexible scheduling ensuring inter-ONU-group fairness in 1G/10G EPON coexistence system,” J. China Univ. Posts Telecommun., vol. 16, no. 4, pp. 16–22, 2009 [Online]. Available: http://www.sciencedirect.com/.

Logothetis, M.

J. Vardakas and M. Logothetis, “Packet delay analysis for priority-based passive optical networks,” in 1st Int. Conf. on Emerging Network Intelligence, Oct. 2009, pp. 103–107.

Maier, M.

F. Aurzada, M. Scheutzow, M. Reisslein, N. Ghazisaidi, and M. Maier, “Capacity and delay analysis of next-generation passive optical networks (NGPONs),” IEEE Trans. Commun., vol. 59, no. 5, pp. 1378–1388, May2011.
[CrossRef]

M. Mcgarry, M. Reisslein, and M. Maier, “Ethernet passive optical network architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol. 10, no. 3, pp. 46–60, 2008.
[CrossRef]

Maislos, A.

G. Kramer, B. Mukherjee, and A. Maislos, Ethernet Passive Optical Networks. Wiley Online Library, 2005.

Malik, S. A.

S. A. Malik, “10G EPON—Unleashing the bandwidth potential,” White Paper, ZTE, 2009 [Online]. Available: http://www.telecomasia.net/pdf/ZTE/ZTE_101909.pdf.

Mcgarry, M.

M. Mcgarry, M. Reisslein, and M. Maier, “Ethernet passive optical network architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol. 10, no. 3, pp. 46–60, 2008.
[CrossRef]

Mouftah, H.

J. Zheng and H. Mouftah, “A survey of dynamic bandwidth allocation algorithms for Ethernet passive optical networks,” Opt. Switching Netw., vol. 6, no. 3, pp. 151–162, 2009.
[CrossRef]

Mukherjee, B.

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, no. 1, pp. 89–107, 2002.
[CrossRef]

G. Kramer, B. Mukherjee, and A. Maislos, Ethernet Passive Optical Networks. Wiley Online Library, 2005.

Park, C.

C. Park, D. Han, and K. Rim, “Packet delay analysis of symmetric gated polling system for DBA scheme in an EPON,” Telecommun. Syst., vol. 30, no. 1, pp. 13–34, 2005.
[CrossRef]

Pesavento, G.

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, no. 1, pp. 89–107, 2002.
[CrossRef]

Pickavet, M.

B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, M. Gagnaire, and P. Demeester, “Analytical model for the IPACT dynamic bandwidth allocation algorithm for EPONs,” J. Opt. Netw., vol. 6, no. 6, pp. 677–688, 2007.
[CrossRef]

B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, P. Demeester, and M. Gagnaire, “Thorough analysis of the IPACT dynamic bandwidth allocation algorithm for EPONs,” in 4th Int. Conf. on Broadband Communications, Networks and Systems (BROADNETS), 2007, pp. 486–494.

Prado, A.

A. Prado and A. Abelem, “Performance analysis of Ethernet passive optical networks with high load through a hybrid analytical/simulated model,” in EUROCON—Int. Conf. on Computer as a Tool (EUROCON), Apr. 2011, pp. 1–4.

Reisslein, M.

F. Aurzada, M. Scheutzow, M. Reisslein, N. Ghazisaidi, and M. Maier, “Capacity and delay analysis of next-generation passive optical networks (NGPONs),” IEEE Trans. Commun., vol. 59, no. 5, pp. 1378–1388, May2011.
[CrossRef]

M. Mcgarry, M. Reisslein, and M. Maier, “Ethernet passive optical network architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol. 10, no. 3, pp. 46–60, 2008.
[CrossRef]

Rim, K.

C. Park, D. Han, and K. Rim, “Packet delay analysis of symmetric gated polling system for DBA scheme in an EPON,” Telecommun. Syst., vol. 30, no. 1, pp. 13–34, 2005.
[CrossRef]

Saengudomlert, P.

Sallent, S.

L. Gutierrez, P. Garfias, and S. Sallent, “Analytical model of the IPACT DBA for EPONs with limited service,” Comput. Netw., 2012, submitted for publication.

M. De Andrade, L. Gutierrez, and S. Sallent, “DDSPON: A distributed dynamic scheduling for EPON,” in IEEE Int. Conf. on Signal Processing and Communications (ICSPC), Nov. 2007, pp. 840–843.

Scheutzow, M.

F. Aurzada, M. Scheutzow, M. Reisslein, N. Ghazisaidi, and M. Maier, “Capacity and delay analysis of next-generation passive optical networks (NGPONs),” IEEE Trans. Commun., vol. 59, no. 5, pp. 1378–1388, May2011.
[CrossRef]

Shimokasa, K.

M. Tanaka, M. Takemoto, A. Takahashi, and K. Shimokasa, “Dynamic bandwidth allocation algorithm with fairness in 1G/10G coexistence EPON system,” IEICE Trans. Commun., vol. 92, no. 3, pp. 819–827, 2009.
[CrossRef]

Takahashi, A.

M. Tanaka, M. Takemoto, A. Takahashi, and K. Shimokasa, “Dynamic bandwidth allocation algorithm with fairness in 1G/10G coexistence EPON system,” IEICE Trans. Commun., vol. 92, no. 3, pp. 819–827, 2009.
[CrossRef]

Takemoto, M.

M. Tanaka, M. Takemoto, A. Takahashi, and K. Shimokasa, “Dynamic bandwidth allocation algorithm with fairness in 1G/10G coexistence EPON system,” IEICE Trans. Commun., vol. 92, no. 3, pp. 819–827, 2009.
[CrossRef]

Tanaka, M.

M. Tanaka, M. Takemoto, A. Takahashi, and K. Shimokasa, “Dynamic bandwidth allocation algorithm with fairness in 1G/10G coexistence EPON system,” IEICE Trans. Commun., vol. 92, no. 3, pp. 819–827, 2009.
[CrossRef]

Tasaka, S.

S. Tasaka, Performance Analysis of Multiple Access Protocols. The MIT Press, 1986.

Thanh Ngo, M.

M. Thanh Ngo, A. Gravey, and D. Bhadauria, “A mean value analysis approach for evaluating the performance of EPON with gated IPACT,” in Int. Conf. on Optical Network Design and Modeling (ONDM), 2008, pp. 1–6.

Vardakas, J.

J. Vardakas and M. Logothetis, “Packet delay analysis for priority-based passive optical networks,” in 1st Int. Conf. on Emerging Network Intelligence, Oct. 2009, pp. 103–107.

Verslegers, L.

B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, M. Gagnaire, and P. Demeester, “Analytical model for the IPACT dynamic bandwidth allocation algorithm for EPONs,” J. Opt. Netw., vol. 6, no. 6, pp. 677–688, 2007.
[CrossRef]

B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, P. Demeester, and M. Gagnaire, “Thorough analysis of the IPACT dynamic bandwidth allocation algorithm for EPONs,” in 4th Int. Conf. on Broadband Communications, Networks and Systems (BROADNETS), 2007, pp. 486–494.

Wang, Z.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated services,” IETF RFC 2475, 1998.

Weiss, W.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated services,” IETF RFC 2475, 1998.

Woodward, M.

M. Woodward, Communication and Computer Networks: Modelling With Discrete-Time Queues. IEEE Computer Society Press, Los Alamitos, CA, 1994.

Wosinska, L.

Zheng, J.

J. Zheng and H. Mouftah, “A survey of dynamic bandwidth allocation algorithms for Ethernet passive optical networks,” Opt. Switching Netw., vol. 6, no. 3, pp. 151–162, 2009.
[CrossRef]

Comput. Netw. (1)

L. Gutierrez, P. Garfias, and S. Sallent, “Analytical model of the IPACT DBA for EPONs with limited service,” Comput. Netw., 2012, submitted for publication.

IEEE Commun. Surv. Tutorials (1)

M. Mcgarry, M. Reisslein, and M. Maier, “Ethernet passive optical network architectures and dynamic bandwidth allocation algorithms,” IEEE Commun. Surv. Tutorials, vol. 10, no. 3, pp. 46–60, 2008.
[CrossRef]

IEEE Trans. Commun. (1)

F. Aurzada, M. Scheutzow, M. Reisslein, N. Ghazisaidi, and M. Maier, “Capacity and delay analysis of next-generation passive optical networks (NGPONs),” IEEE Trans. Commun., vol. 59, no. 5, pp. 1378–1388, May2011.
[CrossRef]

IEICE Trans. Commun. (1)

M. Tanaka, M. Takemoto, A. Takahashi, and K. Shimokasa, “Dynamic bandwidth allocation algorithm with fairness in 1G/10G coexistence EPON system,” IEICE Trans. Commun., vol. 92, no. 3, pp. 819–827, 2009.
[CrossRef]

J. China Univ. Posts Telecommun. (1)

Q. Li, H. Li, and Y.-F. Ji, “Flexible scheduling ensuring inter-ONU-group fairness in 1G/10G EPON coexistence system,” J. China Univ. Posts Telecommun., vol. 16, no. 4, pp. 16–22, 2009 [Online]. Available: http://www.sciencedirect.com/.

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (1)

J. Opt. Netw. (1)

Opt. Switching Netw. (1)

J. Zheng and H. Mouftah, “A survey of dynamic bandwidth allocation algorithms for Ethernet passive optical networks,” Opt. Switching Netw., vol. 6, no. 3, pp. 151–162, 2009.
[CrossRef]

Photonic Network Commun. (1)

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, no. 1, pp. 89–107, 2002.
[CrossRef]

Telecommun. Syst. (1)

C. Park, D. Han, and K. Rim, “Packet delay analysis of symmetric gated polling system for DBA scheme in an EPON,” Telecommun. Syst., vol. 30, no. 1, pp. 13–34, 2005.
[CrossRef]

Other (15)

S. Bhatia, D. Garbuzov, and R. Bartos, “Analysis of the gated IPACT scheme for EPONs,” in IEEE Int. Conf. on Communications (ICC), 2006, vol. 6, pp. 2693–2698.

G. Kramer, B. Mukherjee, and A. Maislos, Ethernet Passive Optical Networks. Wiley Online Library, 2005.

M. Thanh Ngo, A. Gravey, and D. Bhadauria, “A mean value analysis approach for evaluating the performance of EPON with gated IPACT,” in Int. Conf. on Optical Network Design and Modeling (ONDM), 2008, pp. 1–6.

T. Holmberg, “Analysis of EPONs under the static priority scheduling scheme with fixed transmission times,” in Conf. on Next Generation Internet Design and Engineering, 2006, p. 8.

J. Vardakas and M. Logothetis, “Packet delay analysis for priority-based passive optical networks,” in 1st Int. Conf. on Emerging Network Intelligence, Oct. 2009, pp. 103–107.

A. Prado and A. Abelem, “Performance analysis of Ethernet passive optical networks with high load through a hybrid analytical/simulated model,” in EUROCON—Int. Conf. on Computer as a Tool (EUROCON), Apr. 2011, pp. 1–4.

S. A. Malik, “10G EPON—Unleashing the bandwidth potential,” White Paper, ZTE, 2009 [Online]. Available: http://www.telecomasia.net/pdf/ZTE/ZTE_101909.pdf.

E. Keith, “EPON remains the leading FTTH technology, but for how long?” Market Advisory Report, Current Analysis, 2011 [Online]. Available: http://www.currentanalysis.com/f/2011/epon-ftth/.

M. De Andrade, L. Gutierrez, and S. Sallent, “DDSPON: A distributed dynamic scheduling for EPON,” in IEEE Int. Conf. on Signal Processing and Communications (ICSPC), Nov. 2007, pp. 840–843.

I. 802.3ah, “IEEE Standard for Information Technology. ‘Ethernet in the First Mile’,” IEEE Std 802.3ak-2004 (Amendment to IEEE Std 802.3-2002 as amended by IEEE Stds 802.3ae-2002, 802.3af-2003 and 802.3aj-2003), 2004.

I. 802.3av, “IEEE Standard for Information Technology. ‘Ethernet in the First Mile’,” IEEE Std 802.3ak-2004 (Amendment to IEEE Std 802.3-2002 as amended by IEEE Stds 802.3ae-2002, 802.3af-2003 and 802.3aj-2003), 2009.

B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, P. Demeester, and M. Gagnaire, “Thorough analysis of the IPACT dynamic bandwidth allocation algorithm for EPONs,” in 4th Int. Conf. on Broadband Communications, Networks and Systems (BROADNETS), 2007, pp. 486–494.

M. Woodward, Communication and Computer Networks: Modelling With Discrete-Time Queues. IEEE Computer Society Press, Los Alamitos, CA, 1994.

S. Tasaka, Performance Analysis of Multiple Access Protocols. The MIT Press, 1986.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated services,” IETF RFC 2475, 1998.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(Color online) Basic EPON network.

Fig. 2
Fig. 2

(Color online) Control message exchange and interleaving mechanism in DDSPON.

Fig. 3
Fig. 3

(Color online) Closed Jackson Network.

Fig. 4
Fig. 4

(Color online) Steady-state iteration process.

Fig. 5
Fig. 5

(Color online) Mean value of the cycle. Steady-state setting.

Fig. 6
Fig. 6

(Color online) Analytical and simulated mean values of the throughput S 1 G ¯ and S 10 G ¯ . Steady-state setting.

Fig. 7
Fig. 7

(Color online) Analytical and simulated average values of the delay in 1G ONUs and 10G ONUs. Steady-state setting.

Fig. 8
Fig. 8

(Color online) Average packet delay in 1G ONU. Global and DiffServ classes (EF, AF and BE) results.

Fig. 9
Fig. 9

(Color online) Average packet delay in 10G ONU. Global and DiffServ class (EF, AF and BE) results.

Fig. 10
Fig. 10

(Color online) Input (transitory) traffic pattern ONU 1G and 10G. EF (CBR 20%), AF (self-similar 40%) and BE (self-similar 40%).

Fig. 11
Fig. 11

(Color online) Global packet delay of 1G and 10G target ONU.

Tables (6)

Tables Icon

Table I 1G and 10G-EPON Physical Features

Tables Icon

Table II Initial Values of the Steady-State Analysis

Tables Icon

Table III Average Results of the Steady-State 1G and 10G Analysis

Tables Icon

Table IV Initial Simulation Parameters of the Transitory Setting

Tables Icon

Table V Target ONU Average Results of the Transitory 1G and 10G

Tables Icon

Table VI Any ONU Average Results of the Transitory 1G and 10G

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

j = 1 N Φ j c = 1 .
BW i = Φ i c j = 1 N Φ j c BW max ,
BW max = R u T max 8 .
BW i n + 1 = Φ i c Φ i c + j = 1 ; j i N Φ j n BW max ,
R i n + 1 = min ( BW i n + 1 , Q i ) ,
Φ i n + 1 = R i n + 1 ( Φ i c + j = 1 ; j i N Φ j n ) BW max .
Φ 10 G c = 10 Φ 1 G c
F 10 G = 10 F 1 G .
N 1 G Φ 1 G c + N 10 G Φ 10 G c = 1 .
T max = ( T g 1 G + F 1 G 8 R 1 G ) N 1 G + ( T g 10 G + F 10 G 8 R 10 G ) N 10 G .
λ j = k = 0 M λ k r k j ( j : 0 , 1 , , M ) ,
k = j = 0 M u j min ( j , F ) ; p ( k ) = P r 0 , r 1 , , r M .
d k = X k p ( k ) ; ( 0 k D ) .
T cycle k = k P 8 R u + T ov ,
T ov = N ( CM 8 R u + T g ) .
T cycle ¯ = k = 0 D d k max ( T cycle min , T cycle k ) .
S = S 1 G S 10 G .
T cycle k , m = k P 8 R 1 G + T ov 1 G + m P 8 R 10 G + T ov 10 G ,
T ov 1 G = N 1 G ( CM 8 R 1 G + T g 1 G ) ,
T ov 10 G = N 10 G ( CM 8 R 10 G + T g 10 G ) .
T cycle ¯ = k = 0 D 1 G d k 1 G m = 0 D 10 G d m 10 G max ( T cycle min , T cycle k , m ) .
Φ i c BW max BW i n + 1 BW max .
W acc ¯ = W poll ¯ + W grant ¯ + W queue ¯ ,
BW i EF , n + 1 = Φ i EF,c Φ i EF,c + j = 1 ; j i N Φ j EF , n BW max EF .
R i EF , n + 1 = min ( Q i EF , BW i EF , n ) ,
R i AF , n + 1 = min ( Q i A F , ( BW i n R i EF , n + 1 ) ) ,
R i BE , n + 1 = min ( Q i B E , BW i n ( R i EF , n + 1 + R i AF , n + 1 ) ) .
R i n + 1 = R i EF , n + 1 + R i AF , n + 1 + R i BE , n + 1 ,
Φ i n + 1 = R i n + 1 ( Φ i c + j = 1 ; j i N Φ j n ) BW max ,
Φ i EF , n + 1 = R i EF , n + 1 ( Φ i EF,c + j = 1 ; j i N Φ j EF , n ) BW max EF .
Φ 10 G EF,c = 10 Φ 1 G EF,c .