Abstract

In this work, we compare 4-pulse amplitude modulation and on–off keying modulation formats at high speed for short-range optical communication systems. The transmission system comprised a directly modulated vertical-cavity surface-emitting laser operating at a wavelength of 850 nm, an OM3+ multimode fiber link, and a photodetector detecting the intensity at the receiver end. The modulation formats were compared both at the same bit-rate and at the same symbol rate. The maximum bit-rate used was 25 Gbps. Propagation distances up to 600 m were investigated at 12.5 Gbps. All measurements were done in real time and without any equalization.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett., vol. 46, no. 14, pp. 1014–1016, July2010.
    [CrossRef]
  2. W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44 Gb/s VCSEL for optical interconnects,” in Proc. OFC, Mar. 2011, PDPC5.
  3. K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” in Proc. ECOC, Sept. 2010, We.7.B.2.
  4. S. C. J. Lee, F. Breyer, S. Randel, D. Cardenas, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” in Proc. OFC, Mar. 2009, OWM2.
  5. S. Randel, F. Breyer, and S. C. J. Lee, “High-speed transmission over multimode optical fibers,” in Proc. OFC, Feb. 2008, OWR2.
  6. J. R. Kahn and J. M. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, Feb.1997.
    [CrossRef]
  7. D. Watanabe, A. Ono, and T. Okayasu, “CMOS optical 4-PAM VCSEL driver with modal-dispersion equalizer for 10 Gb/s 500 m MMF transmission,” in Proc. ISSCC, Feb. 2009, pp. 106–107.
  8. T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 954–965, Apr.2006.
    [CrossRef]
  9. S. Walklin and J. Conradi, “Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems,” J. Lightwave Technol., vol. 17, no. 11, pp. 2235–2248, Nov.1999.
    [CrossRef]
  10. J. D. Ingham, R. V. Penty, and I. H. White, “10 Gb/s & 20 Gb/s extended-reach multimode-fiber datacommunication links using multilevel modulation and transmitter-based equalization,” in Proc. OFC, Feb. 2008, OTuO7.
  11. J. D. Ingham, R. V. Penty, I. H. White, P. Westbergh, J. S. Gustavsson, Å. Haglund, and A. Larsson, “32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation datacommunication standards,” in Proc. CLEO, May 2011, CWJ2.
  12. J. E. Cunningham, D. Beckman, X. Zheng, D. Huang, T. Sze, and A. V. Krishnamoorthy, “PAM-4 signaling over VCSELs with 0.13 µm CMOS chip technology,” Opt. Express, vol. 14, no. 25, pp. 12028–12038, Dec.2006.
    [CrossRef] [PubMed]
  13. K. Szczerba, P. Westbergh, J. S. Gustavsson, Å. Haglund, J. Karout, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” in Proc. ECOC, Sept. 2011, Tu.3.C.
  14. K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” Opt. Express, vol. 19, no. 26, pp. B203–B208, Dec.2011.
    [CrossRef] [PubMed]
  15. J. K. Pollard, “Multilevel data communication over optical fibre,” IEE Proc.-Commun., vol. 138, no. 3, pp. 162–168, June1991.
  16. J. G. Proakis and M. Salehi, Digital Communications. 5th ed.McGraw-Hill, New York, 2008.
  17. E. Agrell, J. Lassing, E. G. Ström, and T. Ottosson, “On the optimality of the binary reflected Gray code,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3170–3182, Dec.2004.
    [CrossRef]
  18. G. P. Agrawal, Lightwave Technology: Telecommunication Systems. Wiley Interscience, New York, 2005.
  19. J. Gimlett and N. Cheung, “Dispersion penalty analysis for LED/single-mode fiber transmission systems,” J. Lightwave Technol., vol. 4, no. 9, pp. 1381–1392, Sept.1986.
    [CrossRef]
  20. D. Cunningham, M. Nowell, D. Hanson, and L. Kazovsky, The IEEE 802.3z Worst Case Link Model for Optical Physical Media Dependent Specification [Online]. Available: http://www.ieee802.org/3/z/public/presentations/mar1997/DCwpaper.pdf.
  21. IEEE 802.3ae 10G Ethernet optical link budget spreadsheet [Online]. Available: http://ieee802.org/3/10G_study/public/email_attach/All_1250v2.xls.
  22. J. D. Ingham, R. V. Penty, and I. H. White, “Modulation formats for next-generation optical datacommunications,” in Proc. ICTON, June 2011, Mo.C1.2.
  23. J. D. Ingham, R. V. Penty, I. H. White, and D. Cunningham, “40 Gb/s carrierless amplitude and phase modulation for low-cost optical datacommunication links,” in Proc. OFC, Mar. 2011, OThZ3.
  24. P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett., vol. 45, no. 7, pp. 366–368, Mar.2009.
    [CrossRef]
  25. G. Brown, “Bandwidth and rise time calculations for digital multimode fiber-optic data links,” J. Lightwave Technol., vol. 10, no. 5, pp. 672–678, May1992.
    [CrossRef]
  26. A. M. E.-A. Diab, J. D. Ingham, R. V. Penty, and I. H. White, “Statistical analysis of subcarrier-modulated transmission over 300 m of 62.5-µm-core-diameter multimode fiber,” J. Lightwave Technol., vol. 23, no. 8, pp. 2380–2398, Aug.2005.
    [CrossRef]
  27. W. I. Way, Broadband Hybrid Fiber Coax Access System Technologies, 1st ed.Academic Press, Orlando, FL, 1998.
  28. M. Atef, R. Swoboda, and H. Zimmermann, “170 Mb/s multilevel transmission over 115 m standard step-index plastic optical fiber using an integrated optical receiver,” Opt. Commun., vol. 284, no. 1, pp. 191–194, 2011.
    [CrossRef]
  29. IEEE Standard for Information Technology—Telecommun ications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements, IEEE Std 802.3ba-2010, 2010.

2011 (2)

M. Atef, R. Swoboda, and H. Zimmermann, “170 Mb/s multilevel transmission over 115 m standard step-index plastic optical fiber using an integrated optical receiver,” Opt. Commun., vol. 284, no. 1, pp. 191–194, 2011.
[CrossRef]

K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” Opt. Express, vol. 19, no. 26, pp. B203–B208, Dec.2011.
[CrossRef] [PubMed]

2010 (1)

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett., vol. 46, no. 14, pp. 1014–1016, July2010.
[CrossRef]

2009 (1)

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett., vol. 45, no. 7, pp. 366–368, Mar.2009.
[CrossRef]

2006 (2)

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 954–965, Apr.2006.
[CrossRef]

J. E. Cunningham, D. Beckman, X. Zheng, D. Huang, T. Sze, and A. V. Krishnamoorthy, “PAM-4 signaling over VCSELs with 0.13 µm CMOS chip technology,” Opt. Express, vol. 14, no. 25, pp. 12028–12038, Dec.2006.
[CrossRef] [PubMed]

2005 (1)

2004 (1)

E. Agrell, J. Lassing, E. G. Ström, and T. Ottosson, “On the optimality of the binary reflected Gray code,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3170–3182, Dec.2004.
[CrossRef]

1999 (1)

1997 (1)

J. R. Kahn and J. M. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, Feb.1997.
[CrossRef]

1992 (1)

G. Brown, “Bandwidth and rise time calculations for digital multimode fiber-optic data links,” J. Lightwave Technol., vol. 10, no. 5, pp. 672–678, May1992.
[CrossRef]

1991 (1)

J. K. Pollard, “Multilevel data communication over optical fibre,” IEE Proc.-Commun., vol. 138, no. 3, pp. 162–168, June1991.

1986 (1)

J. Gimlett and N. Cheung, “Dispersion penalty analysis for LED/single-mode fiber transmission systems,” J. Lightwave Technol., vol. 4, no. 9, pp. 1381–1392, Sept.1986.
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Lightwave Technology: Telecommunication Systems. Wiley Interscience, New York, 2005.

Agrell, E.

K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” Opt. Express, vol. 19, no. 26, pp. B203–B208, Dec.2011.
[CrossRef] [PubMed]

E. Agrell, J. Lassing, E. G. Ström, and T. Ottosson, “On the optimality of the binary reflected Gray code,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3170–3182, Dec.2004.
[CrossRef]

K. Szczerba, P. Westbergh, J. S. Gustavsson, Å. Haglund, J. Karout, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” in Proc. ECOC, Sept. 2011, Tu.3.C.

Andrekson, P. A.

K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” Opt. Express, vol. 19, no. 26, pp. B203–B208, Dec.2011.
[CrossRef] [PubMed]

K. Szczerba, P. Westbergh, J. S. Gustavsson, Å. Haglund, J. Karout, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” in Proc. ECOC, Sept. 2011, Tu.3.C.

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” in Proc. ECOC, Sept. 2010, We.7.B.2.

Atef, M.

M. Atef, R. Swoboda, and H. Zimmermann, “170 Mb/s multilevel transmission over 115 m standard step-index plastic optical fiber using an integrated optical receiver,” Opt. Commun., vol. 284, no. 1, pp. 191–194, 2011.
[CrossRef]

Barry, J. M.

J. R. Kahn and J. M. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, Feb.1997.
[CrossRef]

Beckman, D.

Bimberg, D.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett., vol. 46, no. 14, pp. 1014–1016, July2010.
[CrossRef]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett., vol. 45, no. 7, pp. 366–368, Mar.2009.
[CrossRef]

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44 Gb/s VCSEL for optical interconnects,” in Proc. OFC, Mar. 2011, PDPC5.

Breyer, F.

S. C. J. Lee, F. Breyer, S. Randel, D. Cardenas, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” in Proc. OFC, Mar. 2009, OWM2.

S. Randel, F. Breyer, and S. C. J. Lee, “High-speed transmission over multimode optical fibers,” in Proc. OFC, Feb. 2008, OWR2.

Brown, G.

G. Brown, “Bandwidth and rise time calculations for digital multimode fiber-optic data links,” J. Lightwave Technol., vol. 10, no. 5, pp. 672–678, May1992.
[CrossRef]

Buchmann, P.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 954–965, Apr.2006.
[CrossRef]

Cardenas, D.

S. C. J. Lee, F. Breyer, S. Randel, D. Cardenas, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” in Proc. OFC, Mar. 2009, OWM2.

Cheung, N.

J. Gimlett and N. Cheung, “Dispersion penalty analysis for LED/single-mode fiber transmission systems,” J. Lightwave Technol., vol. 4, no. 9, pp. 1381–1392, Sept.1986.
[CrossRef]

Conradi, J.

Cunningham, D.

D. Cunningham, M. Nowell, D. Hanson, and L. Kazovsky, The IEEE 802.3z Worst Case Link Model for Optical Physical Media Dependent Specification [Online]. Available: http://www.ieee802.org/3/z/public/presentations/mar1997/DCwpaper.pdf.

J. D. Ingham, R. V. Penty, I. H. White, and D. Cunningham, “40 Gb/s carrierless amplitude and phase modulation for low-cost optical datacommunication links,” in Proc. OFC, Mar. 2011, OThZ3.

Cunningham, J. E.

Diab, A. M. E.-A.

Fiol, G.

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett., vol. 45, no. 7, pp. 366–368, Mar.2009.
[CrossRef]

Gimlett, J.

J. Gimlett and N. Cheung, “Dispersion penalty analysis for LED/single-mode fiber transmission systems,” J. Lightwave Technol., vol. 4, no. 9, pp. 1381–1392, Sept.1986.
[CrossRef]

Gustavsson, J. S.

K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” Opt. Express, vol. 19, no. 26, pp. B203–B208, Dec.2011.
[CrossRef] [PubMed]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett., vol. 46, no. 14, pp. 1014–1016, July2010.
[CrossRef]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett., vol. 45, no. 7, pp. 366–368, Mar.2009.
[CrossRef]

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” in Proc. ECOC, Sept. 2010, We.7.B.2.

J. D. Ingham, R. V. Penty, I. H. White, P. Westbergh, J. S. Gustavsson, Å. Haglund, and A. Larsson, “32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation datacommunication standards,” in Proc. CLEO, May 2011, CWJ2.

K. Szczerba, P. Westbergh, J. S. Gustavsson, Å. Haglund, J. Karout, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” in Proc. ECOC, Sept. 2011, Tu.3.C.

Haglund, Å.

K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” Opt. Express, vol. 19, no. 26, pp. B203–B208, Dec.2011.
[CrossRef] [PubMed]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett., vol. 46, no. 14, pp. 1014–1016, July2010.
[CrossRef]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett., vol. 45, no. 7, pp. 366–368, Mar.2009.
[CrossRef]

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” in Proc. ECOC, Sept. 2010, We.7.B.2.

K. Szczerba, P. Westbergh, J. S. Gustavsson, Å. Haglund, J. Karout, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” in Proc. ECOC, Sept. 2011, Tu.3.C.

J. D. Ingham, R. V. Penty, I. H. White, P. Westbergh, J. S. Gustavsson, Å. Haglund, and A. Larsson, “32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation datacommunication standards,” in Proc. CLEO, May 2011, CWJ2.

Hanson, D.

D. Cunningham, M. Nowell, D. Hanson, and L. Kazovsky, The IEEE 802.3z Worst Case Link Model for Optical Physical Media Dependent Specification [Online]. Available: http://www.ieee802.org/3/z/public/presentations/mar1997/DCwpaper.pdf.

Hofmann, W.

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44 Gb/s VCSEL for optical interconnects,” in Proc. OFC, Mar. 2011, PDPC5.

Hopfer, F.

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett., vol. 45, no. 7, pp. 366–368, Mar.2009.
[CrossRef]

Huang, D.

Ingham, J. D.

A. M. E.-A. Diab, J. D. Ingham, R. V. Penty, and I. H. White, “Statistical analysis of subcarrier-modulated transmission over 300 m of 62.5-µm-core-diameter multimode fiber,” J. Lightwave Technol., vol. 23, no. 8, pp. 2380–2398, Aug.2005.
[CrossRef]

J. D. Ingham, R. V. Penty, and I. H. White, “Modulation formats for next-generation optical datacommunications,” in Proc. ICTON, June 2011, Mo.C1.2.

J. D. Ingham, R. V. Penty, I. H. White, and D. Cunningham, “40 Gb/s carrierless amplitude and phase modulation for low-cost optical datacommunication links,” in Proc. OFC, Mar. 2011, OThZ3.

J. D. Ingham, R. V. Penty, I. H. White, P. Westbergh, J. S. Gustavsson, Å. Haglund, and A. Larsson, “32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation datacommunication standards,” in Proc. CLEO, May 2011, CWJ2.

J. D. Ingham, R. V. Penty, and I. H. White, “10 Gb/s & 20 Gb/s extended-reach multimode-fiber datacommunication links using multilevel modulation and transmitter-based equalization,” in Proc. OFC, Feb. 2008, OTuO7.

Joel, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett., vol. 46, no. 14, pp. 1014–1016, July2010.
[CrossRef]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett., vol. 45, no. 7, pp. 366–368, Mar.2009.
[CrossRef]

Kahn, J. R.

J. R. Kahn and J. M. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, Feb.1997.
[CrossRef]

Karlsson, M.

K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” Opt. Express, vol. 19, no. 26, pp. B203–B208, Dec.2011.
[CrossRef] [PubMed]

K. Szczerba, P. Westbergh, J. S. Gustavsson, Å. Haglund, J. Karout, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” in Proc. ECOC, Sept. 2011, Tu.3.C.

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” in Proc. ECOC, Sept. 2010, We.7.B.2.

Karout, J.

K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” Opt. Express, vol. 19, no. 26, pp. B203–B208, Dec.2011.
[CrossRef] [PubMed]

K. Szczerba, P. Westbergh, J. S. Gustavsson, Å. Haglund, J. Karout, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” in Proc. ECOC, Sept. 2011, Tu.3.C.

Kazovsky, L.

D. Cunningham, M. Nowell, D. Hanson, and L. Kazovsky, The IEEE 802.3z Worst Case Link Model for Optical Physical Media Dependent Specification [Online]. Available: http://www.ieee802.org/3/z/public/presentations/mar1997/DCwpaper.pdf.

Kögel, B.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett., vol. 46, no. 14, pp. 1014–1016, July2010.
[CrossRef]

Koonen, A. M. J.

S. C. J. Lee, F. Breyer, S. Randel, D. Cardenas, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” in Proc. OFC, Mar. 2009, OWM2.

Kossel, M.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 954–965, Apr.2006.
[CrossRef]

Krishnamoorthy, A. V.

Kroh, M.

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44 Gb/s VCSEL for optical interconnects,” in Proc. OFC, Mar. 2011, PDPC5.

Larsson, A.

K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” Opt. Express, vol. 19, no. 26, pp. B203–B208, Dec.2011.
[CrossRef] [PubMed]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett., vol. 46, no. 14, pp. 1014–1016, July2010.
[CrossRef]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett., vol. 45, no. 7, pp. 366–368, Mar.2009.
[CrossRef]

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” in Proc. ECOC, Sept. 2010, We.7.B.2.

J. D. Ingham, R. V. Penty, I. H. White, P. Westbergh, J. S. Gustavsson, Å. Haglund, and A. Larsson, “32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation datacommunication standards,” in Proc. CLEO, May 2011, CWJ2.

K. Szczerba, P. Westbergh, J. S. Gustavsson, Å. Haglund, J. Karout, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” in Proc. ECOC, Sept. 2011, Tu.3.C.

Lassing, J.

E. Agrell, J. Lassing, E. G. Ström, and T. Ottosson, “On the optimality of the binary reflected Gray code,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3170–3182, Dec.2004.
[CrossRef]

Lee, S. C. J.

S. C. J. Lee, F. Breyer, S. Randel, D. Cardenas, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” in Proc. OFC, Mar. 2009, OWM2.

S. Randel, F. Breyer, and S. C. J. Lee, “High-speed transmission over multimode optical fibers,” in Proc. OFC, Feb. 2008, OWR2.

Menolfi, C.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 954–965, Apr.2006.
[CrossRef]

Morf, T.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 954–965, Apr.2006.
[CrossRef]

Moser, P.

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44 Gb/s VCSEL for optical interconnects,” in Proc. OFC, Mar. 2011, PDPC5.

Mutig, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett., vol. 46, no. 14, pp. 1014–1016, July2010.
[CrossRef]

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44 Gb/s VCSEL for optical interconnects,” in Proc. OFC, Mar. 2011, PDPC5.

Nadtochiy, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett., vol. 46, no. 14, pp. 1014–1016, July2010.
[CrossRef]

Nowell, M.

D. Cunningham, M. Nowell, D. Hanson, and L. Kazovsky, The IEEE 802.3z Worst Case Link Model for Optical Physical Media Dependent Specification [Online]. Available: http://www.ieee802.org/3/z/public/presentations/mar1997/DCwpaper.pdf.

Okayasu, T.

D. Watanabe, A. Ono, and T. Okayasu, “CMOS optical 4-PAM VCSEL driver with modal-dispersion equalizer for 10 Gb/s 500 m MMF transmission,” in Proc. ISSCC, Feb. 2009, pp. 106–107.

Olsson, B.-E.

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” in Proc. ECOC, Sept. 2010, We.7.B.2.

Ono, A.

D. Watanabe, A. Ono, and T. Okayasu, “CMOS optical 4-PAM VCSEL driver with modal-dispersion equalizer for 10 Gb/s 500 m MMF transmission,” in Proc. ISSCC, Feb. 2009, pp. 106–107.

Ottosson, T.

E. Agrell, J. Lassing, E. G. Ström, and T. Ottosson, “On the optimality of the binary reflected Gray code,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3170–3182, Dec.2004.
[CrossRef]

Penty, R. V.

A. M. E.-A. Diab, J. D. Ingham, R. V. Penty, and I. H. White, “Statistical analysis of subcarrier-modulated transmission over 300 m of 62.5-µm-core-diameter multimode fiber,” J. Lightwave Technol., vol. 23, no. 8, pp. 2380–2398, Aug.2005.
[CrossRef]

J. D. Ingham, R. V. Penty, I. H. White, and D. Cunningham, “40 Gb/s carrierless amplitude and phase modulation for low-cost optical datacommunication links,” in Proc. OFC, Mar. 2011, OThZ3.

J. D. Ingham, R. V. Penty, and I. H. White, “Modulation formats for next-generation optical datacommunications,” in Proc. ICTON, June 2011, Mo.C1.2.

J. D. Ingham, R. V. Penty, and I. H. White, “10 Gb/s & 20 Gb/s extended-reach multimode-fiber datacommunication links using multilevel modulation and transmitter-based equalization,” in Proc. OFC, Feb. 2008, OTuO7.

J. D. Ingham, R. V. Penty, I. H. White, P. Westbergh, J. S. Gustavsson, Å. Haglund, and A. Larsson, “32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation datacommunication standards,” in Proc. CLEO, May 2011, CWJ2.

Pollard, J. K.

J. K. Pollard, “Multilevel data communication over optical fibre,” IEE Proc.-Commun., vol. 138, no. 3, pp. 162–168, June1991.

Proakis, J. G.

J. G. Proakis and M. Salehi, Digital Communications. 5th ed.McGraw-Hill, New York, 2008.

Randel, S.

S. Randel, F. Breyer, and S. C. J. Lee, “High-speed transmission over multimode optical fibers,” in Proc. OFC, Feb. 2008, OWR2.

S. C. J. Lee, F. Breyer, S. Randel, D. Cardenas, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” in Proc. OFC, Mar. 2009, OWM2.

Reutemann, R.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 954–965, Apr.2006.
[CrossRef]

Rhodin, A.

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” in Proc. ECOC, Sept. 2010, We.7.B.2.

Ruegg, M.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 954–965, Apr.2006.
[CrossRef]

Salehi, M.

J. G. Proakis and M. Salehi, Digital Communications. 5th ed.McGraw-Hill, New York, 2008.

Schmatz, M. L.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 954–965, Apr.2006.
[CrossRef]

Ström, E. G.

E. Agrell, J. Lassing, E. G. Ström, and T. Ottosson, “On the optimality of the binary reflected Gray code,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3170–3182, Dec.2004.
[CrossRef]

Swoboda, R.

M. Atef, R. Swoboda, and H. Zimmermann, “170 Mb/s multilevel transmission over 115 m standard step-index plastic optical fiber using an integrated optical receiver,” Opt. Commun., vol. 284, no. 1, pp. 191–194, 2011.
[CrossRef]

Szczerba, K.

K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” Opt. Express, vol. 19, no. 26, pp. B203–B208, Dec.2011.
[CrossRef] [PubMed]

K. Szczerba, P. Westbergh, J. S. Gustavsson, Å. Haglund, J. Karout, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” in Proc. ECOC, Sept. 2011, Tu.3.C.

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” in Proc. ECOC, Sept. 2010, We.7.B.2.

Sze, T.

Toifl, T.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 954–965, Apr.2006.
[CrossRef]

van den Boom, H. P. A.

S. C. J. Lee, F. Breyer, S. Randel, D. Cardenas, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” in Proc. OFC, Mar. 2009, OWM2.

Walklin, S.

Watanabe, D.

D. Watanabe, A. Ono, and T. Okayasu, “CMOS optical 4-PAM VCSEL driver with modal-dispersion equalizer for 10 Gb/s 500 m MMF transmission,” in Proc. ISSCC, Feb. 2009, pp. 106–107.

Way, W. I.

W. I. Way, Broadband Hybrid Fiber Coax Access System Technologies, 1st ed.Academic Press, Orlando, FL, 1998.

Weiss, J.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 954–965, Apr.2006.
[CrossRef]

Westbergh, P.

K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” Opt. Express, vol. 19, no. 26, pp. B203–B208, Dec.2011.
[CrossRef] [PubMed]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett., vol. 46, no. 14, pp. 1014–1016, July2010.
[CrossRef]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett., vol. 45, no. 7, pp. 366–368, Mar.2009.
[CrossRef]

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” in Proc. ECOC, Sept. 2010, We.7.B.2.

K. Szczerba, P. Westbergh, J. S. Gustavsson, Å. Haglund, J. Karout, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” in Proc. ECOC, Sept. 2011, Tu.3.C.

J. D. Ingham, R. V. Penty, I. H. White, P. Westbergh, J. S. Gustavsson, Å. Haglund, and A. Larsson, “32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation datacommunication standards,” in Proc. CLEO, May 2011, CWJ2.

White, I. H.

A. M. E.-A. Diab, J. D. Ingham, R. V. Penty, and I. H. White, “Statistical analysis of subcarrier-modulated transmission over 300 m of 62.5-µm-core-diameter multimode fiber,” J. Lightwave Technol., vol. 23, no. 8, pp. 2380–2398, Aug.2005.
[CrossRef]

J. D. Ingham, R. V. Penty, and I. H. White, “Modulation formats for next-generation optical datacommunications,” in Proc. ICTON, June 2011, Mo.C1.2.

J. D. Ingham, R. V. Penty, I. H. White, and D. Cunningham, “40 Gb/s carrierless amplitude and phase modulation for low-cost optical datacommunication links,” in Proc. OFC, Mar. 2011, OThZ3.

J. D. Ingham, R. V. Penty, I. H. White, P. Westbergh, J. S. Gustavsson, Å. Haglund, and A. Larsson, “32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation datacommunication standards,” in Proc. CLEO, May 2011, CWJ2.

J. D. Ingham, R. V. Penty, and I. H. White, “10 Gb/s & 20 Gb/s extended-reach multimode-fiber datacommunication links using multilevel modulation and transmitter-based equalization,” in Proc. OFC, Feb. 2008, OTuO7.

Wolf, P.

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44 Gb/s VCSEL for optical interconnects,” in Proc. OFC, Mar. 2011, PDPC5.

Zheng, X.

Zimmermann, H.

M. Atef, R. Swoboda, and H. Zimmermann, “170 Mb/s multilevel transmission over 115 m standard step-index plastic optical fiber using an integrated optical receiver,” Opt. Commun., vol. 284, no. 1, pp. 191–194, 2011.
[CrossRef]

Electron. Lett. (2)

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett., vol. 46, no. 14, pp. 1014–1016, July2010.
[CrossRef]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett., vol. 45, no. 7, pp. 366–368, Mar.2009.
[CrossRef]

IEE Proc.-Commun. (1)

J. K. Pollard, “Multilevel data communication over optical fibre,” IEE Proc.-Commun., vol. 138, no. 3, pp. 162–168, June1991.

IEEE J. Solid-State Circuits (1)

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 954–965, Apr.2006.
[CrossRef]

IEEE Trans. Inf. Theory (1)

E. Agrell, J. Lassing, E. G. Ström, and T. Ottosson, “On the optimality of the binary reflected Gray code,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3170–3182, Dec.2004.
[CrossRef]

J. Lightwave Technol. (4)

S. Walklin and J. Conradi, “Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems,” J. Lightwave Technol., vol. 17, no. 11, pp. 2235–2248, Nov.1999.
[CrossRef]

A. M. E.-A. Diab, J. D. Ingham, R. V. Penty, and I. H. White, “Statistical analysis of subcarrier-modulated transmission over 300 m of 62.5-µm-core-diameter multimode fiber,” J. Lightwave Technol., vol. 23, no. 8, pp. 2380–2398, Aug.2005.
[CrossRef]

G. Brown, “Bandwidth and rise time calculations for digital multimode fiber-optic data links,” J. Lightwave Technol., vol. 10, no. 5, pp. 672–678, May1992.
[CrossRef]

J. Gimlett and N. Cheung, “Dispersion penalty analysis for LED/single-mode fiber transmission systems,” J. Lightwave Technol., vol. 4, no. 9, pp. 1381–1392, Sept.1986.
[CrossRef]

Opt. Commun. (1)

M. Atef, R. Swoboda, and H. Zimmermann, “170 Mb/s multilevel transmission over 115 m standard step-index plastic optical fiber using an integrated optical receiver,” Opt. Commun., vol. 284, no. 1, pp. 191–194, 2011.
[CrossRef]

Opt. Express (2)

Proc. IEEE (1)

J. R. Kahn and J. M. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, Feb.1997.
[CrossRef]

Other (16)

D. Watanabe, A. Ono, and T. Okayasu, “CMOS optical 4-PAM VCSEL driver with modal-dispersion equalizer for 10 Gb/s 500 m MMF transmission,” in Proc. ISSCC, Feb. 2009, pp. 106–107.

J. G. Proakis and M. Salehi, Digital Communications. 5th ed.McGraw-Hill, New York, 2008.

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44 Gb/s VCSEL for optical interconnects,” in Proc. OFC, Mar. 2011, PDPC5.

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” in Proc. ECOC, Sept. 2010, We.7.B.2.

S. C. J. Lee, F. Breyer, S. Randel, D. Cardenas, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” in Proc. OFC, Mar. 2009, OWM2.

S. Randel, F. Breyer, and S. C. J. Lee, “High-speed transmission over multimode optical fibers,” in Proc. OFC, Feb. 2008, OWR2.

D. Cunningham, M. Nowell, D. Hanson, and L. Kazovsky, The IEEE 802.3z Worst Case Link Model for Optical Physical Media Dependent Specification [Online]. Available: http://www.ieee802.org/3/z/public/presentations/mar1997/DCwpaper.pdf.

IEEE 802.3ae 10G Ethernet optical link budget spreadsheet [Online]. Available: http://ieee802.org/3/10G_study/public/email_attach/All_1250v2.xls.

J. D. Ingham, R. V. Penty, and I. H. White, “Modulation formats for next-generation optical datacommunications,” in Proc. ICTON, June 2011, Mo.C1.2.

J. D. Ingham, R. V. Penty, I. H. White, and D. Cunningham, “40 Gb/s carrierless amplitude and phase modulation for low-cost optical datacommunication links,” in Proc. OFC, Mar. 2011, OThZ3.

J. D. Ingham, R. V. Penty, and I. H. White, “10 Gb/s & 20 Gb/s extended-reach multimode-fiber datacommunication links using multilevel modulation and transmitter-based equalization,” in Proc. OFC, Feb. 2008, OTuO7.

J. D. Ingham, R. V. Penty, I. H. White, P. Westbergh, J. S. Gustavsson, Å. Haglund, and A. Larsson, “32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation datacommunication standards,” in Proc. CLEO, May 2011, CWJ2.

K. Szczerba, P. Westbergh, J. S. Gustavsson, Å. Haglund, J. Karout, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” in Proc. ECOC, Sept. 2011, Tu.3.C.

W. I. Way, Broadband Hybrid Fiber Coax Access System Technologies, 1st ed.Academic Press, Orlando, FL, 1998.

IEEE Standard for Information Technology—Telecommun ications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements, IEEE Std 802.3ba-2010, 2010.

G. P. Agrawal, Lightwave Technology: Telecommunication Systems. Wiley Interscience, New York, 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(Color online) Theoretical BERs versus received optical power for OOK and 4-PAM. The approximate values of the BER were obtained using Eq. (7).

Fig. 2
Fig. 2

(Color online) Contributions from the thermal noise, shot noise, and relative intensity noise for given system parameters at a receiver bandwidth of 12.5 GHz.

Fig. 3
Fig. 3

(Color online) Theoretical ISI power penalties for OOK and 4-PAM.

Fig. 4
Fig. 4

Generalized experimental setup with 4-PAM signal generator. The photoreceiver (PR) and error analyzers were different in various configurations, which are listed in Table III.

Fig. 5
Fig. 5

(Color online) Normalized magnitude of the frequency response of the complete link for different fiber lengths.

Fig. 6
Fig. 6

(Color online) Phase response θ ( f ) of a system with 300 m of MMF (top plot) and the same phase response unwrapped and with the linear part subtracted, i.e.,  θ ( f ) T f , where T = 62  ns (bottom plot).

Fig. 7
Fig. 7

(Color online) The power and voltage versus current characteristics of the VCSEL used in the experiments.

Fig. 8
Fig. 8

(Color online) Back-to-back eye diagram of a 4-PAM signal at 25 Gbps, at 0 dBm received optical power. Because of the inverting amplifier in the photoreceiver, the highest power level is in the bottom of the eye diagram.

Fig. 9
Fig. 9

(Color online) BER versus average received optical power for 4-PAM at 25 Gbps.

Fig. 10
Fig. 10

(Color online) BER versus average received optical power for OOK at 12.5 Gbps, obtained with receiver in configuration no. 2.

Fig. 11
Fig. 11

(Color online) Sensitivity at BER = 1 0 9 versus MMF propagation distance compared at the same symbol rate (12.5 Gbaud) with 4-PAM eye diagram after 300 m in the insert.

Fig. 12
Fig. 12

(Color online) BER versus average received optical power for 4-PAM at 12.5 Gbps and 25 Gbps.

Fig. 13
Fig. 13

(Color online) BER versus average received optical power for OOK at 12.5 Gbps, obtained with receiver in configuration no. 1.

Fig. 14
Fig. 14

(Color online) Sensitivity versus MMF propagation distance compared at the same bit-rate (12.5 Gbps) with 4-PAM eye diagrams, BTB ad 500 m, in the insert.

Tables (3)

Tables Icon

Table I Gray and Natural Labeling for M = 4

Tables Icon

Table II Measured −3 dB Bandwidth, −6 dB Bandwidth and Frequency Roll-Off for the Tested Fiber Links

Tables Icon

Table III Receiver Configurations

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

P p s = 10 log 10 ( M 1 ) ,
P p b = 10 log 10 ( M 1 log 2 ( M ) ) ,
SER = 1 M i = 0 M 1 j = 0 , j i M 1 P i j ,
P i j = 1 2 erfc ( I t h , j I i σ i 2 ) 1 2 erfc ( I t h , j + 1 I i σ i 2 ) .
BER = 1 M i = 0 M 1 j = 0 , j i M 1 d i j log 2 ( M ) P i j ,
SER = M 1 M erfc ( I avg ( M 1 ) 2 σ ) ,
BER approx d avg SER log 2 ( M ) ,
BER G SER log 2 ( M ) .
d avg = k = 0 log 2 ( M ) 1 ( log 2 ( M ) k ) 2 k M 1 = 2 log 2 ( M ) M 1 .
σ k 2 = 4 k B T F n Δ f / R L + 2 q I i Δ f + R I N I i 2 Δ f ,
P ISI = 10 log 10 ( 1 1 E m ) ,
E m , OOK = 1 . 425 exp ( 1 . 28 ( T T C ) 2 ) .
E m , 4 PAM = 2 . 85 exp ( 1 . 28 ( T T C ) 2 ) .
BW system 2 = BW 1 2 + BW 2 2 + BW 3 2 + ,
BER = 1 2 ER 1 + ER 2 + 1 2 ER 3 ,