Abstract

In this paper we compare the average energy consumption per bit of matrix–vector multiplier crossbar (MVMC) and Benes optical packet switches realized in semiconductor optical amplifier (SOA) technology. Sophisticated analytical models are introduced to evaluate the power consumption versus the offered traffic, the main switch parameters, and the used device characteristics. We also study the impact that the amplifier spontaneous emission (ASE) noise generated by a transmission system has on the power consumption of the MVMC and Benes switches due to the gain saturation of the SOAs used to realize the switching fabric. We show that for large size, a Benes switch is more effective in power consumption than an MVMC switch under conditions of low ASE noise and when the power consumption of turned off SOAs is taken into account. As a matter of example for 64 × 64 switches supporting 64 wavelengths and offered traffic equal to 0.8, the average energy consumption values are 6.24×101 nJ/bit and 4.87×101 nJ/bit for MVMC and Benes switches, respectively.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Peng, K. Hinton, J. Baliga, R. S. Tucker, Z. Li, and A. Xu, "Burst switching for energy efficiency in optical networks," Optical Fiber Communication Conf., Mar. 2010, San Diego, CA, OWY5.
  2. S. Aleksic, "Analysis of power in future high capacity network nodes," J. Opt. Commun. Netw. 1, 245‒258 (2009).
    [CrossRef]
  3. R. S. Tucker, "Green optical communications—Part I: Energy limitations in transport," IEEE J. Sel. Top. Quantum Electron. 17, 245‒260 (2011).
    [CrossRef]
  4. R. S. Tucker, "Green optical communications—Part II: Energy limitations in networks," IEEE J. Sel. Top. Quantum Electron. 17, 261‒274 (2011).
    [CrossRef]
  5. J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardway, Y. Su, K. Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link, O. Mayer, and M. Berger, "Demonstration of a 1.2 Tb/s optical packet switch fabric (32×40) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers, and a high-performance N×N AWG," 27th European Conf. Optical Communication, 2001, Amsterdam, The Netherlands, pp. 58‒59.
  6. S. J. B. Yoo, "Optical packet and burst switching technologies for the future photonic internet," J. Lightwave Technol. 24, 4468‒4492 (2006).
    [CrossRef]
  7. O. Liboiron-Ladouceur, A. Shacham, B. A. Small, B. G. Lee, H. Wang, C. P. Lai, A. Biberman, and K. Bergman, "The data vortex optical packet switched interconnection network," J. Lightwave Technol. 26, 1777‒1789 (2008).
    [CrossRef]
  8. V. Eramo and M. Listanti, "Power consumption in bufferless optical packet switches in SOA technology," J. Opt. Commun. Netw. 1, B15‒B29 (2009).
    [CrossRef]
  9. V. Eramo and M. Listanti, "Wavelength converter sharing in a WDM optical packet switch: Dimensioning and performance issues," Comput. Netw. 32, 633‒651 (2000).
    [CrossRef]
  10. J. D. Evankow and R. A. Thompson, "Photonic switching modules designed with laser diode amplifiers," IEEE J. Sel. Areas Commun. 6, 1087‒1095 (1988).
    [CrossRef]
  11. J. Y. Hui, Switching and Traffic Theory for Integrated Broadband Networks, Kluwer, Boston, 1990.
  12. V. Eramo, "An analytical model for TOWC dimensioning in a multifiber optical-packet switch," J. Lightwave Technol. 24, 4799‒4810 (2006).
    [CrossRef]
  13. V. E. Benes, Mathematical Theory of Connecting Networks, Academic Press, New York, 1965.
  14. R. F. Kalman, L. G. Kazovsky, and J. W. Goodman, "Space division switches based on semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 4, 1048‒1051 (1992).
    [CrossRef]
  15. G. Jeong and J. W. Goodman, "Gain optimization in switches based on semiconductor optical amplifiers," J. Lightwave Technol. 13, 598‒605 (1995).
    [CrossRef]
  16. C. H. Henry, "Theory of spontaneous emission noise in open resonators and its applications to laser and optical amplifier," J. Lightwave Technol. 4, 288‒297 (1986).
    [CrossRef]
  17. K. Hinton, G. Rakutti, P. Farrel, and R. S. Tucker, "Switching energy and device size limits on digital photonic signal processing technologies," IEEE J. Sel. Top. Quantum Electron. 14, 938‒945 (2008).
    [CrossRef]
  18. A. Ehrhardt, M. Eiselt, G. Großkopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, 1287‒1295 (1993).
    [CrossRef]
  19. V. Eramo, A. Germoni, C. Raffaelli, and M. Savi, "Multifiber shared-per-wavelength all-optical switching: Architectures, control, and performance," J. Lightwave Technol. 26, 537‒551 (2008).
    [CrossRef]
  20. V. Eramo, "Comparison in power consumption of synchronous and asynchronous optical packet switches," J. Lightwave Technol. 28, 847‒857 (2010).
    [CrossRef]
  21. J. Sakaguchi, F. Salleras, K. Nishimura, and Y. Ueno, "Frequency-dependent electric dc power consumption model including quantum-conversion efficiencies in ultrafast all-optical semiconductor gates around 160 Gb/s," Opt. Express 15, 14887‒14900 (2007).
    [CrossRef]
  22. Y. Ueno, J. Sakaguchi, R. Nakamoto, and T. Nishida, "Ultrafast, low-energy-consumption, semiconductor-based, all-optical devices," 4th Asia-Pacific Photonics Conf. (APMP 2009), Apr. 2009, Bejing, China, pp. 1‒5.
  23. J. P. Mack, H. N. Poulsen, and D. J. Blumental, "40 Gb/s autonomous optical packet synchronizer," Optical Fiber Communication Conf., Feb. 2008, San Diego, CA, pp. 1‒3.
  24. J. P. Mack, H. N. Poulsen, and D. J. Blumental, "Variable length optical packet synchronizer," IEEE Photon. Technol. Lett. 20, 1252‒1254 (2008).
    [CrossRef]
  25. A. Ramaswami and K. N. Sivarajan, Optical Networks, Morgan Kaufmann Publishers, San Francisco, CA, 2002.
  26. V. Eramo and M. Listanti, "Packet loss in a bufferless optical WDM switch employing shared tunable wavelength converters," J. Lightwave Technol. 18, 1818‒1833 (2000).
    [CrossRef]
  27. V. Eramo, M. Listanti, C. Nuzman, and P. Whiting, "Optical switch dimensioning and the classical occupancy problem," Int. J. Commun. Systems 15, 127‒141 (2002).
    [CrossRef]

2011 (2)

R. S. Tucker, "Green optical communications—Part I: Energy limitations in transport," IEEE J. Sel. Top. Quantum Electron. 17, 245‒260 (2011).
[CrossRef]

R. S. Tucker, "Green optical communications—Part II: Energy limitations in networks," IEEE J. Sel. Top. Quantum Electron. 17, 261‒274 (2011).
[CrossRef]

2010 (1)

2009 (2)

2008 (4)

V. Eramo, A. Germoni, C. Raffaelli, and M. Savi, "Multifiber shared-per-wavelength all-optical switching: Architectures, control, and performance," J. Lightwave Technol. 26, 537‒551 (2008).
[CrossRef]

O. Liboiron-Ladouceur, A. Shacham, B. A. Small, B. G. Lee, H. Wang, C. P. Lai, A. Biberman, and K. Bergman, "The data vortex optical packet switched interconnection network," J. Lightwave Technol. 26, 1777‒1789 (2008).
[CrossRef]

J. P. Mack, H. N. Poulsen, and D. J. Blumental, "Variable length optical packet synchronizer," IEEE Photon. Technol. Lett. 20, 1252‒1254 (2008).
[CrossRef]

K. Hinton, G. Rakutti, P. Farrel, and R. S. Tucker, "Switching energy and device size limits on digital photonic signal processing technologies," IEEE J. Sel. Top. Quantum Electron. 14, 938‒945 (2008).
[CrossRef]

2007 (1)

2006 (2)

2002 (1)

V. Eramo, M. Listanti, C. Nuzman, and P. Whiting, "Optical switch dimensioning and the classical occupancy problem," Int. J. Commun. Systems 15, 127‒141 (2002).
[CrossRef]

2000 (2)

V. Eramo and M. Listanti, "Packet loss in a bufferless optical WDM switch employing shared tunable wavelength converters," J. Lightwave Technol. 18, 1818‒1833 (2000).
[CrossRef]

V. Eramo and M. Listanti, "Wavelength converter sharing in a WDM optical packet switch: Dimensioning and performance issues," Comput. Netw. 32, 633‒651 (2000).
[CrossRef]

1995 (1)

G. Jeong and J. W. Goodman, "Gain optimization in switches based on semiconductor optical amplifiers," J. Lightwave Technol. 13, 598‒605 (1995).
[CrossRef]

1993 (1)

A. Ehrhardt, M. Eiselt, G. Großkopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, 1287‒1295 (1993).
[CrossRef]

1992 (1)

R. F. Kalman, L. G. Kazovsky, and J. W. Goodman, "Space division switches based on semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 4, 1048‒1051 (1992).
[CrossRef]

1988 (1)

J. D. Evankow and R. A. Thompson, "Photonic switching modules designed with laser diode amplifiers," IEEE J. Sel. Areas Commun. 6, 1087‒1095 (1988).
[CrossRef]

1986 (1)

C. H. Henry, "Theory of spontaneous emission noise in open resonators and its applications to laser and optical amplifier," J. Lightwave Technol. 4, 288‒297 (1986).
[CrossRef]

Aleksic, S.

Baliga, J.

S. Peng, K. Hinton, J. Baliga, R. S. Tucker, Z. Li, and A. Xu, "Burst switching for energy efficiency in optical networks," Optical Fiber Communication Conf., Mar. 2010, San Diego, CA, OWY5.

Benes, V. E.

V. E. Benes, Mathematical Theory of Connecting Networks, Academic Press, New York, 1965.

Berger, M.

J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardway, Y. Su, K. Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link, O. Mayer, and M. Berger, "Demonstration of a 1.2 Tb/s optical packet switch fabric (32×40) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers, and a high-performance N×N AWG," 27th European Conf. Optical Communication, 2001, Amsterdam, The Netherlands, pp. 58‒59.

Bergman, K.

Bernasconi, P.

J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardway, Y. Su, K. Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link, O. Mayer, and M. Berger, "Demonstration of a 1.2 Tb/s optical packet switch fabric (32×40) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers, and a high-performance N×N AWG," 27th European Conf. Optical Communication, 2001, Amsterdam, The Netherlands, pp. 58‒59.

Bhardway, A.

J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardway, Y. Su, K. Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link, O. Mayer, and M. Berger, "Demonstration of a 1.2 Tb/s optical packet switch fabric (32×40) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers, and a high-performance N×N AWG," 27th European Conf. Optical Communication, 2001, Amsterdam, The Netherlands, pp. 58‒59.

Biberman, A.

Blumental, D. J.

J. P. Mack, H. N. Poulsen, and D. J. Blumental, "Variable length optical packet synchronizer," IEEE Photon. Technol. Lett. 20, 1252‒1254 (2008).
[CrossRef]

J. P. Mack, H. N. Poulsen, and D. J. Blumental, "40 Gb/s autonomous optical packet synchronizer," Optical Fiber Communication Conf., Feb. 2008, San Diego, CA, pp. 1‒3.

Buhl, L.

J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardway, Y. Su, K. Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link, O. Mayer, and M. Berger, "Demonstration of a 1.2 Tb/s optical packet switch fabric (32×40) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers, and a high-performance N×N AWG," 27th European Conf. Optical Communication, 2001, Amsterdam, The Netherlands, pp. 58‒59.

Capuzzo, M.

J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardway, Y. Su, K. Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link, O. Mayer, and M. Berger, "Demonstration of a 1.2 Tb/s optical packet switch fabric (32×40) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers, and a high-performance N×N AWG," 27th European Conf. Optical Communication, 2001, Amsterdam, The Netherlands, pp. 58‒59.

Chandrasekhar, S.

J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardway, Y. Su, K. Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link, O. Mayer, and M. Berger, "Demonstration of a 1.2 Tb/s optical packet switch fabric (32×40) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers, and a high-performance N×N AWG," 27th European Conf. Optical Communication, 2001, Amsterdam, The Netherlands, pp. 58‒59.

Duelk, M.

J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardway, Y. Su, K. Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link, O. Mayer, and M. Berger, "Demonstration of a 1.2 Tb/s optical packet switch fabric (32×40) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers, and a high-performance N×N AWG," 27th European Conf. Optical Communication, 2001, Amsterdam, The Netherlands, pp. 58‒59.

Ehrhardt, A.

A. Ehrhardt, M. Eiselt, G. Großkopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, 1287‒1295 (1993).
[CrossRef]

Eiselt, M.

A. Ehrhardt, M. Eiselt, G. Großkopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, 1287‒1295 (1993).
[CrossRef]

Eramo, V.

Evankow, J. D.

J. D. Evankow and R. A. Thompson, "Photonic switching modules designed with laser diode amplifiers," IEEE J. Sel. Areas Commun. 6, 1087‒1095 (1988).
[CrossRef]

Farrel, P.

K. Hinton, G. Rakutti, P. Farrel, and R. S. Tucker, "Switching energy and device size limits on digital photonic signal processing technologies," IEEE J. Sel. Top. Quantum Electron. 14, 938‒945 (2008).
[CrossRef]

Germoni, A.

Goodman, J. W.

G. Jeong and J. W. Goodman, "Gain optimization in switches based on semiconductor optical amplifiers," J. Lightwave Technol. 13, 598‒605 (1995).
[CrossRef]

R. F. Kalman, L. G. Kazovsky, and J. W. Goodman, "Space division switches based on semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 4, 1048‒1051 (1992).
[CrossRef]

Gripp, J.

J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardway, Y. Su, K. Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link, O. Mayer, and M. Berger, "Demonstration of a 1.2 Tb/s optical packet switch fabric (32×40) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers, and a high-performance N×N AWG," 27th European Conf. Optical Communication, 2001, Amsterdam, The Netherlands, pp. 58‒59.

Großkopf, G.

A. Ehrhardt, M. Eiselt, G. Großkopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, 1287‒1295 (1993).
[CrossRef]

Henry, C. H.

C. H. Henry, "Theory of spontaneous emission noise in open resonators and its applications to laser and optical amplifier," J. Lightwave Technol. 4, 288‒297 (1986).
[CrossRef]

Hinton, K.

K. Hinton, G. Rakutti, P. Farrel, and R. S. Tucker, "Switching energy and device size limits on digital photonic signal processing technologies," IEEE J. Sel. Top. Quantum Electron. 14, 938‒945 (2008).
[CrossRef]

S. Peng, K. Hinton, J. Baliga, R. S. Tucker, Z. Li, and A. Xu, "Burst switching for energy efficiency in optical networks," Optical Fiber Communication Conf., Mar. 2010, San Diego, CA, OWY5.

Hui, J. Y.

J. Y. Hui, Switching and Traffic Theory for Integrated Broadband Networks, Kluwer, Boston, 1990.

Jeong, G.

G. Jeong and J. W. Goodman, "Gain optimization in switches based on semiconductor optical amplifiers," J. Lightwave Technol. 13, 598‒605 (1995).
[CrossRef]

Kalman, R. F.

R. F. Kalman, L. G. Kazovsky, and J. W. Goodman, "Space division switches based on semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 4, 1048‒1051 (1992).
[CrossRef]

Kazovsky, L. G.

R. F. Kalman, L. G. Kazovsky, and J. W. Goodman, "Space division switches based on semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 4, 1048‒1051 (1992).
[CrossRef]

Kuller, L.

A. Ehrhardt, M. Eiselt, G. Großkopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, 1287‒1295 (1993).
[CrossRef]

Lai, C. P.

Laskowski, E.

J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardway, Y. Su, K. Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link, O. Mayer, and M. Berger, "Demonstration of a 1.2 Tb/s optical packet switch fabric (32×40) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers, and a high-performance N×N AWG," 27th European Conf. Optical Communication, 2001, Amsterdam, The Netherlands, pp. 58‒59.

Laznicka, O.

J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardway, Y. Su, K. Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link, O. Mayer, and M. Berger, "Demonstration of a 1.2 Tb/s optical packet switch fabric (32×40) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers, and a high-performance N×N AWG," 27th European Conf. Optical Communication, 2001, Amsterdam, The Netherlands, pp. 58‒59.

Lee, B. G.

Li, Z.

S. Peng, K. Hinton, J. Baliga, R. S. Tucker, Z. Li, and A. Xu, "Burst switching for energy efficiency in optical networks," Optical Fiber Communication Conf., Mar. 2010, San Diego, CA, OWY5.

Liboiron-Ladouceur, O.

Link, T.

J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardway, Y. Su, K. Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link, O. Mayer, and M. Berger, "Demonstration of a 1.2 Tb/s optical packet switch fabric (32×40) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers, and a high-performance N×N AWG," 27th European Conf. Optical Communication, 2001, Amsterdam, The Netherlands, pp. 58‒59.

Listanti, M.

V. Eramo and M. Listanti, "Power consumption in bufferless optical packet switches in SOA technology," J. Opt. Commun. Netw. 1, B15‒B29 (2009).
[CrossRef]

V. Eramo, M. Listanti, C. Nuzman, and P. Whiting, "Optical switch dimensioning and the classical occupancy problem," Int. J. Commun. Systems 15, 127‒141 (2002).
[CrossRef]

V. Eramo and M. Listanti, "Packet loss in a bufferless optical WDM switch employing shared tunable wavelength converters," J. Lightwave Technol. 18, 1818‒1833 (2000).
[CrossRef]

V. Eramo and M. Listanti, "Wavelength converter sharing in a WDM optical packet switch: Dimensioning and performance issues," Comput. Netw. 32, 633‒651 (2000).
[CrossRef]

Ludwig, R.

A. Ehrhardt, M. Eiselt, G. Großkopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, 1287‒1295 (1993).
[CrossRef]

Mack, J. P.

J. P. Mack, H. N. Poulsen, and D. J. Blumental, "Variable length optical packet synchronizer," IEEE Photon. Technol. Lett. 20, 1252‒1254 (2008).
[CrossRef]

J. P. Mack, H. N. Poulsen, and D. J. Blumental, "40 Gb/s autonomous optical packet synchronizer," Optical Fiber Communication Conf., Feb. 2008, San Diego, CA, pp. 1‒3.

Mayer, O.

J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardway, Y. Su, K. Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link, O. Mayer, and M. Berger, "Demonstration of a 1.2 Tb/s optical packet switch fabric (32×40) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers, and a high-performance N×N AWG," 27th European Conf. Optical Communication, 2001, Amsterdam, The Netherlands, pp. 58‒59.

Nakamoto, R.

Y. Ueno, J. Sakaguchi, R. Nakamoto, and T. Nishida, "Ultrafast, low-energy-consumption, semiconductor-based, all-optical devices," 4th Asia-Pacific Photonics Conf. (APMP 2009), Apr. 2009, Bejing, China, pp. 1‒5.

Nishida, T.

Y. Ueno, J. Sakaguchi, R. Nakamoto, and T. Nishida, "Ultrafast, low-energy-consumption, semiconductor-based, all-optical devices," 4th Asia-Pacific Photonics Conf. (APMP 2009), Apr. 2009, Bejing, China, pp. 1‒5.

Nishimura, K.

Nuzman, C.

V. Eramo, M. Listanti, C. Nuzman, and P. Whiting, "Optical switch dimensioning and the classical occupancy problem," Int. J. Commun. Systems 15, 127‒141 (2002).
[CrossRef]

Peng, S.

S. Peng, K. Hinton, J. Baliga, R. S. Tucker, Z. Li, and A. Xu, "Burst switching for energy efficiency in optical networks," Optical Fiber Communication Conf., Mar. 2010, San Diego, CA, OWY5.

Pieper, W.

A. Ehrhardt, M. Eiselt, G. Großkopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, 1287‒1295 (1993).
[CrossRef]

Poulsen, H. N.

J. P. Mack, H. N. Poulsen, and D. J. Blumental, "Variable length optical packet synchronizer," IEEE Photon. Technol. Lett. 20, 1252‒1254 (2008).
[CrossRef]

J. P. Mack, H. N. Poulsen, and D. J. Blumental, "40 Gb/s autonomous optical packet synchronizer," Optical Fiber Communication Conf., Feb. 2008, San Diego, CA, pp. 1‒3.

Raffaelli, C.

Rakutti, G.

K. Hinton, G. Rakutti, P. Farrel, and R. S. Tucker, "Switching energy and device size limits on digital photonic signal processing technologies," IEEE J. Sel. Top. Quantum Electron. 14, 938‒945 (2008).
[CrossRef]

Ramaswami, A.

A. Ramaswami and K. N. Sivarajan, Optical Networks, Morgan Kaufmann Publishers, San Francisco, CA, 2002.

Sakaguchi, J.

J. Sakaguchi, F. Salleras, K. Nishimura, and Y. Ueno, "Frequency-dependent electric dc power consumption model including quantum-conversion efficiencies in ultrafast all-optical semiconductor gates around 160 Gb/s," Opt. Express 15, 14887‒14900 (2007).
[CrossRef]

Y. Ueno, J. Sakaguchi, R. Nakamoto, and T. Nishida, "Ultrafast, low-energy-consumption, semiconductor-based, all-optical devices," 4th Asia-Pacific Photonics Conf. (APMP 2009), Apr. 2009, Bejing, China, pp. 1‒5.

Salleras, F.

Savi, M.

Schnabel, R.

A. Ehrhardt, M. Eiselt, G. Großkopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, 1287‒1295 (1993).
[CrossRef]

Shacham, A.

Sherman, K.

J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardway, Y. Su, K. Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link, O. Mayer, and M. Berger, "Demonstration of a 1.2 Tb/s optical packet switch fabric (32×40) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers, and a high-performance N×N AWG," 27th European Conf. Optical Communication, 2001, Amsterdam, The Netherlands, pp. 58‒59.

Simsarian, J.

J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardway, Y. Su, K. Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link, O. Mayer, and M. Berger, "Demonstration of a 1.2 Tb/s optical packet switch fabric (32×40) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers, and a high-performance N×N AWG," 27th European Conf. Optical Communication, 2001, Amsterdam, The Netherlands, pp. 58‒59.

Sivarajan, K. N.

A. Ramaswami and K. N. Sivarajan, Optical Networks, Morgan Kaufmann Publishers, San Francisco, CA, 2002.

Small, B. A.

Stulz, L.

J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardway, Y. Su, K. Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link, O. Mayer, and M. Berger, "Demonstration of a 1.2 Tb/s optical packet switch fabric (32×40) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers, and a high-performance N×N AWG," 27th European Conf. Optical Communication, 2001, Amsterdam, The Netherlands, pp. 58‒59.

Su, Y.

J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardway, Y. Su, K. Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link, O. Mayer, and M. Berger, "Demonstration of a 1.2 Tb/s optical packet switch fabric (32×40) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers, and a high-performance N×N AWG," 27th European Conf. Optical Communication, 2001, Amsterdam, The Netherlands, pp. 58‒59.

Thompson, R. A.

J. D. Evankow and R. A. Thompson, "Photonic switching modules designed with laser diode amplifiers," IEEE J. Sel. Areas Commun. 6, 1087‒1095 (1988).
[CrossRef]

Tucker, R. S.

R. S. Tucker, "Green optical communications—Part I: Energy limitations in transport," IEEE J. Sel. Top. Quantum Electron. 17, 245‒260 (2011).
[CrossRef]

R. S. Tucker, "Green optical communications—Part II: Energy limitations in networks," IEEE J. Sel. Top. Quantum Electron. 17, 261‒274 (2011).
[CrossRef]

K. Hinton, G. Rakutti, P. Farrel, and R. S. Tucker, "Switching energy and device size limits on digital photonic signal processing technologies," IEEE J. Sel. Top. Quantum Electron. 14, 938‒945 (2008).
[CrossRef]

S. Peng, K. Hinton, J. Baliga, R. S. Tucker, Z. Li, and A. Xu, "Burst switching for energy efficiency in optical networks," Optical Fiber Communication Conf., Mar. 2010, San Diego, CA, OWY5.

Ueno, Y.

J. Sakaguchi, F. Salleras, K. Nishimura, and Y. Ueno, "Frequency-dependent electric dc power consumption model including quantum-conversion efficiencies in ultrafast all-optical semiconductor gates around 160 Gb/s," Opt. Express 15, 14887‒14900 (2007).
[CrossRef]

Y. Ueno, J. Sakaguchi, R. Nakamoto, and T. Nishida, "Ultrafast, low-energy-consumption, semiconductor-based, all-optical devices," 4th Asia-Pacific Photonics Conf. (APMP 2009), Apr. 2009, Bejing, China, pp. 1‒5.

Wang, H.

Weber, H.

A. Ehrhardt, M. Eiselt, G. Großkopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, 1287‒1295 (1993).
[CrossRef]

Whiting, P.

V. Eramo, M. Listanti, C. Nuzman, and P. Whiting, "Optical switch dimensioning and the classical occupancy problem," Int. J. Commun. Systems 15, 127‒141 (2002).
[CrossRef]

Xu, A.

S. Peng, K. Hinton, J. Baliga, R. S. Tucker, Z. Li, and A. Xu, "Burst switching for energy efficiency in optical networks," Optical Fiber Communication Conf., Mar. 2010, San Diego, CA, OWY5.

Yoo, S. J. B.

Zirngibl, M.

J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardway, Y. Su, K. Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link, O. Mayer, and M. Berger, "Demonstration of a 1.2 Tb/s optical packet switch fabric (32×40) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers, and a high-performance N×N AWG," 27th European Conf. Optical Communication, 2001, Amsterdam, The Netherlands, pp. 58‒59.

Comput. Netw. (1)

V. Eramo and M. Listanti, "Wavelength converter sharing in a WDM optical packet switch: Dimensioning and performance issues," Comput. Netw. 32, 633‒651 (2000).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

J. D. Evankow and R. A. Thompson, "Photonic switching modules designed with laser diode amplifiers," IEEE J. Sel. Areas Commun. 6, 1087‒1095 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

R. S. Tucker, "Green optical communications—Part I: Energy limitations in transport," IEEE J. Sel. Top. Quantum Electron. 17, 245‒260 (2011).
[CrossRef]

R. S. Tucker, "Green optical communications—Part II: Energy limitations in networks," IEEE J. Sel. Top. Quantum Electron. 17, 261‒274 (2011).
[CrossRef]

K. Hinton, G. Rakutti, P. Farrel, and R. S. Tucker, "Switching energy and device size limits on digital photonic signal processing technologies," IEEE J. Sel. Top. Quantum Electron. 14, 938‒945 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R. F. Kalman, L. G. Kazovsky, and J. W. Goodman, "Space division switches based on semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 4, 1048‒1051 (1992).
[CrossRef]

J. P. Mack, H. N. Poulsen, and D. J. Blumental, "Variable length optical packet synchronizer," IEEE Photon. Technol. Lett. 20, 1252‒1254 (2008).
[CrossRef]

Int. J. Commun. Systems (1)

V. Eramo, M. Listanti, C. Nuzman, and P. Whiting, "Optical switch dimensioning and the classical occupancy problem," Int. J. Commun. Systems 15, 127‒141 (2002).
[CrossRef]

J. Lightwave Technol. (9)

V. Eramo and M. Listanti, "Packet loss in a bufferless optical WDM switch employing shared tunable wavelength converters," J. Lightwave Technol. 18, 1818‒1833 (2000).
[CrossRef]

S. J. B. Yoo, "Optical packet and burst switching technologies for the future photonic internet," J. Lightwave Technol. 24, 4468‒4492 (2006).
[CrossRef]

V. Eramo, "An analytical model for TOWC dimensioning in a multifiber optical-packet switch," J. Lightwave Technol. 24, 4799‒4810 (2006).
[CrossRef]

A. Ehrhardt, M. Eiselt, G. Großkopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, 1287‒1295 (1993).
[CrossRef]

G. Jeong and J. W. Goodman, "Gain optimization in switches based on semiconductor optical amplifiers," J. Lightwave Technol. 13, 598‒605 (1995).
[CrossRef]

C. H. Henry, "Theory of spontaneous emission noise in open resonators and its applications to laser and optical amplifier," J. Lightwave Technol. 4, 288‒297 (1986).
[CrossRef]

V. Eramo, "Comparison in power consumption of synchronous and asynchronous optical packet switches," J. Lightwave Technol. 28, 847‒857 (2010).
[CrossRef]

V. Eramo, A. Germoni, C. Raffaelli, and M. Savi, "Multifiber shared-per-wavelength all-optical switching: Architectures, control, and performance," J. Lightwave Technol. 26, 537‒551 (2008).
[CrossRef]

O. Liboiron-Ladouceur, A. Shacham, B. A. Small, B. G. Lee, H. Wang, C. P. Lai, A. Biberman, and K. Bergman, "The data vortex optical packet switched interconnection network," J. Lightwave Technol. 26, 1777‒1789 (2008).
[CrossRef]

J. Opt. Commun. Netw. (2)

Opt. Express (1)

Other (7)

Y. Ueno, J. Sakaguchi, R. Nakamoto, and T. Nishida, "Ultrafast, low-energy-consumption, semiconductor-based, all-optical devices," 4th Asia-Pacific Photonics Conf. (APMP 2009), Apr. 2009, Bejing, China, pp. 1‒5.

J. P. Mack, H. N. Poulsen, and D. J. Blumental, "40 Gb/s autonomous optical packet synchronizer," Optical Fiber Communication Conf., Feb. 2008, San Diego, CA, pp. 1‒3.

J. Gripp, M. Duelk, J. Simsarian, S. Chandrasekhar, P. Bernasconi, A. Bhardway, Y. Su, K. Sherman, L. Buhl, E. Laskowski, M. Capuzzo, L. Stulz, M. Zirngibl, O. Laznicka, T. Link, O. Mayer, and M. Berger, "Demonstration of a 1.2 Tb/s optical packet switch fabric (32×40) based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers, and a high-performance N×N AWG," 27th European Conf. Optical Communication, 2001, Amsterdam, The Netherlands, pp. 58‒59.

J. Y. Hui, Switching and Traffic Theory for Integrated Broadband Networks, Kluwer, Boston, 1990.

V. E. Benes, Mathematical Theory of Connecting Networks, Academic Press, New York, 1965.

A. Ramaswami and K. N. Sivarajan, Optical Networks, Morgan Kaufmann Publishers, San Francisco, CA, 2002.

S. Peng, K. Hinton, J. Baliga, R. S. Tucker, Z. Li, and A. Xu, "Burst switching for energy efficiency in optical networks," Optical Fiber Communication Conf., Mar. 2010, San Diego, CA, OWY5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

(Color online) Optical packet switching architecture with N input/output fibers, M wavelengths, and r shared wavelength converters.

Fig. 2
Fig. 2

(Color online) Matrix–vector multiplier crossbar (MVMC) optical packet switch ( N = 2 , M = 2 , r = 1 ).

Fig. 3
Fig. 3

(Color online) (a) 8 × 8 Benes switching architecture realized with 20 2 × 2 switching elements. (b) SOA technology based 2 × 2 switching element.

Fig. 4
Fig. 4

(Color online) Benes optical packet switch realized with splitters, couplers, and SOAs ( N = 2 , M = 2 , r = 1 ).

Fig. 5
Fig. 5

(Color online) Benes optical packet switch realized with splitters, directional couplers, couplers, and SOAs ( N = 2 , M = 2 , r = 1 ).

Fig. 6
Fig. 6

(Color online) Point-to-point link with cascaded loss elements and SOAs. K denotes the number of stages, 1 L i denotes the attenuation introduced by the i th loss element. G i u s and G i s denote the unsaturated and saturated gains of the i th SOA.

Fig. 7
Fig. 7

(Color online) Paths followed in the MVMC switch by a packet in the cases in which (a) it is directly forwarded or (b) it is wavelength converted. For each path the attenuation and the gain of the splitters, couplers, and SOAs are reported.

Fig. 8
Fig. 8

(Color online) Paths followed in the Benes switch by a packet in the cases in which (a) it is directly forwarded or (b) it is wavelength converted. For each path the attenuation and the gain of the splitters, directional couplers, couplers, and SOAs are reported.

Fig. 9
Fig. 9

(Color online) Schematic of an optically amplified link, comprising an optical transmitter and S identical stages of optical gain. Each stage has length L and the fiber used is characterized by an attenuation equal to α dB/km. L tot is the total length of the optically amplified link.

Fig. 10
Fig. 10

Comparison of average energy consumption values per bit E a v , T MV MC and E a v , T Benes in MVMC and Benes switches versus the number r of WCs used. The switch parameters are N = 32 , M = 64 and the offered traffic is p = 0 . 8 . The bit-rate carried on each input wavelength channel is B = 40 Gb/s. The optical bandwidth is B 0 = 100 GHz and the SOAs used are characterized by n s p = 3 . 5 , p s p = 2 , and i off = 0 . The ASE noise at the switch input is generated by a transmission system characterized by L = 50 km , α = 0 . 2 dB / km , and S varying from 0 to 10.

Fig. 11
Fig. 11

SOA power consumption in MVMC and Benes switches versus the number r of WCs used. The same parameters as Fig. 10 are used. For the Benes switch, it is shown that the power consumption of the SOA is greater (last stage—LS).

Fig. 12
Fig. 12

Number of turned on SOAs in MVMC and Benes switches versus the number r of WCs used. The same switch parameters as Fig. 10 are used. The offered traffic p is varied from 0.2 to 0.8.

Fig. 13
Fig. 13

Comparison of average energy consumption per bit E a v , T MV MC and E a v , T Benes in MVMC and Benes switches versus the offered traffic p for N = 32 , M = 64 . The bit-rate carried on each input wavelength channel is B = 40 Gb / s . The optical bandwidth is B 0 = 100 GHz and the SOAs used are characterized by n s p = 3 . 5 , p s p = 2 , and i off = 0 . The ASE noise at the switch input is generated by a transmission system characterized by L = 50 km , α = 0 . 2 dB / km , and S varying from 0 to 10.

Fig. 14
Fig. 14

Comparison of average energy consumption values per bit E a v , T MV MC and E a v , T Benes in MVMC and Benes switches versus the stage length L of the transmission system generating the ASE noise. The switch parameters are N = 32 , M = 64 and the offered traffic p is varying from 0.2 to 0.8. The bit-rate carried on each input wavelength channel is B = 40 Gb / s and the optical bandwidth is B 0 = 100 GHz . The same SOA parameters as Fig. 13 are used. The total length L tot of the transmission system is 500 km.

Fig. 15
Fig. 15

Comparison of average energy consumption values per bit E a v , T MV MC and E a v , T Benes in MVMC and Benes switches versus the number N of input/output fibers for M = 64 , B = 40 Gb / s , B 0 = 100 GHz , n s p = 3 . 5 , p s p = 2 , and p varying from 0.2 to 0.8. The turned off SOAs are polarized with a current i off = 7 mA . Electrical regeneration ( S = 0 ) is performed before the switching operation.

Fig. 16
Fig. 16

Number of turned off SOAs in MVMC and Benes switches versus the number N of input/output fibers for M = 64 . The offered traffic p is varied from 0.2 to 0.8.

Fig. 17
Fig. 17

Comparison of energy consumption values per bit E a v , T MV MC and E a v , T Benes in MVMC and Benes switches versus the number N of input/output fibers for M = 64 , B = 40 Gb / s , B 0 = 100 GHz , n s p = 3 . 5 , p s p = 2 , and p varying from 0.2 to 0.8. The turned off SOAs are polarized with a current i off = 7 mA . The transmission system generating ASE noise is characterized by S = 10 and L = 50 km .

Tables (2)

Tables Icon

Table I Main Parameter Values for the A#2 Commercial SOAs

Tables Icon

Table II Main Parameter Values for the B#1 Commercial SOA and the Power Consumption of DISCs Realized With B#1 SOAs at the Bit-Rate B = 40 Gb/s.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

P i , s out = P s in h = 1 i L h G h s ( i = 1 , , K ) .
P i , ASE out = P ASE in h = 1 i L h G h s + P s e h = 1 i ( G h s 1 ) j = h + 1 i L j G j ,
C i = V b I b , i = V b 1 + log e G i u s Γ SOA α SOA L SOA i t ,
i t = q w SOA d SOA L SOA N 0 τ ,
G i u s = G i s exp ( G i s 1 ) P i , SOA in P sat ,
P i , SOA in = L 1 ( P s in + P ASE in ) , i = 1 , L i P i 1 , SOA out , i = 2 , , K .
C i = V b 1 + log e G 1 s + ( G 1 s 1 ) L 1 ( P s in + P ASE in ) P sat Γ SOA α SOA L SOA i t , i = 1 , V b 1 + log e G i s + ( G i s 1 ) L i ( P i 1 , s out + P i 1 , ASE out ) P sat Γ SOA α SOA L SOA i t , i = 2 , , K .
P a v , T MV MC = E [ N a ] C SY N + E [ N a ] C 1 SOA + E [ N c ] ( C 2 SOA + C 3 SOA ) + E [ N d ] C 4 SOA + r C WC + E [ N SOA MV MC,off ] C off SOA ,
E [ N SOA MV MC , off ] = N ( N + r ) M + r + N r + N ( E [ N a ] + 2 E [ N c ] + E [ N d ] ) .
C 1 SOA = V b 1 + log e ( N + r ) + ( N + r 1 ) ( P s in + P ASE in ) ( N + r ) P sat Γ SOA α SOA L SOA i t .
C 2 SOA = V b 1 + log e ( N M ) + ( N M 1 ) ( P s in + P ASE in + P s e ( N + r 1 ) ) N M P sat Γ SOA α SOA L SOA i t ,
C 3 SOA = V b 1 + log e N + ( N 1 ) ( P s in + P ASE in + P s e ( N + r 1 ) + P s e ( N M 1 ) ) N P sat Γ SOA α SOA L SOA i t ,
C 4 SOA = V b 1 + ln ( N M + r ) + ( N M + r 1 ) ( E [ N a ] ( P s in + P ASE in + P s e ( N + r 1 ) ) + E [ N c ] ( P s e ( N M 1 ) + P s e ( N 1 ) ) ) N ( N M + r ) P sat Γ SOA α SOA L SOA i t .
P a v , T Benes = E [ N a ] C SY N + E [ N a ] C d f SOA + E [ N c ] C w c SOA + r C WC + E [ N SOA Benes,off ] C off SOA ,
E [ N SOA Benes,off ] = ( 4 N M 2 ( E [ N a ] + E [ N c ] ) ) log 2 2 N M .
C d f SOA = i = 1 2 log 2 2 N M V b 1 + log e 2 + ( P s in + P ASE in ) + ( i 1 ) P s e 2 P sat Γ SOA α SOA L SOA i t ,
C w c SOA = i = 1 4 log 2 2 N M V b 1 + log e 2 + ( P s in + P ASE in ) + ( i 1 ) P s e 2 P sat Γ SOA α SOA L SOA i t .
P ASE T S , i n = 2 n s p EDFA S ( e α L 1 ) h ν c B 0 ,
E [ N a ] = E [ N o ] E [ N p , w l ] E [ N p , c l ] ,
E [ N p , w l ] = N j = M + 1 N M j M N M j p N j 1 p N N M j .
E [ N d ] = N 1 1 p N N M .
E [ N c ] = E [ N a ] E [ N d ] .