Abstract

A light-trail is a generalization of a lightpath allowing multiple nodes to be able to communicate along the path, leading to all-optical spatial traffic grooming. A light-trail exhibits properties of dynamic bandwidth provisioning, optical multicasting and sub-wavelength grooming, and architecturally is analogous to a shared wavelength optical bus. Arbitration within the bus is conducted by an out-of-band control channel. The bus feature results in a node that has a large pass-through loss, restricting the size of a light-trail to metro environments. Due to this limitation, it is difficult to extend the light-trail concept to regional or core networks. In this paper we exhaustively investigate the concept of multi-hop light-trails (MLTs)—a method to provide multi-hop communication in light-trails, thus enhancing their reach. Node architecture and protocol requirements for creating MLTs are discussed. We then discuss design issues for MLTs in regional area networks through a problem formulation that is solved using convex optimization. The problem formulation takes into consideration issues such as routing MLTs as well as assigning connections (defined as sub-wavelength traffic requests) to MLTs. Two polynomial-time heuristic algorithms for creation of MLTs are presented. One of the algorithms is a static implementation, while the other is a dynamic implementation—with unknown traffic. A detailed delay analysis is also presented that enables computation of end-to-end delay over MLTs using different flow assignment algorithms. A simulation study validates the MLT concept.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: An approach to high bandwidth optical WAN’s,” IEEE Trans. Commun., pp. 1171–1182, July1992.
    [CrossRef]
  2. A. Gumaste, J. Wang, A. Karandikar, and N. Ghani, “Multihop light-trail networks,” in 44th IEEE Int. Conf. on Communications (ICC), Dresden, Germany, 2009.
  3. A. Gumaste and I. Chlamtac, “Light-trails: An optical solution for IP transport [Invited],” J. Opt. Netw., vol. 3, no. 5, pp. 261–281, May2004.
    [CrossRef]
  4. A. Gumaste and S. Q. Zheng, “Optical storage area networks: The light-trails approach,” IEEE Commun. Mag., vol. 21, no. 3, pp. 72–78, Mar.2005.
    [CrossRef]
  5. A. Gumaste, N. Ghani, T. Das, P. Bafna, A. Agrawal, J. Wang, and S. Zheng, “DynaSPOT: Dynamic services provisioned optical transport test-bed—achieving multi-rate multi-service dynamic provisioning using strongly connected light-trail (SLiT) technology,” J. Lightwave Technol., Jan.2008.
  6. A. Gumaste, N. Ghani, P. Bafna, A. Lodha, S. Srivastava, T. Das, and S. Zheng, “Achieving multi-rate dynamic sub-wavelength service provisioning in strongly connected light-trails (SLiTs),” in Optical Fiber Communication Conf. (OFC), Mar. 2007.
  7. A. Gumaste, P. Palacharla, and T. Naito, “Performance evaluation and demonstration of light-trails in shared wavelength optical networks (SWON),” in 31st European Conf. On Optical Communication (ECOC), Glasgow, 2005.
  8. N. A. Vanderhorn, S. Balasubramanian, M. Mina, and A. K. Somani, “Light-trail testbed for IP-centric applications,” IEEE Commun. Mag., vol. 43, no. 8, pp. S5–S10, Aug.2005.
    [CrossRef]
  9. W. Zhang, G. Xue, J. Tang, and K. Thulasiraman, “Dynamic light trail routing and protection issues in WDM optical networks,” in IEEE Globecom, 2005, pp. 1963–1967.
  10. P. Bafna, A. Gumaste, and N. Ghani, “Delay sensitive smoothed round robin (DS2R2) scheduler for high speed optical networks,” IEEE Commun. Lett., vol. 11, no. 7, pp. 628–630, July2007.
    [CrossRef]
  11. A. Gumaste, T. Das, A. Mathew, and A. Somani, “An autonomic virtual topology design and two-stage scheduling algorithm for light-trail WDM networks,” J. Opt. Commun. Netw., vol. 3, no. 4, pp. 372–389, Apr.2011.
    [CrossRef]
  12. J. Fang and A. K. Somani, “IP traffic grooming over WDM optical networks,” in Proc. of 9th IFIP/IEEE Conf. on Optical Networks Design and Modeling (ONDM), Milan, Italy, Feb. 2005, pp. 393–402.
  13. D. Lastine and A. K. Somani, “Fault tolerant multicast-couple hop routing over light-trails,” in Proc. of the 2008 IEEE ANTS Conf., Mumbai, Dec. 15, 2008, pp. 1–3.
  14. S. Balasubramanian and A. K. Somani, “Dynamic survivable network design for path level traffic grooming in WDM optical networks,” J. Netw., vol. 7, no. 8, pp. 759–782, Aug.2008.
    [CrossRef]
  15. S. Balasubramanian and A. K. Somani, “Path level traffic grooming in WDM metro optical networks,” IEEE Commun. Mag., vol. 46, no. 11, pp. 91–97, Nov.2008.
    [CrossRef]
  16. A. Gumaste, J. Chandarana, P. Bafna, N. Ghani, and V. Sharma, “On control plane for service provisioning in light-trail WDM optical networks,” in 42nd IEEE Int. Conf. on Commun. (ICC), Glasgow, UK, 2007.
  17. X. Luo and B. Wang, “Service provisioning under a scheduled traffic model using light-trails in WDM optical networks,” in Proc. of IEEE Broadnets, 2007.
  18. A. Gumaste, N. Ghani, P. Bafna, A. Lodha, S. Srivastava, T. Das, and S. Zheng, “Achieving multi-rate dynamic sub-wavelength service provisioning in strongly connected light-trails (SLiTs),” in Optical Fiber Communication Conf. (OFC), Anaheim, CA, Mar. 2007.
  19. Report on Internet Traffic 2008 [Online]. Available: http://www.heavyreading.com.
  20. IEEE Provider Backbone Bridging Standard, IEEE 802.1ay.
  21. G. Chuanxiong, “An O(1) time-complexity packet scheduler for flows in multi-service packet networks,” in ACM Proc. SIGCOMM, San Diego, CA, 2001, pp. 211–222.
  22. M. A. Moges and T. G. Robertazzi, “Divisible load scheduling and Markov chain models,” Comput. Math. Appl., vol. 52, pp. 1529–1542, 2006.
    [CrossRef]
  23. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed. MIT Press, 2001.
  24. R. T. Smith and R. B. Minton, Calculus: Concepts and Connections. McGraw-Hill, 2006

2011 (1)

2008 (3)

A. Gumaste, N. Ghani, T. Das, P. Bafna, A. Agrawal, J. Wang, and S. Zheng, “DynaSPOT: Dynamic services provisioned optical transport test-bed—achieving multi-rate multi-service dynamic provisioning using strongly connected light-trail (SLiT) technology,” J. Lightwave Technol., Jan.2008.

S. Balasubramanian and A. K. Somani, “Dynamic survivable network design for path level traffic grooming in WDM optical networks,” J. Netw., vol. 7, no. 8, pp. 759–782, Aug.2008.
[CrossRef]

S. Balasubramanian and A. K. Somani, “Path level traffic grooming in WDM metro optical networks,” IEEE Commun. Mag., vol. 46, no. 11, pp. 91–97, Nov.2008.
[CrossRef]

2007 (1)

P. Bafna, A. Gumaste, and N. Ghani, “Delay sensitive smoothed round robin (DS2R2) scheduler for high speed optical networks,” IEEE Commun. Lett., vol. 11, no. 7, pp. 628–630, July2007.
[CrossRef]

2006 (1)

M. A. Moges and T. G. Robertazzi, “Divisible load scheduling and Markov chain models,” Comput. Math. Appl., vol. 52, pp. 1529–1542, 2006.
[CrossRef]

2005 (2)

N. A. Vanderhorn, S. Balasubramanian, M. Mina, and A. K. Somani, “Light-trail testbed for IP-centric applications,” IEEE Commun. Mag., vol. 43, no. 8, pp. S5–S10, Aug.2005.
[CrossRef]

A. Gumaste and S. Q. Zheng, “Optical storage area networks: The light-trails approach,” IEEE Commun. Mag., vol. 21, no. 3, pp. 72–78, Mar.2005.
[CrossRef]

2004 (1)

1992 (1)

I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: An approach to high bandwidth optical WAN’s,” IEEE Trans. Commun., pp. 1171–1182, July1992.
[CrossRef]

Agrawal, A.

A. Gumaste, N. Ghani, T. Das, P. Bafna, A. Agrawal, J. Wang, and S. Zheng, “DynaSPOT: Dynamic services provisioned optical transport test-bed—achieving multi-rate multi-service dynamic provisioning using strongly connected light-trail (SLiT) technology,” J. Lightwave Technol., Jan.2008.

Bafna, P.

A. Gumaste, N. Ghani, T. Das, P. Bafna, A. Agrawal, J. Wang, and S. Zheng, “DynaSPOT: Dynamic services provisioned optical transport test-bed—achieving multi-rate multi-service dynamic provisioning using strongly connected light-trail (SLiT) technology,” J. Lightwave Technol., Jan.2008.

P. Bafna, A. Gumaste, and N. Ghani, “Delay sensitive smoothed round robin (DS2R2) scheduler for high speed optical networks,” IEEE Commun. Lett., vol. 11, no. 7, pp. 628–630, July2007.
[CrossRef]

A. Gumaste, N. Ghani, P. Bafna, A. Lodha, S. Srivastava, T. Das, and S. Zheng, “Achieving multi-rate dynamic sub-wavelength service provisioning in strongly connected light-trails (SLiTs),” in Optical Fiber Communication Conf. (OFC), Mar. 2007.

A. Gumaste, J. Chandarana, P. Bafna, N. Ghani, and V. Sharma, “On control plane for service provisioning in light-trail WDM optical networks,” in 42nd IEEE Int. Conf. on Commun. (ICC), Glasgow, UK, 2007.

A. Gumaste, N. Ghani, P. Bafna, A. Lodha, S. Srivastava, T. Das, and S. Zheng, “Achieving multi-rate dynamic sub-wavelength service provisioning in strongly connected light-trails (SLiTs),” in Optical Fiber Communication Conf. (OFC), Anaheim, CA, Mar. 2007.

Balasubramanian, S.

S. Balasubramanian and A. K. Somani, “Path level traffic grooming in WDM metro optical networks,” IEEE Commun. Mag., vol. 46, no. 11, pp. 91–97, Nov.2008.
[CrossRef]

S. Balasubramanian and A. K. Somani, “Dynamic survivable network design for path level traffic grooming in WDM optical networks,” J. Netw., vol. 7, no. 8, pp. 759–782, Aug.2008.
[CrossRef]

N. A. Vanderhorn, S. Balasubramanian, M. Mina, and A. K. Somani, “Light-trail testbed for IP-centric applications,” IEEE Commun. Mag., vol. 43, no. 8, pp. S5–S10, Aug.2005.
[CrossRef]

Chandarana, J.

A. Gumaste, J. Chandarana, P. Bafna, N. Ghani, and V. Sharma, “On control plane for service provisioning in light-trail WDM optical networks,” in 42nd IEEE Int. Conf. on Commun. (ICC), Glasgow, UK, 2007.

Chlamtac, I.

A. Gumaste and I. Chlamtac, “Light-trails: An optical solution for IP transport [Invited],” J. Opt. Netw., vol. 3, no. 5, pp. 261–281, May2004.
[CrossRef]

I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: An approach to high bandwidth optical WAN’s,” IEEE Trans. Commun., pp. 1171–1182, July1992.
[CrossRef]

Chuanxiong, G.

G. Chuanxiong, “An O(1) time-complexity packet scheduler for flows in multi-service packet networks,” in ACM Proc. SIGCOMM, San Diego, CA, 2001, pp. 211–222.

Cormen, T. H.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed. MIT Press, 2001.

Das, T.

A. Gumaste, T. Das, A. Mathew, and A. Somani, “An autonomic virtual topology design and two-stage scheduling algorithm for light-trail WDM networks,” J. Opt. Commun. Netw., vol. 3, no. 4, pp. 372–389, Apr.2011.
[CrossRef]

A. Gumaste, N. Ghani, T. Das, P. Bafna, A. Agrawal, J. Wang, and S. Zheng, “DynaSPOT: Dynamic services provisioned optical transport test-bed—achieving multi-rate multi-service dynamic provisioning using strongly connected light-trail (SLiT) technology,” J. Lightwave Technol., Jan.2008.

A. Gumaste, N. Ghani, P. Bafna, A. Lodha, S. Srivastava, T. Das, and S. Zheng, “Achieving multi-rate dynamic sub-wavelength service provisioning in strongly connected light-trails (SLiTs),” in Optical Fiber Communication Conf. (OFC), Anaheim, CA, Mar. 2007.

A. Gumaste, N. Ghani, P. Bafna, A. Lodha, S. Srivastava, T. Das, and S. Zheng, “Achieving multi-rate dynamic sub-wavelength service provisioning in strongly connected light-trails (SLiTs),” in Optical Fiber Communication Conf. (OFC), Mar. 2007.

Fang, J.

J. Fang and A. K. Somani, “IP traffic grooming over WDM optical networks,” in Proc. of 9th IFIP/IEEE Conf. on Optical Networks Design and Modeling (ONDM), Milan, Italy, Feb. 2005, pp. 393–402.

Ganz, A.

I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: An approach to high bandwidth optical WAN’s,” IEEE Trans. Commun., pp. 1171–1182, July1992.
[CrossRef]

Ghani, N.

A. Gumaste, N. Ghani, T. Das, P. Bafna, A. Agrawal, J. Wang, and S. Zheng, “DynaSPOT: Dynamic services provisioned optical transport test-bed—achieving multi-rate multi-service dynamic provisioning using strongly connected light-trail (SLiT) technology,” J. Lightwave Technol., Jan.2008.

P. Bafna, A. Gumaste, and N. Ghani, “Delay sensitive smoothed round robin (DS2R2) scheduler for high speed optical networks,” IEEE Commun. Lett., vol. 11, no. 7, pp. 628–630, July2007.
[CrossRef]

A. Gumaste, N. Ghani, P. Bafna, A. Lodha, S. Srivastava, T. Das, and S. Zheng, “Achieving multi-rate dynamic sub-wavelength service provisioning in strongly connected light-trails (SLiTs),” in Optical Fiber Communication Conf. (OFC), Mar. 2007.

A. Gumaste, J. Wang, A. Karandikar, and N. Ghani, “Multihop light-trail networks,” in 44th IEEE Int. Conf. on Communications (ICC), Dresden, Germany, 2009.

A. Gumaste, J. Chandarana, P. Bafna, N. Ghani, and V. Sharma, “On control plane for service provisioning in light-trail WDM optical networks,” in 42nd IEEE Int. Conf. on Commun. (ICC), Glasgow, UK, 2007.

A. Gumaste, N. Ghani, P. Bafna, A. Lodha, S. Srivastava, T. Das, and S. Zheng, “Achieving multi-rate dynamic sub-wavelength service provisioning in strongly connected light-trails (SLiTs),” in Optical Fiber Communication Conf. (OFC), Anaheim, CA, Mar. 2007.

Gumaste, A.

A. Gumaste, T. Das, A. Mathew, and A. Somani, “An autonomic virtual topology design and two-stage scheduling algorithm for light-trail WDM networks,” J. Opt. Commun. Netw., vol. 3, no. 4, pp. 372–389, Apr.2011.
[CrossRef]

A. Gumaste, N. Ghani, T. Das, P. Bafna, A. Agrawal, J. Wang, and S. Zheng, “DynaSPOT: Dynamic services provisioned optical transport test-bed—achieving multi-rate multi-service dynamic provisioning using strongly connected light-trail (SLiT) technology,” J. Lightwave Technol., Jan.2008.

P. Bafna, A. Gumaste, and N. Ghani, “Delay sensitive smoothed round robin (DS2R2) scheduler for high speed optical networks,” IEEE Commun. Lett., vol. 11, no. 7, pp. 628–630, July2007.
[CrossRef]

A. Gumaste and S. Q. Zheng, “Optical storage area networks: The light-trails approach,” IEEE Commun. Mag., vol. 21, no. 3, pp. 72–78, Mar.2005.
[CrossRef]

A. Gumaste and I. Chlamtac, “Light-trails: An optical solution for IP transport [Invited],” J. Opt. Netw., vol. 3, no. 5, pp. 261–281, May2004.
[CrossRef]

A. Gumaste, N. Ghani, P. Bafna, A. Lodha, S. Srivastava, T. Das, and S. Zheng, “Achieving multi-rate dynamic sub-wavelength service provisioning in strongly connected light-trails (SLiTs),” in Optical Fiber Communication Conf. (OFC), Anaheim, CA, Mar. 2007.

A. Gumaste, J. Chandarana, P. Bafna, N. Ghani, and V. Sharma, “On control plane for service provisioning in light-trail WDM optical networks,” in 42nd IEEE Int. Conf. on Commun. (ICC), Glasgow, UK, 2007.

A. Gumaste, N. Ghani, P. Bafna, A. Lodha, S. Srivastava, T. Das, and S. Zheng, “Achieving multi-rate dynamic sub-wavelength service provisioning in strongly connected light-trails (SLiTs),” in Optical Fiber Communication Conf. (OFC), Mar. 2007.

A. Gumaste, J. Wang, A. Karandikar, and N. Ghani, “Multihop light-trail networks,” in 44th IEEE Int. Conf. on Communications (ICC), Dresden, Germany, 2009.

A. Gumaste, P. Palacharla, and T. Naito, “Performance evaluation and demonstration of light-trails in shared wavelength optical networks (SWON),” in 31st European Conf. On Optical Communication (ECOC), Glasgow, 2005.

Karandikar, A.

A. Gumaste, J. Wang, A. Karandikar, and N. Ghani, “Multihop light-trail networks,” in 44th IEEE Int. Conf. on Communications (ICC), Dresden, Germany, 2009.

Karmi, G.

I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: An approach to high bandwidth optical WAN’s,” IEEE Trans. Commun., pp. 1171–1182, July1992.
[CrossRef]

Lastine, D.

D. Lastine and A. K. Somani, “Fault tolerant multicast-couple hop routing over light-trails,” in Proc. of the 2008 IEEE ANTS Conf., Mumbai, Dec. 15, 2008, pp. 1–3.

Leiserson, C. E.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed. MIT Press, 2001.

Lodha, A.

A. Gumaste, N. Ghani, P. Bafna, A. Lodha, S. Srivastava, T. Das, and S. Zheng, “Achieving multi-rate dynamic sub-wavelength service provisioning in strongly connected light-trails (SLiTs),” in Optical Fiber Communication Conf. (OFC), Anaheim, CA, Mar. 2007.

A. Gumaste, N. Ghani, P. Bafna, A. Lodha, S. Srivastava, T. Das, and S. Zheng, “Achieving multi-rate dynamic sub-wavelength service provisioning in strongly connected light-trails (SLiTs),” in Optical Fiber Communication Conf. (OFC), Mar. 2007.

Luo, X.

X. Luo and B. Wang, “Service provisioning under a scheduled traffic model using light-trails in WDM optical networks,” in Proc. of IEEE Broadnets, 2007.

Mathew, A.

Mina, M.

N. A. Vanderhorn, S. Balasubramanian, M. Mina, and A. K. Somani, “Light-trail testbed for IP-centric applications,” IEEE Commun. Mag., vol. 43, no. 8, pp. S5–S10, Aug.2005.
[CrossRef]

Minton, R. B.

R. T. Smith and R. B. Minton, Calculus: Concepts and Connections. McGraw-Hill, 2006

Moges, M. A.

M. A. Moges and T. G. Robertazzi, “Divisible load scheduling and Markov chain models,” Comput. Math. Appl., vol. 52, pp. 1529–1542, 2006.
[CrossRef]

Naito, T.

A. Gumaste, P. Palacharla, and T. Naito, “Performance evaluation and demonstration of light-trails in shared wavelength optical networks (SWON),” in 31st European Conf. On Optical Communication (ECOC), Glasgow, 2005.

Palacharla, P.

A. Gumaste, P. Palacharla, and T. Naito, “Performance evaluation and demonstration of light-trails in shared wavelength optical networks (SWON),” in 31st European Conf. On Optical Communication (ECOC), Glasgow, 2005.

Rivest, R. L.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed. MIT Press, 2001.

Robertazzi, T. G.

M. A. Moges and T. G. Robertazzi, “Divisible load scheduling and Markov chain models,” Comput. Math. Appl., vol. 52, pp. 1529–1542, 2006.
[CrossRef]

Sharma, V.

A. Gumaste, J. Chandarana, P. Bafna, N. Ghani, and V. Sharma, “On control plane for service provisioning in light-trail WDM optical networks,” in 42nd IEEE Int. Conf. on Commun. (ICC), Glasgow, UK, 2007.

Smith, R. T.

R. T. Smith and R. B. Minton, Calculus: Concepts and Connections. McGraw-Hill, 2006

Somani, A.

Somani, A. K.

S. Balasubramanian and A. K. Somani, “Dynamic survivable network design for path level traffic grooming in WDM optical networks,” J. Netw., vol. 7, no. 8, pp. 759–782, Aug.2008.
[CrossRef]

S. Balasubramanian and A. K. Somani, “Path level traffic grooming in WDM metro optical networks,” IEEE Commun. Mag., vol. 46, no. 11, pp. 91–97, Nov.2008.
[CrossRef]

N. A. Vanderhorn, S. Balasubramanian, M. Mina, and A. K. Somani, “Light-trail testbed for IP-centric applications,” IEEE Commun. Mag., vol. 43, no. 8, pp. S5–S10, Aug.2005.
[CrossRef]

J. Fang and A. K. Somani, “IP traffic grooming over WDM optical networks,” in Proc. of 9th IFIP/IEEE Conf. on Optical Networks Design and Modeling (ONDM), Milan, Italy, Feb. 2005, pp. 393–402.

D. Lastine and A. K. Somani, “Fault tolerant multicast-couple hop routing over light-trails,” in Proc. of the 2008 IEEE ANTS Conf., Mumbai, Dec. 15, 2008, pp. 1–3.

Srivastava, S.

A. Gumaste, N. Ghani, P. Bafna, A. Lodha, S. Srivastava, T. Das, and S. Zheng, “Achieving multi-rate dynamic sub-wavelength service provisioning in strongly connected light-trails (SLiTs),” in Optical Fiber Communication Conf. (OFC), Mar. 2007.

A. Gumaste, N. Ghani, P. Bafna, A. Lodha, S. Srivastava, T. Das, and S. Zheng, “Achieving multi-rate dynamic sub-wavelength service provisioning in strongly connected light-trails (SLiTs),” in Optical Fiber Communication Conf. (OFC), Anaheim, CA, Mar. 2007.

Stein, C.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed. MIT Press, 2001.

Tang, J.

W. Zhang, G. Xue, J. Tang, and K. Thulasiraman, “Dynamic light trail routing and protection issues in WDM optical networks,” in IEEE Globecom, 2005, pp. 1963–1967.

Thulasiraman, K.

W. Zhang, G. Xue, J. Tang, and K. Thulasiraman, “Dynamic light trail routing and protection issues in WDM optical networks,” in IEEE Globecom, 2005, pp. 1963–1967.

Vanderhorn, N. A.

N. A. Vanderhorn, S. Balasubramanian, M. Mina, and A. K. Somani, “Light-trail testbed for IP-centric applications,” IEEE Commun. Mag., vol. 43, no. 8, pp. S5–S10, Aug.2005.
[CrossRef]

Wang, B.

X. Luo and B. Wang, “Service provisioning under a scheduled traffic model using light-trails in WDM optical networks,” in Proc. of IEEE Broadnets, 2007.

Wang, J.

A. Gumaste, N. Ghani, T. Das, P. Bafna, A. Agrawal, J. Wang, and S. Zheng, “DynaSPOT: Dynamic services provisioned optical transport test-bed—achieving multi-rate multi-service dynamic provisioning using strongly connected light-trail (SLiT) technology,” J. Lightwave Technol., Jan.2008.

A. Gumaste, J. Wang, A. Karandikar, and N. Ghani, “Multihop light-trail networks,” in 44th IEEE Int. Conf. on Communications (ICC), Dresden, Germany, 2009.

Xue, G.

W. Zhang, G. Xue, J. Tang, and K. Thulasiraman, “Dynamic light trail routing and protection issues in WDM optical networks,” in IEEE Globecom, 2005, pp. 1963–1967.

Zhang, W.

W. Zhang, G. Xue, J. Tang, and K. Thulasiraman, “Dynamic light trail routing and protection issues in WDM optical networks,” in IEEE Globecom, 2005, pp. 1963–1967.

Zheng, S.

A. Gumaste, N. Ghani, T. Das, P. Bafna, A. Agrawal, J. Wang, and S. Zheng, “DynaSPOT: Dynamic services provisioned optical transport test-bed—achieving multi-rate multi-service dynamic provisioning using strongly connected light-trail (SLiT) technology,” J. Lightwave Technol., Jan.2008.

A. Gumaste, N. Ghani, P. Bafna, A. Lodha, S. Srivastava, T. Das, and S. Zheng, “Achieving multi-rate dynamic sub-wavelength service provisioning in strongly connected light-trails (SLiTs),” in Optical Fiber Communication Conf. (OFC), Anaheim, CA, Mar. 2007.

A. Gumaste, N. Ghani, P. Bafna, A. Lodha, S. Srivastava, T. Das, and S. Zheng, “Achieving multi-rate dynamic sub-wavelength service provisioning in strongly connected light-trails (SLiTs),” in Optical Fiber Communication Conf. (OFC), Mar. 2007.

Zheng, S. Q.

A. Gumaste and S. Q. Zheng, “Optical storage area networks: The light-trails approach,” IEEE Commun. Mag., vol. 21, no. 3, pp. 72–78, Mar.2005.
[CrossRef]

Comput. Math. Appl. (1)

M. A. Moges and T. G. Robertazzi, “Divisible load scheduling and Markov chain models,” Comput. Math. Appl., vol. 52, pp. 1529–1542, 2006.
[CrossRef]

IEEE Commun. Lett. (1)

P. Bafna, A. Gumaste, and N. Ghani, “Delay sensitive smoothed round robin (DS2R2) scheduler for high speed optical networks,” IEEE Commun. Lett., vol. 11, no. 7, pp. 628–630, July2007.
[CrossRef]

IEEE Commun. Mag. (3)

N. A. Vanderhorn, S. Balasubramanian, M. Mina, and A. K. Somani, “Light-trail testbed for IP-centric applications,” IEEE Commun. Mag., vol. 43, no. 8, pp. S5–S10, Aug.2005.
[CrossRef]

A. Gumaste and S. Q. Zheng, “Optical storage area networks: The light-trails approach,” IEEE Commun. Mag., vol. 21, no. 3, pp. 72–78, Mar.2005.
[CrossRef]

S. Balasubramanian and A. K. Somani, “Path level traffic grooming in WDM metro optical networks,” IEEE Commun. Mag., vol. 46, no. 11, pp. 91–97, Nov.2008.
[CrossRef]

IEEE Trans. Commun. (1)

I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: An approach to high bandwidth optical WAN’s,” IEEE Trans. Commun., pp. 1171–1182, July1992.
[CrossRef]

J. Lightwave Technol. (1)

A. Gumaste, N. Ghani, T. Das, P. Bafna, A. Agrawal, J. Wang, and S. Zheng, “DynaSPOT: Dynamic services provisioned optical transport test-bed—achieving multi-rate multi-service dynamic provisioning using strongly connected light-trail (SLiT) technology,” J. Lightwave Technol., Jan.2008.

J. Netw. (1)

S. Balasubramanian and A. K. Somani, “Dynamic survivable network design for path level traffic grooming in WDM optical networks,” J. Netw., vol. 7, no. 8, pp. 759–782, Aug.2008.
[CrossRef]

J. Opt. Commun. Netw. (1)

J. Opt. Netw. (1)

Other (14)

A. Gumaste, N. Ghani, P. Bafna, A. Lodha, S. Srivastava, T. Das, and S. Zheng, “Achieving multi-rate dynamic sub-wavelength service provisioning in strongly connected light-trails (SLiTs),” in Optical Fiber Communication Conf. (OFC), Mar. 2007.

A. Gumaste, P. Palacharla, and T. Naito, “Performance evaluation and demonstration of light-trails in shared wavelength optical networks (SWON),” in 31st European Conf. On Optical Communication (ECOC), Glasgow, 2005.

W. Zhang, G. Xue, J. Tang, and K. Thulasiraman, “Dynamic light trail routing and protection issues in WDM optical networks,” in IEEE Globecom, 2005, pp. 1963–1967.

J. Fang and A. K. Somani, “IP traffic grooming over WDM optical networks,” in Proc. of 9th IFIP/IEEE Conf. on Optical Networks Design and Modeling (ONDM), Milan, Italy, Feb. 2005, pp. 393–402.

D. Lastine and A. K. Somani, “Fault tolerant multicast-couple hop routing over light-trails,” in Proc. of the 2008 IEEE ANTS Conf., Mumbai, Dec. 15, 2008, pp. 1–3.

A. Gumaste, J. Wang, A. Karandikar, and N. Ghani, “Multihop light-trail networks,” in 44th IEEE Int. Conf. on Communications (ICC), Dresden, Germany, 2009.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed. MIT Press, 2001.

R. T. Smith and R. B. Minton, Calculus: Concepts and Connections. McGraw-Hill, 2006

A. Gumaste, J. Chandarana, P. Bafna, N. Ghani, and V. Sharma, “On control plane for service provisioning in light-trail WDM optical networks,” in 42nd IEEE Int. Conf. on Commun. (ICC), Glasgow, UK, 2007.

X. Luo and B. Wang, “Service provisioning under a scheduled traffic model using light-trails in WDM optical networks,” in Proc. of IEEE Broadnets, 2007.

A. Gumaste, N. Ghani, P. Bafna, A. Lodha, S. Srivastava, T. Das, and S. Zheng, “Achieving multi-rate dynamic sub-wavelength service provisioning in strongly connected light-trails (SLiTs),” in Optical Fiber Communication Conf. (OFC), Anaheim, CA, Mar. 2007.

Report on Internet Traffic 2008 [Online]. Available: http://www.heavyreading.com.

IEEE Provider Backbone Bridging Standard, IEEE 802.1ay.

G. Chuanxiong, “An O(1) time-complexity packet scheduler for flows in multi-service packet networks,” in ACM Proc. SIGCOMM, San Diego, CA, 2001, pp. 211–222.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

(Color online) (a) Light-trail node architecture. (b) The concept of multi-hop light-trails.

Fig. 2
Fig. 2

(Color online) Multi-hop light-trail.

Fig. 3
Fig. 3

Graph theoretic representation of light-trail LT 1 .

Fig. 4
Fig. 4

Graph theoretic representation of the network in Fig. 2.

Fig. 5
Fig. 5

(Color online) Graph theoretic representation of the MLT in Fig. 2.

Fig. 6
Fig. 6

(Color online) Multi-hop light-trails with crossover nodes.

Fig. 7
Fig. 7

(Color online) MLT crossover snapshot.

Fig. 8
Fig. 8

(Color online) Classification of the delay model.

Fig. 9
Fig. 9

(Color online) The single-hop light-trail case.

Fig. 10
Fig. 10

(Color online) Effect of the unidirectional property of light-trails.

Fig. 11
Fig. 11

(Color online) Network topology used for simulations.

Fig. 12
Fig. 12

Number of light-trails for different schemes.

Fig. 13
Fig. 13

Number wavelengths using different techniques.

Fig. 14
Fig. 14

VLAN-cross-connect fabric utilization using different schemes.

Fig. 15
Fig. 15

(Color online) Amount of traffic provisioned with and without MLTs.

Fig. 16
Fig. 16

(Color online) Average delay experienced with and without MLTs.

Fig. 17
Fig. 17

(Color online) Blocking probability with and without MLTs.

Equations (39)

Equations on this page are rendered with MathJax. Learn more.

min k = 1 K Ω k , where
Ω k = { 1 , if light-trail  k  is chosen to be used from  L , 0 , otherwise ,
a L , Ω a = 1 , N i , N j G , γ i j a = 1 ,
a , b L , Ω a = 1 , Ω b = 1 , N i , N j G , θ i j a b = 1 ,
γ i j a = { 1 , if traffic  T i j  is assigned to light-trail  k a , 0 , otherwise ,
θ i j a b = { 1 , if traffic  T i j  is assigned to light-trail  k a , k b , 0 , otherwise .
q i k = { = 1 , if node  N i  subtends light-trail  k , = 0 , otherwise .
a = 1 K γ i j a Ω a = 1 , T i j > 0 (single-hop case) or
a = 1 K θ i j a b Ω a + b = 1 K θ i j a b Ω b = 1 , T i j > 0 (two-hop case) .
{ δ k γ i j k , θ i j k b } + δ k i j | γ i j k , θ i j k b < D i j , for the single-hop case ,
{ δ a γ i j a , θ i j a b + δ b γ i j a , θ i j a b } + δ a i m | γ i j a , θ i j a b + δ b m j | γ i j a , θ i j a b < D i j , N m k b ,
a , b K T i j θ i j a b q i k < C , k a , k b L (single-hop case) and
a , b K ( T i j θ i j a b q i k + T i j γ i j a b ) < C , k a , k b L (two-hop case) .
i , j . k ( T i j θ i j k b + T i j γ i j k ) C .
min k = 1 K Ω k ,
Then , T i j : T i j : E g i j Ω g = 1 , g Ω .
g δ g i j E g i j < D i j N i , N j G ,
if  ( N i H i j , H i j H ) , σ ( i ) = σ ( i ) + T i j
endif
σ ( i ) C ,
σ ( i ) Y i k < C ,
Q i k h = λ i k h Δ h C T S ,
δ i k h = Δ h Q i k h = ( λ min k λ i k h ) Δ h .
δ s h = δ s k 1 h + δ N CoN k 1 , k 2 k 2 h ,
λ ̄ i k h / μ i k h 1 .
T s k 1 h = i : N i C o N k 1 , k 2 ( p i μ i k 1 h λ ̄ i k 1 h ) .
Δ i = | 2 T s k 1 h p 1 2 2 T s k 1 h p 1 p 2 2 T s k 1 h p 1 p i 2 T s k 1 h p 2 p 1 2 T s k 1 h p 2 2 2 T s k 1 h p 2 p i 2 T s k 1 h p n p 1 2 T s k 1 h p n p 2 2 T s k 1 h p i 2 | ,
2 T s k 1 h p j p i = { 2 λ s k 1 h ( μ | CoN k 1 , k 2 | k 1 h λ | CoN k 1 , k 2 | k 1 h ) ( μ | CoN k 1 , k 2 | k 1 h λ ̄ | CoN k 1 , k 2 | k 1 h ) 3 = a 0 , if  i j , 2 λ s k 1 h [ ( μ i k 1 h λ i k 1 h ) ( μ i k 1 h λ ̄ i k 1 h ) 3 + ( μ | CoN k 1 , k 2 | k 1 h λ | CoN k 1 , k 2 | k 1 h ) ( μ | CoN k 1 , k 2 | k 1 h λ ̄ | CoN k 1 , k 2 | k 1 h ) 3 ] = a i + a 0 , i = j .
Δ i = | a 1 + a 0 a 0 a 0 a 0 a 2 + a 0 a 0 a 0 a 0 a i + a 0 | = | a 1 0 0 0 a 2 0 0 0 a i | + a 0 | 1 1 1 1 1 1 1 1 1 | = | a 1 0 0 0 a 2 0 0 0 a i | ,
as  | 1 1 1 1 1 1 1 1 1 | = 0 .
T s k 1 h p i = 0 , i = 1 , 2 , , ( | CoN k 1 , k 2 | 1 ) ,
[ 1 + Ω 1 1 1 1 1 + Ω 2 1 1 1 1 + Ω | C o N k 1 , k 2 | 1 ] [ p 1 p 2 p | C o N k 1 , k 2 | 1 ] = [ 1 1 1 ] ,
δ i h = j : N i CoN k 1 , k 2 p j ( δ i k 1 h + δ N j k 2 h ) = δ i k 1 h + j : N i CoN k 1 , k 2 p j δ N j k 2 h .
δ i h = δ i k 1 h + δ N 1 * k 1 h + + δ N n 1 * k n h .
δ i h = δ i k 1 h + 1 n 1 m = 1 n 1 i : N i CoN k m , k m + 1 p i m δ N i k m + 1 h .
δ s h = δ s k 1 h + δ N CoN k 1 , k 2 k 2 h = T S ( 1 P succ i k 1 + 1 P succ N CoN k 1 , k 2 k 2 ) .
δ i h = δ i k 1 h + i : N i CoN k 1 , k 2 p i δ N i k 2 h = T S ( 1 P succ i k 1 + i : N i CoN k 1 , k 2 p i P succ N i k 2 ) .
δ i h = δ i k 1 h + δ N 1 * k 2 h + + δ N n 1 * k n h = T S ( 1 P succ i k 1 + 1 P succ N 1 * k 2 + + 1 P succ N n 1 * k n ) .
δ i h = δ i k 1 h + 1 n 1 m = 1 n 1 i : N i CoN k m , k m + 1 p i m δ N i k m + 1 h = 1 P succ i k 1 + 1 n 1 m = 1 n 1 i : N i CoN k m , k m + 1 p i m P succ N i k m + 1 .