Abstract

Traffic in telecom networks is increasing rapidly, and it has been a challenging task to plan and upgrade network capacities for this increasing traffic, keeping the cost of resources within a targeted budget. Besides handling this drastic growth in traffic, future optical networks are also expected to be increasingly heterogeneous with respect to services supported and underlying technologies employed. To support this heterogeneous volume of traffic, mixed-line-rate (MLR) optical networks with line rates of 10, 40, and 100 Gbps have been shown to be effective. In the case of a greenfield network design, i.e., when planning capacities for a new network, MLR networks have been shown to be cost efficient as well as energy efficient in some recent studies. The concept of an MLR network is evolutionary, starting from a 10G single-line-rate network to a coexistence of multiple line rates in the same network as capacities on some links are periodically upgraded from 10G per wavelength to 40G and 100G per wavelength with traffic growth. Therefore, from a network-upgrade perspective, an important issue is to devise a cost-optimized migration strategy from 10G to 40G to 100G and beyond, given a traffic growth model. However, energy consumption in different elements in the network, especially in those elements whose energy consumption depends on the bandwidth of the traffic that they are handling, is also an important parameter to consider. Therefore, the ultimate question is: Can an MLR be a good candidate for energy-efficient and cost-efficient upgrade? In this study, we investigate the energy-efficient and cost-efficient MLR network-upgrade problem. In this context, we also study the effect of network connection disruption on energy-efficient and cost-efficient MLR network upgrade. In general, the service provider’s aim would be to have as few disruptions as possible during capacity upgrade, as disruptions may induce service degradation. Our results show that the amount of disruptions has a conflicting effect on energy-efficient and cost-efficient upgrade in MLR networks, and we develop an optimized upgrade strategy so that both cost and energy are kept within a certain limit.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Nag, M. Tornatore, and B. Mukherjee, “Optical network design with mixed line rates and multiple modulation formats,” J. Lightwave Technol., vol. 28, no. 4, pp. 466–475, Feb.2010.
    [CrossRef]
  2. P. Chowdhury, M. Tornatore, A. Nag, E. Ip, T. Wang, and B. Mukherjee, “On the design of energy-efficient mixed-line-rate (MLR) optical networks,” J. Lightwave Technol., vol. 30, no. 1, pp. 130–139, Jan.2012.
    [CrossRef]
  3. C. Meusburger, D. Schupke, and A. Lord, “Optimizing the migration of channels with higher bitrates,” J. Lightwave Technol., vol. 28, no. 4, pp. 608–615, Feb.2010.
    [CrossRef]
  4. M. De Andrade, M. Tornatore, S. Sallent, and B. Mukherjee, “Optimizing the migration to future-generation passive optical networks (PON),” IEEE Syst. J., vol. 4, no. 4, pp. 413–423, Dec.2010.
    [CrossRef]
  5. A. Klekamp, U. Gebhard, and F. Ilchmann, “Energy and cost efficiency of adaptive and mixed-line-rate IP over DWDM networks,” J. Lightwave Technol., vol. 30, no. 2, pp. 215–221, Jan.2012.
    [CrossRef]
  6. C. Meusburger, D. A. Schupke, and J. Eberspcher, “Multiperiod planning for optical networks—approaches based on cost optimization and limited budget,” in Proc. ICC, Beijing, May 2008.
  7. N. Geary, A. Antonopoulos, E. Drakopoulos, and J. O’Reilly, “Analysis of optimization issues in multi-period DWDM network planning,” in Proc. INFOCOM, 2001, pp. 152–158.
  8. F. Idzikowski, “Power consumption of network elements in IP over WDM networks,” Tech. Rep., TU Berlin, Germany, July2009.
  9. Transmode TM-series data sheet, 2010 [Online]. Available: http://www.transmode.com/.
  10. R. Saunders, G. Nicholl, K. Wellenweber, and T. Schmidt, “Can 100 Gb/s wavelengths be deployed using 10 Gb/s engineering rules?” Proc. SPIE, vol. 6774, 67740B, 2007.

2012 (2)

2010 (3)

A. Nag, M. Tornatore, and B. Mukherjee, “Optical network design with mixed line rates and multiple modulation formats,” J. Lightwave Technol., vol. 28, no. 4, pp. 466–475, Feb.2010.
[CrossRef]

M. De Andrade, M. Tornatore, S. Sallent, and B. Mukherjee, “Optimizing the migration to future-generation passive optical networks (PON),” IEEE Syst. J., vol. 4, no. 4, pp. 413–423, Dec.2010.
[CrossRef]

C. Meusburger, D. Schupke, and A. Lord, “Optimizing the migration of channels with higher bitrates,” J. Lightwave Technol., vol. 28, no. 4, pp. 608–615, Feb.2010.
[CrossRef]

2007 (1)

R. Saunders, G. Nicholl, K. Wellenweber, and T. Schmidt, “Can 100 Gb/s wavelengths be deployed using 10 Gb/s engineering rules?” Proc. SPIE, vol. 6774, 67740B, 2007.

Antonopoulos, A.

N. Geary, A. Antonopoulos, E. Drakopoulos, and J. O’Reilly, “Analysis of optimization issues in multi-period DWDM network planning,” in Proc. INFOCOM, 2001, pp. 152–158.

Chowdhury, P.

De Andrade, M.

M. De Andrade, M. Tornatore, S. Sallent, and B. Mukherjee, “Optimizing the migration to future-generation passive optical networks (PON),” IEEE Syst. J., vol. 4, no. 4, pp. 413–423, Dec.2010.
[CrossRef]

Drakopoulos, E.

N. Geary, A. Antonopoulos, E. Drakopoulos, and J. O’Reilly, “Analysis of optimization issues in multi-period DWDM network planning,” in Proc. INFOCOM, 2001, pp. 152–158.

Eberspcher, J.

C. Meusburger, D. A. Schupke, and J. Eberspcher, “Multiperiod planning for optical networks—approaches based on cost optimization and limited budget,” in Proc. ICC, Beijing, May 2008.

Geary, N.

N. Geary, A. Antonopoulos, E. Drakopoulos, and J. O’Reilly, “Analysis of optimization issues in multi-period DWDM network planning,” in Proc. INFOCOM, 2001, pp. 152–158.

Gebhard, U.

Idzikowski, F.

F. Idzikowski, “Power consumption of network elements in IP over WDM networks,” Tech. Rep., TU Berlin, Germany, July2009.

Ilchmann, F.

Ip, E.

Klekamp, A.

Lord, A.

Meusburger, C.

C. Meusburger, D. Schupke, and A. Lord, “Optimizing the migration of channels with higher bitrates,” J. Lightwave Technol., vol. 28, no. 4, pp. 608–615, Feb.2010.
[CrossRef]

C. Meusburger, D. A. Schupke, and J. Eberspcher, “Multiperiod planning for optical networks—approaches based on cost optimization and limited budget,” in Proc. ICC, Beijing, May 2008.

Mukherjee, B.

P. Chowdhury, M. Tornatore, A. Nag, E. Ip, T. Wang, and B. Mukherjee, “On the design of energy-efficient mixed-line-rate (MLR) optical networks,” J. Lightwave Technol., vol. 30, no. 1, pp. 130–139, Jan.2012.
[CrossRef]

M. De Andrade, M. Tornatore, S. Sallent, and B. Mukherjee, “Optimizing the migration to future-generation passive optical networks (PON),” IEEE Syst. J., vol. 4, no. 4, pp. 413–423, Dec.2010.
[CrossRef]

A. Nag, M. Tornatore, and B. Mukherjee, “Optical network design with mixed line rates and multiple modulation formats,” J. Lightwave Technol., vol. 28, no. 4, pp. 466–475, Feb.2010.
[CrossRef]

Nag, A.

P. Chowdhury, M. Tornatore, A. Nag, E. Ip, T. Wang, and B. Mukherjee, “On the design of energy-efficient mixed-line-rate (MLR) optical networks,” J. Lightwave Technol., vol. 30, no. 1, pp. 130–139, Jan.2012.
[CrossRef]

A. Nag, M. Tornatore, and B. Mukherjee, “Optical network design with mixed line rates and multiple modulation formats,” J. Lightwave Technol., vol. 28, no. 4, pp. 466–475, Feb.2010.
[CrossRef]

Nicholl, G.

R. Saunders, G. Nicholl, K. Wellenweber, and T. Schmidt, “Can 100 Gb/s wavelengths be deployed using 10 Gb/s engineering rules?” Proc. SPIE, vol. 6774, 67740B, 2007.

O’Reilly, J.

N. Geary, A. Antonopoulos, E. Drakopoulos, and J. O’Reilly, “Analysis of optimization issues in multi-period DWDM network planning,” in Proc. INFOCOM, 2001, pp. 152–158.

Sallent, S.

M. De Andrade, M. Tornatore, S. Sallent, and B. Mukherjee, “Optimizing the migration to future-generation passive optical networks (PON),” IEEE Syst. J., vol. 4, no. 4, pp. 413–423, Dec.2010.
[CrossRef]

Saunders, R.

R. Saunders, G. Nicholl, K. Wellenweber, and T. Schmidt, “Can 100 Gb/s wavelengths be deployed using 10 Gb/s engineering rules?” Proc. SPIE, vol. 6774, 67740B, 2007.

Schmidt, T.

R. Saunders, G. Nicholl, K. Wellenweber, and T. Schmidt, “Can 100 Gb/s wavelengths be deployed using 10 Gb/s engineering rules?” Proc. SPIE, vol. 6774, 67740B, 2007.

Schupke, D.

Schupke, D. A.

C. Meusburger, D. A. Schupke, and J. Eberspcher, “Multiperiod planning for optical networks—approaches based on cost optimization and limited budget,” in Proc. ICC, Beijing, May 2008.

Tornatore, M.

P. Chowdhury, M. Tornatore, A. Nag, E. Ip, T. Wang, and B. Mukherjee, “On the design of energy-efficient mixed-line-rate (MLR) optical networks,” J. Lightwave Technol., vol. 30, no. 1, pp. 130–139, Jan.2012.
[CrossRef]

M. De Andrade, M. Tornatore, S. Sallent, and B. Mukherjee, “Optimizing the migration to future-generation passive optical networks (PON),” IEEE Syst. J., vol. 4, no. 4, pp. 413–423, Dec.2010.
[CrossRef]

A. Nag, M. Tornatore, and B. Mukherjee, “Optical network design with mixed line rates and multiple modulation formats,” J. Lightwave Technol., vol. 28, no. 4, pp. 466–475, Feb.2010.
[CrossRef]

Wang, T.

Wellenweber, K.

R. Saunders, G. Nicholl, K. Wellenweber, and T. Schmidt, “Can 100 Gb/s wavelengths be deployed using 10 Gb/s engineering rules?” Proc. SPIE, vol. 6774, 67740B, 2007.

J. Lightwave Technol. (1)

A. Nag, M. Tornatore, and B. Mukherjee, “Optical network design with mixed line rates and multiple modulation formats,” J. Lightwave Technol., vol. 28, no. 4, pp. 466–475, Feb.2010.
[CrossRef]

IEEE Syst. J. (1)

M. De Andrade, M. Tornatore, S. Sallent, and B. Mukherjee, “Optimizing the migration to future-generation passive optical networks (PON),” IEEE Syst. J., vol. 4, no. 4, pp. 413–423, Dec.2010.
[CrossRef]

J. Lightwave Technol. (3)

Proc. SPIE (1)

R. Saunders, G. Nicholl, K. Wellenweber, and T. Schmidt, “Can 100 Gb/s wavelengths be deployed using 10 Gb/s engineering rules?” Proc. SPIE, vol. 6774, 67740B, 2007.

Other (4)

C. Meusburger, D. A. Schupke, and J. Eberspcher, “Multiperiod planning for optical networks—approaches based on cost optimization and limited budget,” in Proc. ICC, Beijing, May 2008.

N. Geary, A. Antonopoulos, E. Drakopoulos, and J. O’Reilly, “Analysis of optimization issues in multi-period DWDM network planning,” in Proc. INFOCOM, 2001, pp. 152–158.

F. Idzikowski, “Power consumption of network elements in IP over WDM networks,” Tech. Rep., TU Berlin, Germany, July2009.

Transmode TM-series data sheet, 2010 [Online]. Available: http://www.transmode.com/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(Color online) Different transponder pairings due to re-optimization.

Fig. 2
Fig. 2

(Color online) Flow chart for energy-efficient MLR network update.

Fig. 3
Fig. 3

8-node topology (link lengths in km).

Fig. 4
Fig. 4

(Color online) The effect of connection disruption on energy-efficient MLR network upgrade.

Fig. 5
Fig. 5

(Color online) The effect of connection disruption on cost-efficient MLR network upgrade.

Fig. 6
Fig. 6

Breakdown of transponder counts for different nodes at different upgrade periods for zero disruption for cost-effective upgrade.

Fig. 7
Fig. 7

Breakdown of transponder counts for different nodes at different upgrade periods for disruption = 10 for cost-effective upgrade.

Fig. 8
Fig. 8

Breakdown of transponder counts for different nodes at different upgrade periods for disruption = 20 for cost-effective upgrade.

Fig. 9
Fig. 9

Breakdown of transponder counts for different nodes at different upgrade periods for disruption = 40 for cost-effective upgrade.

Tables (3)

Tables Icon

Table I Traffic Matrix for an 8-Node Network (Each Entry in Units of Gbps, Total = 250 Gbps)

Tables Icon

Table II Cost Comparison for Energy- and Cost-Optimized Upgrade

Tables Icon

Table III Energy Consumption Comparison for Energy- and Cost-Optimized Upgrade

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

Min i , j k λ X i , j , k , λ E k + m , n A m n F m n E a + j Z j E p ,
λ k r k α i , j , k , λ X i , j , k , λ s , d f i j s d i , j ,
i , j P m n k α i , j , k . λ X i , j , k , λ F m n m , n , λ ,
Z j = s , d i f i j s d i s j d ,
i f i j s d i f j i s d = { Λ s d if  s = j Λ s d if  d = j 0 otherwise ( i , j ) .
Y i j k λ X i j k λ [ n 1 ] X i j k λ i , j , k , λ ,
λ k i j Y i j k λ D ,
Y i j k λ 0 ,
T i k λ s j X i j k λ s = i , k , λ ,
T j k λ d i X i j k λ d = j , k , λ .
τ i k λ s T i k λ s max t = 1 , 2 , , n 1 T i k λ s [t] ,
τ i k λ s 0 ,
τ j k λ d T j k λ d max t = 1 , 2 , , n 1 T j k λ d [t] ,
τ j k λ d 0 ,
τ i k λ s max t = 1 , 2 , , n 1 T i k λ s [t] T i k λ s ,
τ i k λ s 0 .
τ j k λ d max t = 1 , 2 , , n 1 T j k λ d [t] T j k λ d ,
τ j k λ d 0 .
Cost s = C k s τ i k λ s + ϵ ( max t = 1 , 2 , , n 1 T i k λ s [t] τ i k λ s ) ,
Cost d = C k d τ j k λ d + ϵ ( max t = 1 , 2 , , n 1 T j k λ d [t] τ j k λ d ) .
Cost s = C k s τ i k λ s + ϵ ( max t = 1 , 2 , , n 1 T i k λ s [t] ) ,
Cost d = C k d τ j k λ d + ϵ ( max t = 1 , 2 , , n 1 T j k λ d [t] ) .
Cost s = ϵ ( max t = 1 , 2 , , n 1 T i k λ s [t] τ i k λ s ) ,
Cost d = ϵ ( max t = 1 , 2 , , n 1 T j k λ d [t] τ i k λ d ) .
Min k i λ [ C k s τ i k λ s + ϵ ( max t = 1 , 2 , , n 1 T i k λ s [t] τ i k λ s ) ] + k j λ [ C k d τ j k λ d + ϵ ( max t = 1 , 2 , , n 1 T j k λ d [t] τ j k λ d ) ] + m , n A m n F m n C a ,
Min i k λ T i k λ s E k s + j k λ T j k λ d E k d + m , n A m n F m n E a + j Z j E p ,