Abstract

We investigate several existing impairments in an orthogonal frequency-division-multiplexed radio-over-fiber (OFDM-ROF) system delivering a 60 GHz optical millimeter wave with double optical sidebands and a suppressed central carrier. It is found through theoretical analysis and numerical simulation that intersubcarrier interference and frequency-selective fading are the dominant factors degrading the OFDM-ROF system performance. With that in mind, we propose and experimentally demonstrate what we believe to be a novel scheme to mitigate system impairments in an OFDM-ROF link by using the adaptive modulation technique in which different subcarriers may have different modulation formats according to their signal-to-noise ratio over the ROF channel.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Cooper, "‘Fibre/radio’ for the provision of cordless/mobile telephony services in the access network," Electron. Lett. 26, (24), 2054‒2056 (1990).
    [CrossRef]
  2. A. Koonen and L. Garcia, "Radio-over-MMF techniques—Part II: microwave to millimeter-wave systems," J. Lightwave Technol. 26, (15), 2396‒2408 (2008).
    [CrossRef]
  3. Z. Cao, J. Yu, M. Xia, Q. Tang, Y. Gao, W. Wen, and L. Chen, "Reduction of intersubcarrier interference and frequency-selective fading in OFDM-ROF systems," J. Lightwave Technol. 28, (16), 2423‒2429 (2010).
    [CrossRef]
  4. Z. Cao, J. Yu, H. Zhou, W. Wang, M. Xia, J. Wang, Q. Tang, and L. Chen, "WDM-ROF-PON architecture for flexible wireless and wire-line layout," J. Opt. Commun. Netw. 2, (2), 117‒121 (2010).
    [CrossRef]
  5. J. Olmos, T. Kuri, and K. Kitayama, "Dynamic reconfigurable WDM 60-GHz millimeter-waveband radio-over-fiber access network: architectural considerations and experiment," J. Lightwave Technol. 25, (11), 3374‒3380 (2007).
    [CrossRef]
  6. M. Weiß, M. Huchard, A. Stöhr, B. Charbonnier, S. Fedderwitz, and D. S. Jäger, "60 GHz photonic millimeter-wave link for short- to medium-range wireless transmission up to 12.5 Gb/s," J. Lightwave Technol. 26, (15), 2424‒2429 (2008).
    [CrossRef]
  7. A. Chowdhury, H. Chien, J. Yu, and G. K. Chang, "A novel 50 GHz spaced DWDM 60-GHz millimeter-wave radio-over-fiber systems using optical interleaver," Optical Fiber Communication Conf., 2009, OTuB1.
  8. H. Chien, A. Chowdhury, Y. Hsueh, Z. Jia, S. Fan, J. Yu, and G. K. Chang, "A novel 60-GHz millimeter-wave over fiber with independent 10-Gbps wired and wireless services on a single wavelength using PolMUX and wavelength-reuse techniques," Optical Fiber Communication Conf., 2009, OTuB7.
  9. J. J. O’Reilly and P. M. Lane, "Fibre-supported optical generation and delivery of 60 GHz signals," Electron. Lett. 30, (16), 1329‒1330 (1994).
    [CrossRef]
  10. J. Yu, Z. Jia, L. Lin, Y. Su, G. K. Chang, and T. Wang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, (1), 265‒267 (2006).
    [CrossRef]
  11. J. Yu, Z. Jia, L. Xui, L. Chen, T. Wang, and G. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, (13), 1418‒1420 (2006).
    [CrossRef]
  12. L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, "A novel radio-over-fiber system with wavelength reuse for upstream data connection," IEEE Photon. Technol. Lett. 19, (6), 387‒389 (2007).
    [CrossRef]
  13. J. Yu, Z. Jia, T. Wang, and G. K. Chang, "Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation," IEEE Photon. Technol. Lett. 19, (19), 1499‒1501 (2007).
    [CrossRef]
  14. Z. Cao, Z. Dong, J. Lu, M. Xia, and L. Chen, "Optical OFDM signal generation by optical phase modulator and its application in RoF system," 35th European Conference on Optical Communication, 2009, P 2.4.4.
  15. G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems," Electron. Lett. 33, (1), 74‒75 (1997).
    [CrossRef]
  16. P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Optical tandem single-sideband-based WDM interface for millimeter-wave fiber-radio multisector antenna base station," IEEE Trans. Microwave Theory Tech. 57, (3), 725‒732 (2009).
    [CrossRef]
  17. D. Wake, C. R. Lima, and P. A. Davies, "Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser," IEEE Trans. Microwave Theory Tech. 43, (9), 2270‒2276 (1995).
    [CrossRef]
  18. C. S. Park, Y. Guo, L. C. Ong, Y. K. Yeo, Y. Wang, M. T. Zhou, and H. Harada, "Application of an electroabsorption modulator in radio-over-fiber networks," J. Opt. Netw. 8, (2), 146‒155 (2009).
    [CrossRef]
  19. J. Yu, M.-F. Huang, Z. Jia, L. Chen, J. G. Yu, and G.-K. Chang, "Polarization-insensitive all-optical upconversion for seamless integration optical core/metro/access networks with ROF systems based on a dual-pump FWM scheme," J. Ligthwave Technol. 27, (14), 2605‒2611 (2009).
    [CrossRef]
  20. I. G. Insua, D. Plettemeier, and C. G. Schäffer, "Broadband radio-over-fiber-based wireless access with 10 Gbits/s data rates," J. Opt. Netw. 8, (1), 77‒83 (2009).
    [CrossRef]
  21. J. Chen, C.-T. Lin, P. T. Shih, W.-J. Jiang, S.-P. Dai, Y.-M. Lin, P.-C. Peng, and S. Chi, "Generation of optical millimeter-wave signals and vector formats using an integrated optical I/Q modulator," J. Opt. Netw. 8, (2), 188‒200 (2009).
    [CrossRef]
  22. Z. Dong, Z. Cao, J. Lu, L. Chen, S. Wen, Z. Jia, and G. K. Chang, "All-optical up-conversion of millimeter-wave signals for RoF system using optical carrier suppression-based dual-pump FWM in an SOA," Optical Fiber Communication Conf., 2009, JWA59.
  23. A. J. Lowery and J. Armstrong, "Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems," Opt. Express 14, (6), 2079‒2084 (2006).
    [CrossRef] [PubMed]
  24. Z. Xu, R. Hui, and M. O’Sullivan, "Dual-band OOFDM system based on tandem single-sideband modulation transmitter," Opt. Express 17, (16), 13479‒13486 (2009).
    [CrossRef] [PubMed]
  25. R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, "Experimental demonstration of a record high 11.25 Gb/s real-time optical OFDM transceiver supporting 25 km SMF end-to-end transmission in simple IMDD systems," Opt. Express 18, (6), 5541‒5555 (2010).
    [CrossRef] [PubMed]
  26. R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, "Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25 km SSMF using a 1 GHz RSOA," IEEE Photon. Technol. Lett. 22, (11), 745‒747 (2010).
    [CrossRef]
  27. R. P. Giddings, X. Q. Jin, and J. M. Tang, "First experimental demonstration of 6 Gb/s real-time optical OFDM transceivers incorporating channel estimation and variable power loading," Opt. Express 17, (22), 19727‒19738 (2009).
    [CrossRef] [PubMed]
  28. R. P. Giddings, X. Q. Jin, and J. M. Tang, "Experimental demonstration of real-time 3 Gb/s optical OFDM transceivers," Opt. Express 17, (19), 16654‒16665 (2009).
    [CrossRef] [PubMed]

2010 (4)

2009 (8)

R. P. Giddings, X. Q. Jin, and J. M. Tang, "First experimental demonstration of 6 Gb/s real-time optical OFDM transceivers incorporating channel estimation and variable power loading," Opt. Express 17, (22), 19727‒19738 (2009).
[CrossRef] [PubMed]

R. P. Giddings, X. Q. Jin, and J. M. Tang, "Experimental demonstration of real-time 3 Gb/s optical OFDM transceivers," Opt. Express 17, (19), 16654‒16665 (2009).
[CrossRef] [PubMed]

Z. Xu, R. Hui, and M. O’Sullivan, "Dual-band OOFDM system based on tandem single-sideband modulation transmitter," Opt. Express 17, (16), 13479‒13486 (2009).
[CrossRef] [PubMed]

P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Optical tandem single-sideband-based WDM interface for millimeter-wave fiber-radio multisector antenna base station," IEEE Trans. Microwave Theory Tech. 57, (3), 725‒732 (2009).
[CrossRef]

C. S. Park, Y. Guo, L. C. Ong, Y. K. Yeo, Y. Wang, M. T. Zhou, and H. Harada, "Application of an electroabsorption modulator in radio-over-fiber networks," J. Opt. Netw. 8, (2), 146‒155 (2009).
[CrossRef]

J. Yu, M.-F. Huang, Z. Jia, L. Chen, J. G. Yu, and G.-K. Chang, "Polarization-insensitive all-optical upconversion for seamless integration optical core/metro/access networks with ROF systems based on a dual-pump FWM scheme," J. Ligthwave Technol. 27, (14), 2605‒2611 (2009).
[CrossRef]

I. G. Insua, D. Plettemeier, and C. G. Schäffer, "Broadband radio-over-fiber-based wireless access with 10 Gbits/s data rates," J. Opt. Netw. 8, (1), 77‒83 (2009).
[CrossRef]

J. Chen, C.-T. Lin, P. T. Shih, W.-J. Jiang, S.-P. Dai, Y.-M. Lin, P.-C. Peng, and S. Chi, "Generation of optical millimeter-wave signals and vector formats using an integrated optical I/Q modulator," J. Opt. Netw. 8, (2), 188‒200 (2009).
[CrossRef]

2008 (2)

2007 (3)

J. Olmos, T. Kuri, and K. Kitayama, "Dynamic reconfigurable WDM 60-GHz millimeter-waveband radio-over-fiber access network: architectural considerations and experiment," J. Lightwave Technol. 25, (11), 3374‒3380 (2007).
[CrossRef]

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, "A novel radio-over-fiber system with wavelength reuse for upstream data connection," IEEE Photon. Technol. Lett. 19, (6), 387‒389 (2007).
[CrossRef]

J. Yu, Z. Jia, T. Wang, and G. K. Chang, "Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation," IEEE Photon. Technol. Lett. 19, (19), 1499‒1501 (2007).
[CrossRef]

2006 (3)

A. J. Lowery and J. Armstrong, "Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems," Opt. Express 14, (6), 2079‒2084 (2006).
[CrossRef] [PubMed]

J. Yu, Z. Jia, L. Lin, Y. Su, G. K. Chang, and T. Wang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, (1), 265‒267 (2006).
[CrossRef]

J. Yu, Z. Jia, L. Xui, L. Chen, T. Wang, and G. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, (13), 1418‒1420 (2006).
[CrossRef]

1997 (1)

G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems," Electron. Lett. 33, (1), 74‒75 (1997).
[CrossRef]

1995 (1)

D. Wake, C. R. Lima, and P. A. Davies, "Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser," IEEE Trans. Microwave Theory Tech. 43, (9), 2270‒2276 (1995).
[CrossRef]

1994 (1)

J. J. O’Reilly and P. M. Lane, "Fibre-supported optical generation and delivery of 60 GHz signals," Electron. Lett. 30, (16), 1329‒1330 (1994).
[CrossRef]

1990 (1)

A. J. Cooper, "‘Fibre/radio’ for the provision of cordless/mobile telephony services in the access network," Electron. Lett. 26, (24), 2054‒2056 (1990).
[CrossRef]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems," Electron. Lett. 33, (1), 74‒75 (1997).
[CrossRef]

Armstrong, J.

Cao, Z.

Z. Cao, J. Yu, H. Zhou, W. Wang, M. Xia, J. Wang, Q. Tang, and L. Chen, "WDM-ROF-PON architecture for flexible wireless and wire-line layout," J. Opt. Commun. Netw. 2, (2), 117‒121 (2010).
[CrossRef]

Z. Cao, J. Yu, M. Xia, Q. Tang, Y. Gao, W. Wen, and L. Chen, "Reduction of intersubcarrier interference and frequency-selective fading in OFDM-ROF systems," J. Lightwave Technol. 28, (16), 2423‒2429 (2010).
[CrossRef]

Z. Dong, Z. Cao, J. Lu, L. Chen, S. Wen, Z. Jia, and G. K. Chang, "All-optical up-conversion of millimeter-wave signals for RoF system using optical carrier suppression-based dual-pump FWM in an SOA," Optical Fiber Communication Conf., 2009, JWA59.

Z. Cao, Z. Dong, J. Lu, M. Xia, and L. Chen, "Optical OFDM signal generation by optical phase modulator and its application in RoF system," 35th European Conference on Optical Communication, 2009, P 2.4.4.

Chang, G. K.

H. Chien, A. Chowdhury, Y. Hsueh, Z. Jia, S. Fan, J. Yu, and G. K. Chang, "A novel 60-GHz millimeter-wave over fiber with independent 10-Gbps wired and wireless services on a single wavelength using PolMUX and wavelength-reuse techniques," Optical Fiber Communication Conf., 2009, OTuB7.

Chang, G.

J. Yu, Z. Jia, L. Xui, L. Chen, T. Wang, and G. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, (13), 1418‒1420 (2006).
[CrossRef]

Chang, G. K.

J. Yu, Z. Jia, T. Wang, and G. K. Chang, "Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation," IEEE Photon. Technol. Lett. 19, (19), 1499‒1501 (2007).
[CrossRef]

J. Yu, Z. Jia, L. Lin, Y. Su, G. K. Chang, and T. Wang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, (1), 265‒267 (2006).
[CrossRef]

A. Chowdhury, H. Chien, J. Yu, and G. K. Chang, "A novel 50 GHz spaced DWDM 60-GHz millimeter-wave radio-over-fiber systems using optical interleaver," Optical Fiber Communication Conf., 2009, OTuB1.

Z. Dong, Z. Cao, J. Lu, L. Chen, S. Wen, Z. Jia, and G. K. Chang, "All-optical up-conversion of millimeter-wave signals for RoF system using optical carrier suppression-based dual-pump FWM in an SOA," Optical Fiber Communication Conf., 2009, JWA59.

Chang, G.-K.

J. Yu, M.-F. Huang, Z. Jia, L. Chen, J. G. Yu, and G.-K. Chang, "Polarization-insensitive all-optical upconversion for seamless integration optical core/metro/access networks with ROF systems based on a dual-pump FWM scheme," J. Ligthwave Technol. 27, (14), 2605‒2611 (2009).
[CrossRef]

Charbonnier, B.

Chen, J.

Chen, L.

Z. Cao, J. Yu, H. Zhou, W. Wang, M. Xia, J. Wang, Q. Tang, and L. Chen, "WDM-ROF-PON architecture for flexible wireless and wire-line layout," J. Opt. Commun. Netw. 2, (2), 117‒121 (2010).
[CrossRef]

Z. Cao, J. Yu, M. Xia, Q. Tang, Y. Gao, W. Wen, and L. Chen, "Reduction of intersubcarrier interference and frequency-selective fading in OFDM-ROF systems," J. Lightwave Technol. 28, (16), 2423‒2429 (2010).
[CrossRef]

J. Yu, M.-F. Huang, Z. Jia, L. Chen, J. G. Yu, and G.-K. Chang, "Polarization-insensitive all-optical upconversion for seamless integration optical core/metro/access networks with ROF systems based on a dual-pump FWM scheme," J. Ligthwave Technol. 27, (14), 2605‒2611 (2009).
[CrossRef]

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, "A novel radio-over-fiber system with wavelength reuse for upstream data connection," IEEE Photon. Technol. Lett. 19, (6), 387‒389 (2007).
[CrossRef]

J. Yu, Z. Jia, L. Xui, L. Chen, T. Wang, and G. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, (13), 1418‒1420 (2006).
[CrossRef]

Z. Dong, Z. Cao, J. Lu, L. Chen, S. Wen, Z. Jia, and G. K. Chang, "All-optical up-conversion of millimeter-wave signals for RoF system using optical carrier suppression-based dual-pump FWM in an SOA," Optical Fiber Communication Conf., 2009, JWA59.

Z. Cao, Z. Dong, J. Lu, M. Xia, and L. Chen, "Optical OFDM signal generation by optical phase modulator and its application in RoF system," 35th European Conference on Optical Communication, 2009, P 2.4.4.

Chi, S.

Chien, H.

H. Chien, A. Chowdhury, Y. Hsueh, Z. Jia, S. Fan, J. Yu, and G. K. Chang, "A novel 60-GHz millimeter-wave over fiber with independent 10-Gbps wired and wireless services on a single wavelength using PolMUX and wavelength-reuse techniques," Optical Fiber Communication Conf., 2009, OTuB7.

A. Chowdhury, H. Chien, J. Yu, and G. K. Chang, "A novel 50 GHz spaced DWDM 60-GHz millimeter-wave radio-over-fiber systems using optical interleaver," Optical Fiber Communication Conf., 2009, OTuB1.

Chowdhury, A.

H. Chien, A. Chowdhury, Y. Hsueh, Z. Jia, S. Fan, J. Yu, and G. K. Chang, "A novel 60-GHz millimeter-wave over fiber with independent 10-Gbps wired and wireless services on a single wavelength using PolMUX and wavelength-reuse techniques," Optical Fiber Communication Conf., 2009, OTuB7.

A. Chowdhury, H. Chien, J. Yu, and G. K. Chang, "A novel 50 GHz spaced DWDM 60-GHz millimeter-wave radio-over-fiber systems using optical interleaver," Optical Fiber Communication Conf., 2009, OTuB1.

Cooper, A. J.

A. J. Cooper, "‘Fibre/radio’ for the provision of cordless/mobile telephony services in the access network," Electron. Lett. 26, (24), 2054‒2056 (1990).
[CrossRef]

Dai, S.-P.

Davies, P. A.

D. Wake, C. R. Lima, and P. A. Davies, "Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser," IEEE Trans. Microwave Theory Tech. 43, (9), 2270‒2276 (1995).
[CrossRef]

Dong, Z.

Z. Dong, Z. Cao, J. Lu, L. Chen, S. Wen, Z. Jia, and G. K. Chang, "All-optical up-conversion of millimeter-wave signals for RoF system using optical carrier suppression-based dual-pump FWM in an SOA," Optical Fiber Communication Conf., 2009, JWA59.

Z. Cao, Z. Dong, J. Lu, M. Xia, and L. Chen, "Optical OFDM signal generation by optical phase modulator and its application in RoF system," 35th European Conference on Optical Communication, 2009, P 2.4.4.

Fan, S.

H. Chien, A. Chowdhury, Y. Hsueh, Z. Jia, S. Fan, J. Yu, and G. K. Chang, "A novel 60-GHz millimeter-wave over fiber with independent 10-Gbps wired and wireless services on a single wavelength using PolMUX and wavelength-reuse techniques," Optical Fiber Communication Conf., 2009, OTuB7.

Fedderwitz, S.

Gamage, P.

P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Optical tandem single-sideband-based WDM interface for millimeter-wave fiber-radio multisector antenna base station," IEEE Trans. Microwave Theory Tech. 57, (3), 725‒732 (2009).
[CrossRef]

Gao, Y.

Garcia, L.

Giacoumidis, E.

Giddings, R. P.

Guo, Y.

Harada, H.

Hsueh, Y.

H. Chien, A. Chowdhury, Y. Hsueh, Z. Jia, S. Fan, J. Yu, and G. K. Chang, "A novel 60-GHz millimeter-wave over fiber with independent 10-Gbps wired and wireless services on a single wavelength using PolMUX and wavelength-reuse techniques," Optical Fiber Communication Conf., 2009, OTuB7.

Huang, M.-F.

J. Yu, M.-F. Huang, Z. Jia, L. Chen, J. G. Yu, and G.-K. Chang, "Polarization-insensitive all-optical upconversion for seamless integration optical core/metro/access networks with ROF systems based on a dual-pump FWM scheme," J. Ligthwave Technol. 27, (14), 2605‒2611 (2009).
[CrossRef]

Huchard, M.

Hugues-Salas, E.

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, "Experimental demonstration of a record high 11.25 Gb/s real-time optical OFDM transceiver supporting 25 km SMF end-to-end transmission in simple IMDD systems," Opt. Express 18, (6), 5541‒5555 (2010).
[CrossRef] [PubMed]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, "Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25 km SSMF using a 1 GHz RSOA," IEEE Photon. Technol. Lett. 22, (11), 745‒747 (2010).
[CrossRef]

Hui, R.

Insua, I. G.

Jäger, D. S.

Jia, Z.

J. Yu, M.-F. Huang, Z. Jia, L. Chen, J. G. Yu, and G.-K. Chang, "Polarization-insensitive all-optical upconversion for seamless integration optical core/metro/access networks with ROF systems based on a dual-pump FWM scheme," J. Ligthwave Technol. 27, (14), 2605‒2611 (2009).
[CrossRef]

J. Yu, Z. Jia, T. Wang, and G. K. Chang, "Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation," IEEE Photon. Technol. Lett. 19, (19), 1499‒1501 (2007).
[CrossRef]

J. Yu, Z. Jia, L. Xui, L. Chen, T. Wang, and G. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, (13), 1418‒1420 (2006).
[CrossRef]

J. Yu, Z. Jia, L. Lin, Y. Su, G. K. Chang, and T. Wang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, (1), 265‒267 (2006).
[CrossRef]

H. Chien, A. Chowdhury, Y. Hsueh, Z. Jia, S. Fan, J. Yu, and G. K. Chang, "A novel 60-GHz millimeter-wave over fiber with independent 10-Gbps wired and wireless services on a single wavelength using PolMUX and wavelength-reuse techniques," Optical Fiber Communication Conf., 2009, OTuB7.

Z. Dong, Z. Cao, J. Lu, L. Chen, S. Wen, Z. Jia, and G. K. Chang, "All-optical up-conversion of millimeter-wave signals for RoF system using optical carrier suppression-based dual-pump FWM in an SOA," Optical Fiber Communication Conf., 2009, JWA59.

Jiang, W.-J.

Jin, X. Q.

Kitayama, K.

Koonen, A.

Kuri, T.

Lane, P. M.

J. J. O’Reilly and P. M. Lane, "Fibre-supported optical generation and delivery of 60 GHz signals," Electron. Lett. 30, (16), 1329‒1330 (1994).
[CrossRef]

Lei, X.

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, "A novel radio-over-fiber system with wavelength reuse for upstream data connection," IEEE Photon. Technol. Lett. 19, (6), 387‒389 (2007).
[CrossRef]

Lim, C.

P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Optical tandem single-sideband-based WDM interface for millimeter-wave fiber-radio multisector antenna base station," IEEE Trans. Microwave Theory Tech. 57, (3), 725‒732 (2009).
[CrossRef]

Lima, C. R.

D. Wake, C. R. Lima, and P. A. Davies, "Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser," IEEE Trans. Microwave Theory Tech. 43, (9), 2270‒2276 (1995).
[CrossRef]

Lin, C.-T.

Lin, L.

J. Yu, Z. Jia, L. Lin, Y. Su, G. K. Chang, and T. Wang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, (1), 265‒267 (2006).
[CrossRef]

Lin, Y.-M.

Lowery, A. J.

Lu, J.

Z. Cao, Z. Dong, J. Lu, M. Xia, and L. Chen, "Optical OFDM signal generation by optical phase modulator and its application in RoF system," 35th European Conference on Optical Communication, 2009, P 2.4.4.

Z. Dong, Z. Cao, J. Lu, L. Chen, S. Wen, Z. Jia, and G. K. Chang, "All-optical up-conversion of millimeter-wave signals for RoF system using optical carrier suppression-based dual-pump FWM in an SOA," Optical Fiber Communication Conf., 2009, JWA59.

Nirmalathas, A.

P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Optical tandem single-sideband-based WDM interface for millimeter-wave fiber-radio multisector antenna base station," IEEE Trans. Microwave Theory Tech. 57, (3), 725‒732 (2009).
[CrossRef]

Novak, D.

P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Optical tandem single-sideband-based WDM interface for millimeter-wave fiber-radio multisector antenna base station," IEEE Trans. Microwave Theory Tech. 57, (3), 725‒732 (2009).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems," Electron. Lett. 33, (1), 74‒75 (1997).
[CrossRef]

O’Reilly, J. J.

J. J. O’Reilly and P. M. Lane, "Fibre-supported optical generation and delivery of 60 GHz signals," Electron. Lett. 30, (16), 1329‒1330 (1994).
[CrossRef]

O’Sullivan, M.

Olmos, J.

Ong, L. C.

Park, C. S.

Peng, P.-C.

Plettemeier, D.

Schäffer, C. G.

Shao, Y.

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, "A novel radio-over-fiber system with wavelength reuse for upstream data connection," IEEE Photon. Technol. Lett. 19, (6), 387‒389 (2007).
[CrossRef]

Shih, P. T.

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems," Electron. Lett. 33, (1), 74‒75 (1997).
[CrossRef]

Stöhr, A.

Su, Y.

J. Yu, Z. Jia, L. Lin, Y. Su, G. K. Chang, and T. Wang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, (1), 265‒267 (2006).
[CrossRef]

Tang, J. M.

Tang, Q.

Wake, D.

D. Wake, C. R. Lima, and P. A. Davies, "Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser," IEEE Trans. Microwave Theory Tech. 43, (9), 2270‒2276 (1995).
[CrossRef]

Wang, J.

Wang, T.

J. Yu, Z. Jia, T. Wang, and G. K. Chang, "Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation," IEEE Photon. Technol. Lett. 19, (19), 1499‒1501 (2007).
[CrossRef]

J. Yu, Z. Jia, L. Xui, L. Chen, T. Wang, and G. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, (13), 1418‒1420 (2006).
[CrossRef]

J. Yu, Z. Jia, L. Lin, Y. Su, G. K. Chang, and T. Wang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, (1), 265‒267 (2006).
[CrossRef]

Wang, W.

Wang, Y.

Waterhouse, R.

P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Optical tandem single-sideband-based WDM interface for millimeter-wave fiber-radio multisector antenna base station," IEEE Trans. Microwave Theory Tech. 57, (3), 725‒732 (2009).
[CrossRef]

Wei, J. L.

Wei, J. L.

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, "Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25 km SSMF using a 1 GHz RSOA," IEEE Photon. Technol. Lett. 22, (11), 745‒747 (2010).
[CrossRef]

Weiß, M.

Wen, H.

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, "A novel radio-over-fiber system with wavelength reuse for upstream data connection," IEEE Photon. Technol. Lett. 19, (6), 387‒389 (2007).
[CrossRef]

Wen, S.

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, "A novel radio-over-fiber system with wavelength reuse for upstream data connection," IEEE Photon. Technol. Lett. 19, (6), 387‒389 (2007).
[CrossRef]

Z. Dong, Z. Cao, J. Lu, L. Chen, S. Wen, Z. Jia, and G. K. Chang, "All-optical up-conversion of millimeter-wave signals for RoF system using optical carrier suppression-based dual-pump FWM in an SOA," Optical Fiber Communication Conf., 2009, JWA59.

Wen, W.

Xia, M.

Xu, Z.

Xui, L.

J. Yu, Z. Jia, L. Xui, L. Chen, T. Wang, and G. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, (13), 1418‒1420 (2006).
[CrossRef]

Yeo, Y. K.

Yu, J.

Z. Cao, J. Yu, H. Zhou, W. Wang, M. Xia, J. Wang, Q. Tang, and L. Chen, "WDM-ROF-PON architecture for flexible wireless and wire-line layout," J. Opt. Commun. Netw. 2, (2), 117‒121 (2010).
[CrossRef]

Z. Cao, J. Yu, M. Xia, Q. Tang, Y. Gao, W. Wen, and L. Chen, "Reduction of intersubcarrier interference and frequency-selective fading in OFDM-ROF systems," J. Lightwave Technol. 28, (16), 2423‒2429 (2010).
[CrossRef]

J. Yu, M.-F. Huang, Z. Jia, L. Chen, J. G. Yu, and G.-K. Chang, "Polarization-insensitive all-optical upconversion for seamless integration optical core/metro/access networks with ROF systems based on a dual-pump FWM scheme," J. Ligthwave Technol. 27, (14), 2605‒2611 (2009).
[CrossRef]

J. Yu, Z. Jia, T. Wang, and G. K. Chang, "Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation," IEEE Photon. Technol. Lett. 19, (19), 1499‒1501 (2007).
[CrossRef]

J. Yu, Z. Jia, L. Xui, L. Chen, T. Wang, and G. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, (13), 1418‒1420 (2006).
[CrossRef]

J. Yu, Z. Jia, L. Lin, Y. Su, G. K. Chang, and T. Wang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, (1), 265‒267 (2006).
[CrossRef]

H. Chien, A. Chowdhury, Y. Hsueh, Z. Jia, S. Fan, J. Yu, and G. K. Chang, "A novel 60-GHz millimeter-wave over fiber with independent 10-Gbps wired and wireless services on a single wavelength using PolMUX and wavelength-reuse techniques," Optical Fiber Communication Conf., 2009, OTuB7.

A. Chowdhury, H. Chien, J. Yu, and G. K. Chang, "A novel 50 GHz spaced DWDM 60-GHz millimeter-wave radio-over-fiber systems using optical interleaver," Optical Fiber Communication Conf., 2009, OTuB1.

Yu, J. G.

J. Yu, M.-F. Huang, Z. Jia, L. Chen, J. G. Yu, and G.-K. Chang, "Polarization-insensitive all-optical upconversion for seamless integration optical core/metro/access networks with ROF systems based on a dual-pump FWM scheme," J. Ligthwave Technol. 27, (14), 2605‒2611 (2009).
[CrossRef]

Zhou, H.

Zhou, M. T.

Electron. Lett. (3)

A. J. Cooper, "‘Fibre/radio’ for the provision of cordless/mobile telephony services in the access network," Electron. Lett. 26, (24), 2054‒2056 (1990).
[CrossRef]

J. J. O’Reilly and P. M. Lane, "Fibre-supported optical generation and delivery of 60 GHz signals," Electron. Lett. 30, (16), 1329‒1330 (1994).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems," Electron. Lett. 33, (1), 74‒75 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

J. Yu, Z. Jia, L. Lin, Y. Su, G. K. Chang, and T. Wang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, (1), 265‒267 (2006).
[CrossRef]

J. Yu, Z. Jia, L. Xui, L. Chen, T. Wang, and G. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, (13), 1418‒1420 (2006).
[CrossRef]

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, "A novel radio-over-fiber system with wavelength reuse for upstream data connection," IEEE Photon. Technol. Lett. 19, (6), 387‒389 (2007).
[CrossRef]

J. Yu, Z. Jia, T. Wang, and G. K. Chang, "Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation," IEEE Photon. Technol. Lett. 19, (19), 1499‒1501 (2007).
[CrossRef]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, "Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25 km SSMF using a 1 GHz RSOA," IEEE Photon. Technol. Lett. 22, (11), 745‒747 (2010).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Optical tandem single-sideband-based WDM interface for millimeter-wave fiber-radio multisector antenna base station," IEEE Trans. Microwave Theory Tech. 57, (3), 725‒732 (2009).
[CrossRef]

D. Wake, C. R. Lima, and P. A. Davies, "Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser," IEEE Trans. Microwave Theory Tech. 43, (9), 2270‒2276 (1995).
[CrossRef]

J. Lightwave Technol. (4)

J. Ligthwave Technol. (1)

J. Yu, M.-F. Huang, Z. Jia, L. Chen, J. G. Yu, and G.-K. Chang, "Polarization-insensitive all-optical upconversion for seamless integration optical core/metro/access networks with ROF systems based on a dual-pump FWM scheme," J. Ligthwave Technol. 27, (14), 2605‒2611 (2009).
[CrossRef]

J. Opt. Commun. Netw. (1)

J. Opt. Netw. (3)

Opt. Express (5)

Other (4)

Z. Dong, Z. Cao, J. Lu, L. Chen, S. Wen, Z. Jia, and G. K. Chang, "All-optical up-conversion of millimeter-wave signals for RoF system using optical carrier suppression-based dual-pump FWM in an SOA," Optical Fiber Communication Conf., 2009, JWA59.

Z. Cao, Z. Dong, J. Lu, M. Xia, and L. Chen, "Optical OFDM signal generation by optical phase modulator and its application in RoF system," 35th European Conference on Optical Communication, 2009, P 2.4.4.

A. Chowdhury, H. Chien, J. Yu, and G. K. Chang, "A novel 50 GHz spaced DWDM 60-GHz millimeter-wave radio-over-fiber systems using optical interleaver," Optical Fiber Communication Conf., 2009, OTuB1.

H. Chien, A. Chowdhury, Y. Hsueh, Z. Jia, S. Fan, J. Yu, and G. K. Chang, "A novel 60-GHz millimeter-wave over fiber with independent 10-Gbps wired and wireless services on a single wavelength using PolMUX and wavelength-reuse techniques," Optical Fiber Communication Conf., 2009, OTuB7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(Color online) Typical 60 GHz OFDM-ROF system based on DSB-SC schemes.

Fig. 2
Fig. 2

(Color online) Conceptual diagram of the received mm-wave OFDM signal from the interbeating between the optical carrier and subcarriers.

Fig. 3
Fig. 3

(Color online) The 60 GHz OFDM-ROF system architecture for numerical simulation. DFB, distributed feedback laser; DA-MZM, dual-arm Mach–Zehnder modulator; LO, local oscillator; PS, phase shift; OBSF, optical band-stop filter; OBPF, optical band-pass filter; OFDM, OFDM source; LS-MZM, low-speed Mach–Zehnder modulator; SMF, single-mode fiber; OA, optical amplifier; PIN, p-i-n photon detector; EBPF, electrical band-pass filter; MIX, electrical mixer; 1:4LO, 1:4 electrical frequency multiplexer; ELPF, electrical low-pass filter; ERX, electrical receiver.

Fig. 4
Fig. 4

(Color online) Simulated optical and RF spectra in back-to-back transmission.

Fig. 5
Fig. 5

(Color online) Training subcarrier location of the interval training design.

Fig. 6
Fig. 6

(Color online) Channel response measured in the OFDM-ROF system with different transmission distance and bandwidth.

Fig. 7
Fig. 7

(Color online) Unitary amplitudes of the blank subcarriers over the different distances.

Fig. 8
Fig. 8

(Color online) Channel response of the OFDM-ROF system with 2 MHz laser linewidth.

Fig. 9
Fig. 9

(Color online) Channel response of the OFDM-ROF system with 2 MHz laser linewidth, 35 dB CSR, and 25 dB HSR.

Fig. 10
Fig. 10

(Color online) Electrical spectrum and bit error distribution for a QAM-16-based OFDM-ROF system using a DSB-SC optical mm-wave.

Fig. 11
Fig. 11

(Color online) Demonstration of adaptive modulation techniques according to the yield-to-joint principle.

Fig. 12
Fig. 12

(Color online) Experimental setup for the 60 GHz OFDM-ROF system with the adaptive modulation technique. DFB, distributed feedback laser diode; Dual-arm MZ, dual-arm Mach–Zehnder modulator; LO, local oscillator; IL, interleaver; EDFA, erbium-doped optical fiber amplifier; OFDM, OFDM signal generated by an AWG; MZM, low-speed Mach–Zehnder modulator; SMF, single-mode fiber (SMF-28); OBF, optical band-pass filter; PD, photodiode; EA, electrical amplifier; 1:4LO, 1:4 electrical frequency multiplexer; LPF, electrical low-pass filter; OSC, real-time oscilloscope.

Fig. 13
Fig. 13

(Color online) BER curves of the received OFDM signals with and without the AM technique.

Fig. 14
Fig. 14

(Color online) Received constellations of the OFDM signal based on the AM technique.

Tables (2)

Tables Icon

Table I Key Parameters for the Simulated OFDM-ROF Link

Tables Icon

Table II Key Parameters for a QAM-16-OFDM ROF System

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

S t = k = 1 N a k cos n Ω t + b k sin n Ω t ,
E o p t m m w t = A + cos ω 0 + ω RF t + A cos ω 0 ω RF t ,
E t = A + cos ω 0 + ω RF t + A cos ω 0 ω RF t × 1 + γ k = 1 N a k cos n Ω t + b k sin n Ω t ,
I t = μ | E t | 2 = μ A 1 cos ω 0 ω RF t + A + 1 cos ω 0 + ω RF t 2 × 1 + γ k = 1 N a k cos n Ω t + b k sin n Ω t 2 = 1 2 μ A + 1 2 + A 1 2 1 + 2 γ k = 1 N a k cos n Ω t + b k sin n Ω t + γ 2 k = 1 N a k cos n Ω t + b k sin n Ω t 2 BB OFDM + μ A + 1 A 1 cos 2 ω RF t 1 + 2 γ k = 1 N a k cos n Ω t + b k sin n Ω t + γ 2 k = 1 N a k cos n Ω t + b k sin n Ω t 2 MW OFDM .
I M W t = μ A + A cos 2 ω RF t + 2 μ γ A + A cos 2 ω RF t × k = 1 N ( a k cos n Ω t + b k sin n Ω t ) OFDM-Signal + μ A + A cos 2 ω RF t × γ K = 1 N a k cos n Ω t + γ K = 1 N b k sin n Ω t 2 ISI ,
I ISI t = μ Sub up × Sub down ,
Sub up = a + 1 cos ω 0 + ω RF t × γ k = 1 N ( a k cos n Ω t + b k sin n Ω t ) ,
Sub down = a 1 cos ω 0 ω RF t × γ k = 1 N ( a k cos n Ω t + b k sin n Ω t ) .
E d i s t = ATT ( z ) × γ A + 1 k = 1 N cos ( ω 0 + ω RF ) t β ( ω 0 + ω RF + k Ω ) + β ( ω 0 + ω RF k Ω ) 2 z × a k cos k Ω t β ( ω 0 + ω RF + k Ω ) β ( ω 0 + ω RF k Ω ) 2 z + b k sin k Ω t β ( ω 0 + ω RF + k Ω ) β ( ω 0 + ω RF k Ω ) 2 z + A + 1 cos ( ω 0 + ω RF ) t β ( ω 0 + ω RF ) z + A 1 γ k = 1 N cos ( ω 0 ω RF ) t β ( ω 0 ω RF + k Ω ) + β ( ω 0 ω RF k Ω ) 2 z × a k cos k Ω t β ( ω 0 ω RF + k Ω ) β ( ω 0 ω RF k Ω ) 2 z + b k sin k Ω t β ( ω 0 ω RF + k Ω ) β ( ω 0 ω RF k Ω ) 2 z + A 1 cos ( ω 0 ω RF ) t β ( ω 0 ω RF ) z .
A = A + 1 γ k = 1 N cos ( ω 0 + ω RF ) t
β ( ω 0 + ω RF + k Ω ) + β ( ω 0 + ω RF k Ω ) 2 z
× a k cos k Ω t β ( ω 0 + ω RF + k Ω ) β ( ω 0 + ω RF k Ω ) 2 z
+ b k sin k Ω t β ( ω 0 + ω RF + k Ω ) β ( ω 0 + ω RF k Ω ) 2 z ,
B = A + 1 cos ( ω 0 + ω RF ) t β ( ω 0 + ω RF ) z ,
C = A 1 γ k = 1 N cos ( ω 0 ω RF ) t
β ( ω 0 ω RF + k Ω ) + β ( ω 0 ω RF k Ω ) 2 z
× a k cos k Ω t β ( ω 0 ω RF + k Ω ) β ( ω 0 ω RF k Ω ) 2 z
+ b k sin k Ω t β ( ω 0 ω RF + k Ω ) β ( ω 0 ω RF k Ω ) 2 z ,
D = A 1 cos ( ω 0 ω RF ) t β ( ω 0 ω RF ) z .
I = μ ATT ( z ) | E o u t t | 2 = μ ATT ( z ) [ A + B + C + D ] × [ A + B + C + D ] = μ ATT ( z ) ( A 2 + B 2 + C 2 + D 2 ) D C + 2 μ ATT ( z ) ( A B + C D ) baseband-OFDM + 2 μ ATT ( z ) ( B C + A D ) MW-OFDM + 2 μ ATT ( z ) A C ISI + 2 μ ATT ( z ) B D MM-Wave .
I MW ISI t = 2 μ ATT ( z ) × Sub u p D × Sub d o w n D ,
Sub u p D = A + 1 γ k = 1 N cos ( ω 0 + ω RF ) t β ( ω 0 + ω RF + k Ω ) + β ( ω 0 + ω RF k Ω ) 2 z × a k cos k Ω t β ( ω 0 + ω RF + k Ω ) β ( ω 0 + ω RF k Ω ) 2 z + b k sin k Ω t β ( ω 0 + ω RF + k Ω ) β ( ω 0 + ω RF k Ω ) 2 z ,
Sub d o w n D = A 1 γ k = 1 N cos ( ω 0 ω RF ) t β ( ω 0 ω RF + k Ω ) + β ( ω 0 ω RF k Ω ) 2 z × a k cos k Ω t β ( ω 0 ω RF + k Ω ) β ( ω 0 ω RF k Ω ) 2 z + b k sin k Ω t β ( ω 0 ω RF + k Ω ) β ( ω 0 ω RF k Ω ) 2 z .
I mw OFDM = 2 μ ATT ( z ) ( B C + A D ) = 2 μ ATT ( z ) A + 1 cos ( ω 0 + ω RF ) t β ( ω 0 + ω RF ) z × A 1 γ k = 1 N cos ( ω 0 ω RF ) t β ( ω 0 ω RF + k Ω ) + β ( ω 0 ω RF k Ω ) 2 z × a k cos k Ω t β ( ω 0 ω RF + k Ω ) β ( ω 0 ω RF k Ω ) 2 z + b k sin k Ω t β ( ω 0 ω RF + k Ω ) β ( ω 0 ω RF k Ω ) 2 z + 2 μ ATT ( z ) A 1 cos ( ω 0 ω RF ) t β ( ω 0 ω RF ) z × A + 1 γ k = 1 N cos ( ω 0 + ω RF ) t β ( ω 0 + ω RF + k Ω ) + β ( ω 0 + ω RF k Ω ) 2 z × a k cos k Ω t β ( ω 0 + ω RF + k Ω ) β ( ω 0 + ω RF k Ω ) 2 z + b k sin k Ω t β ( ω 0 + ω RF + k Ω ) β ( ω 0 + ω RF k Ω ) 2 z .
I mw OFDM = 4 μ ATT ( z ) a + 1 a 1 γ k = 1 N cos ( k Ω ω RF β ( ω 0 ) z ) × a k cos ( k Ω t k Ω β ( ω 0 ) z ) cos ( 2 ω RF t 2 ω RF β ( ω 0 ) z ) + b k sin ( k Ω t k Ω β ( ω 0 ) z ) cos ( 2 ω RF t 2 ω RF β ( ω 0 ) z ) .
FC ( k ) = cos ( ψ k ) ,
ψ = Ω ω RF β ( ω 0 ) z ,
β ( ω 0 ) = λ 2 D s 2 π c ,
γ = V P P V π × PAPR .
d = 2 M 1 .