Abstract

The use of relays is one of the most promising methods for mitigating impairments of the performance of free-space optical (FSO) systems and extending their limited transmission range. However, several factors contribute to significant link performance degradation. Most severe is the influence of the adverse atmospheric conditions that frequently appear, thus making the design of strongly connected networks a demanding issue. In this paper, we consider a multiple-hop FSO network, where the nodes are distributed at fixed positions on a given path-link. We take account of the most critical weather phenomena, i.e., fog, rain, and snow, and derive analytical expressions for the node isolation probability, assuming a suitable path loss model. Next, we find the number of transceivers for a given path-link in order to achieve reliable performance. We also examine the reverse case; i.e., we find the total service length for a known number of FSO transceivers. The effect of the prime FSO modulation formats is also considered. The addressed analytical framework offers significant insights into the main factors that degrade the performance of FSO networks. It constitutes a valuable tool for telecom researchers to design such networks in practice.

© 2012 OSA

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription