Abstract

This paper presents an energy-efficient multi-plane optical interconnection network to interconnect servers in a data center. The novel architecture uses the time domain to individually address each port within a card and the space domain to address each card. Optical enabling technologies passively time-compress serial packets by exploiting the wavelength domain and perform a broadcast-and-select to a destination card with minimum power dissipation. Scalability of both the physical layer and the overall power dissipation of the architecture is shown to be enhanced with respect to the existing interconnection network architectures based on space and wavelength domains. The space–time network architecture is scalable up to 216 ports with space-switches exhibiting energy efficiency of the order of picojoules per bit, thanks to the self-enabled semiconductor-optical-amplifier-based space-switches.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, "Helios: a hybrid electrical/optical switch architecture for modular data centers," Comput. Commun. Rev. 40, 339‒350 (2010).
  2. L. Barroso, J. Dean, and U. Holzle, "Web search for a planet: the Google cluster architecture," IEEE Micro 23, (2), 22‒28 (2003).
    [CrossRef]
  3. A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, "Towards a next generation data center architecture: scalability and commoditization," Proc. of the ACM Workshop on Programmable Routers for Extensible Services of Tomorrow (PRESTO ’08), 2008, pp. 57‒62.
  4. L. Barroso and U. Holzle, "The case for energy-proportional computing," Computer 40, (12), 33‒37 (2007).
    [CrossRef]
  5. D. Meisner, B. T. Gold, and T. F. Wenisch, "PowerNap: eliminating server idle power," Proc. of the 14th Int. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’09), 2009, pp. 205‒216.
  6. Intel Xeon Processor Data Center Optimization and CERN openlabs, "Reducing data center energy consumption," Intel Xeon Processor White Paper Source should not be italic in PDF., 2008.
  7. K. G. Brill, "The invisible crisis in the data center: the economic meltdown of Moore’s law," White PaperSource should not be italic in PDF., Uptime Institute, 2007.
  8. J. Humphreys and J. Scaramella, "The impact of power and cooling on data center infrastructure," Market Research Report Source should not be italic in PDF., IDC, 2006.
  9. C. L. Belady, "In the data center, power and cooling costs more than the IT equipment it supports," Electronics Cooling (2007) [Online]. Available: http://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/.
  10. P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. Offrein, and A. Benner, "Towards exaflop servers and supercomputers: the roadmap for lower power and higher density optical interconnects," 36th European Conf. on Optical Communication (ECOC), Sept. 2010, pp. 1‒14.
  11. Energy Star Program, Report to congress on server and data center energy efficiency: Public law 109-431, US Environmental Protection Agency, 2007.
  12. S. Pelle, D. Meisner, T. F. Wenisch, and J. W. VanGilder, "Understanding and abstracting total data center power," Proc. Workshop on Energy Efficient Design (WEED), 2009.
  13. J. G. Koomey, "Worldwide electricity used in data centers," Environ. Res. Lett. 3, (3), 1‒8 (2008).
    [CrossRef]
  14. D. A. B. Miller, "Device requirements for optical interconnects to silicon chips," Proc. IEEE 97, (7), 1166‒1185 (2009).
    [CrossRef]
  15. V. Soteriou and L.-S. Peh, "Exploring the design space of self-regulating power-aware on/off interconnection networks," IEEE Trans. Parallel Distrib. Syst. 18, (3), 393‒408 (2007).
    [CrossRef]
  16. D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, "Energy proportional datacenter networks," Proc. of 37th Annu. Int. Symp. Computer Architecture (ISCA ’10), 2010, pp. 338‒347.
  17. H. Cho, P. Kapur, and K. Saraswat, "Power comparison between high-speed electrical and optical interconnects for interchip communication," J. Lightwave Technol. 22, (9), 2021‒2033 (2004).
    [CrossRef]
  18. A. Benner, "Cost-effective optics: enabling the exascale roadmap," 17th IEEE Symp. on High Performance Interconnects (HOTI), Aug. 2009, pp. 133‒137.
  19. D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," Proc. IEEE 88, (6), 728‒749 (2000).
    [CrossRef]
  20. X. Chen, L.-S. Peh, G.-Y. Wei, Y.-K. Huang, and P. Prucnal, "Exploring the design space of power-aware opto-electronic networked systems," Proc. Int. Symp. High-Performance Computer Architecture, Feb. 2005, pp. 120‒131.
  21. R. S. Tucker, "Green optical communications—part II: Energy limitations in networks," IEEE J. Sel. Top. Quantum Electron. 17, (2), 261‒274 (2011).
    [CrossRef]
  22. R. S. Tucker, "The role of optics and electronics in high-capacity routers," J. Lightwave Technol. 24, (12), 4655‒4673 (2006).
    [CrossRef]
  23. E. Bonetto, D. Cuda, G. A. G. Castillo, and F. Neri, "The role of arrayed waveguide gratings in energy-efficient optical switching architectures," Optical Fiber Communication Conf. and Exhibit (OFC), 2010, OWY4.
  24. R. Gaudino, G. Castillo, F. Neri, and J. Finochietto, "Can simple optical switching fabrics scale to terabit per second switch capacities?," J. Opt. Commun. Netw. 1, (3), B56‒B69 (2009).
    [CrossRef]
  25. P. G. Raponi, N. Andriolli, I. Cerutti, and P. Castoldi, "Two-step scheduling framework for space–wavelength modular optical interconnection networks," IET Commun. 4, (18), 2155‒2165 (2010).
    [CrossRef]
  26. O. Liboiron-Ladouceur, I. Cerutti, P. G. Raponi, N. Andriolli, and P. Castoldi, "Energy-efficient design of a scalable optical multiplane interconnection architecture," IEEE J. Sel. Top. Quantum Electron. 17, (2), 377‒383 (2011).
    [CrossRef]
  27. T. Lin, K. Williams, R. Penty, I. White, and M. Glick, "Capacity scaling in a multihost wavelength-striped SOA-based switch fabric," J. Lightwave Technol. 25, (3), 655‒663 (2007).
    [CrossRef]
  28. R. Hemenway, R. Grzybowski, C. Minkenberg, and R. Luijten, "Optical-packet-switched interconnect for supercomputer applications," J. Opt. Netw. 3, (12), 900‒913 (2004).
    [CrossRef]
  29. O. Liboiron-Ladouceur, H. Wang, A. S. Garg, and K. Bergman, "Low-power, transparent optical network interface for high bandwidth off-chip interconnects," Opt. Express 17, (8), 6550‒6561 (2009).
    [CrossRef] [PubMed]
  30. W. Dally and B. Towles, Principles and Practices of Interconnection Networks, Morgan Kaufmann, San Francisco, CA, USA, 2003.
  31. M. Moller, "High-speed electronic circuits for 100 Gb/s transport networks," Optical Fiber Communication Conf. and Exhibit (OFC), Mar. 2010, OThC6.
  32. J. LeGrange, J. Simsarian, P. Bernasconi, L. Buhl, J. Gripp, and D. Neilson, "Demonstration of an integrated buffer for an all-optical packet router," IEEE Photon. Technol. Lett. 21, (12), 781‒783 (2009).
    [CrossRef]
  33. J. Bauters, M. Heck, D. John, M.-C. Tien, A. Leinse, R. Heideman, D. Blumenthal, and J. Bowers, "Ultra-low loss silica-based waveguides with millimeter bend radius," 36th European Conf. on Optical Communication (ECOC), Sept. 2010.
  34. K. Jinguji and T. Yasui, "Synthesis of one-input M-output optical FIR lattice circuits," J. Lightwave Technol. 26, (7), 853‒866 (2008).
    [CrossRef]
  35. S. Kakehashi, H. Hasegawa, K.-i. Sato, O. Moriwaki, and S. Kamei, "Analysis and development of fixed and variable waveband MUX/DEMUX utilizing AWG routing functions," J. Lightwave Technol. 27, (1), 30‒40 (2009).
    [CrossRef]
  36. J. Ito and H. Tsuda, "Small bend structures using trenches filled with low-refractive index material for miniaturizing silica planar lightwave circuits," J. Lightwave Technol. 27, (6), 786‒790 (2009).
    [CrossRef]
  37. G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, "Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly," Proc. 55th Electronic Components and Technology Conf., Vol. 2, May/June 2005, pp. 1349‒1352.
  38. C. Gallep and E. Conforti, "Reduction of semiconductor optical amplifier switching times by preimpulse step-injected current technique," IEEE Photon. Technol. Lett. 14, (7), 902‒904 (2002).
    [CrossRef]
  39. O. Liboiron-Ladouceur and K. Bergman, "Optimization of a switching node for optical multistage interconnection networks," IEEE Photon. Technol. Lett. 19, (20), 1658‒1660 (2007).
    [CrossRef]
  40. O. Liboiron-Ladouceur, A. Shacham, B. Small, B. Lee, H. Wang, C. Lai, A. Biberman, and K. Bergman, "The data vortex optical packet switched interconnection network," J. Lightwave Technol. 26, (13), 1777‒1789 (2008).
    [CrossRef]
  41. C. Tai and W. Way, "Dynamic range and switching speed limitations of an N×N optical packet switch based on low-gain semiconductor optical amplifiers," J. Lightwave Technol. 14, (4), 525‒533 (1996).
    [CrossRef]
  42. E. Burmeister and J. Bowers, "Integrated gate matrix switch for optical packet buffering," IEEE Photon. Technol. Lett. 18, (1), 103‒105 (2006).
    [CrossRef]
  43. A. Ehrhardt, M. Eiselt, G. Grossopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, (8), 1287‒1295 (1993).
    [CrossRef]
  44. S. Tanaka, S.-H. Jeong, S. Yamazaki, A. Uetake, S. Tomabechi, M. Ekawa, and K. Morito, "Monolithically integrated 8:1 SOA gate switch with large extinction ratio and wide input power dynamic range," IEEE J. Quantum Electron. 45, (9), 1155‒1162 (2009).
    [CrossRef]
  45. N. McKeown, "The iSLIP scheduling algorithm for input-queued switches," IEEE/ACM Trans. Netw. 7, (2), 188‒201 (1999).
    [CrossRef]
  46. H. Zhu, X. Xu, H. Wang, D. Kong, S. Liang, L. Zhao, and W. Wang, "The fabrication of eight-channel DFB laser array using sampled gratings," IEEE Photon. Technol. Lett. 22, (5), 353‒355 (2010).
    [CrossRef]
  47. N. Sahri, D. Prieto, S. Silvestre, D. Keller, F. Pommerau, M. Renaud, O. Rofidal, A. Dupas, F. Dorgeuille, and D. Chiaroni, "A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers," Optical Fiber Communication Conf. and Exhibit (OFC), Vol. 4, 2001, PD32.
  48. A. Albores-Mejia, F. Gomez-Agis, H. Dorren, X. Leijtens, T. de Vries, Y.-S. Oei, M. Heck, R. Notzel, D. Robbins, M. Smit, and K. Williams, "Monolithic multistage optoelectronic switch circuit routing 160 Gb/s line-rate data," J. Lightwave Technol. 28, (20), 2984‒2992 (2010).
    [CrossRef]

2011 (2)

R. S. Tucker, "Green optical communications—part II: Energy limitations in networks," IEEE J. Sel. Top. Quantum Electron. 17, (2), 261‒274 (2011).
[CrossRef]

O. Liboiron-Ladouceur, I. Cerutti, P. G. Raponi, N. Andriolli, and P. Castoldi, "Energy-efficient design of a scalable optical multiplane interconnection architecture," IEEE J. Sel. Top. Quantum Electron. 17, (2), 377‒383 (2011).
[CrossRef]

2010 (4)

H. Zhu, X. Xu, H. Wang, D. Kong, S. Liang, L. Zhao, and W. Wang, "The fabrication of eight-channel DFB laser array using sampled gratings," IEEE Photon. Technol. Lett. 22, (5), 353‒355 (2010).
[CrossRef]

P. G. Raponi, N. Andriolli, I. Cerutti, and P. Castoldi, "Two-step scheduling framework for space–wavelength modular optical interconnection networks," IET Commun. 4, (18), 2155‒2165 (2010).
[CrossRef]

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, "Helios: a hybrid electrical/optical switch architecture for modular data centers," Comput. Commun. Rev. 40, 339‒350 (2010).

A. Albores-Mejia, F. Gomez-Agis, H. Dorren, X. Leijtens, T. de Vries, Y.-S. Oei, M. Heck, R. Notzel, D. Robbins, M. Smit, and K. Williams, "Monolithic multistage optoelectronic switch circuit routing 160 Gb/s line-rate data," J. Lightwave Technol. 28, (20), 2984‒2992 (2010).
[CrossRef]

2009 (7)

2008 (3)

2007 (5)

T. Lin, K. Williams, R. Penty, I. White, and M. Glick, "Capacity scaling in a multihost wavelength-striped SOA-based switch fabric," J. Lightwave Technol. 25, (3), 655‒663 (2007).
[CrossRef]

O. Liboiron-Ladouceur and K. Bergman, "Optimization of a switching node for optical multistage interconnection networks," IEEE Photon. Technol. Lett. 19, (20), 1658‒1660 (2007).
[CrossRef]

V. Soteriou and L.-S. Peh, "Exploring the design space of self-regulating power-aware on/off interconnection networks," IEEE Trans. Parallel Distrib. Syst. 18, (3), 393‒408 (2007).
[CrossRef]

L. Barroso and U. Holzle, "The case for energy-proportional computing," Computer 40, (12), 33‒37 (2007).
[CrossRef]

C. L. Belady, "In the data center, power and cooling costs more than the IT equipment it supports," Electronics Cooling (2007) [Online]. Available: http://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/.

2006 (2)

E. Burmeister and J. Bowers, "Integrated gate matrix switch for optical packet buffering," IEEE Photon. Technol. Lett. 18, (1), 103‒105 (2006).
[CrossRef]

R. S. Tucker, "The role of optics and electronics in high-capacity routers," J. Lightwave Technol. 24, (12), 4655‒4673 (2006).
[CrossRef]

2004 (2)

2003 (1)

L. Barroso, J. Dean, and U. Holzle, "Web search for a planet: the Google cluster architecture," IEEE Micro 23, (2), 22‒28 (2003).
[CrossRef]

2002 (1)

C. Gallep and E. Conforti, "Reduction of semiconductor optical amplifier switching times by preimpulse step-injected current technique," IEEE Photon. Technol. Lett. 14, (7), 902‒904 (2002).
[CrossRef]

2000 (1)

D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," Proc. IEEE 88, (6), 728‒749 (2000).
[CrossRef]

1999 (1)

N. McKeown, "The iSLIP scheduling algorithm for input-queued switches," IEEE/ACM Trans. Netw. 7, (2), 188‒201 (1999).
[CrossRef]

1996 (1)

C. Tai and W. Way, "Dynamic range and switching speed limitations of an N×N optical packet switch based on low-gain semiconductor optical amplifiers," J. Lightwave Technol. 14, (4), 525‒533 (1996).
[CrossRef]

1993 (1)

A. Ehrhardt, M. Eiselt, G. Grossopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, (8), 1287‒1295 (1993).
[CrossRef]

Abts, D.

D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, "Energy proportional datacenter networks," Proc. of 37th Annu. Int. Symp. Computer Architecture (ISCA ’10), 2010, pp. 338‒347.

Albores-Mejia, A.

Andriolli, N.

O. Liboiron-Ladouceur, I. Cerutti, P. G. Raponi, N. Andriolli, and P. Castoldi, "Energy-efficient design of a scalable optical multiplane interconnection architecture," IEEE J. Sel. Top. Quantum Electron. 17, (2), 377‒383 (2011).
[CrossRef]

P. G. Raponi, N. Andriolli, I. Cerutti, and P. Castoldi, "Two-step scheduling framework for space–wavelength modular optical interconnection networks," IET Commun. 4, (18), 2155‒2165 (2010).
[CrossRef]

Barroso, L.

L. Barroso and U. Holzle, "The case for energy-proportional computing," Computer 40, (12), 33‒37 (2007).
[CrossRef]

L. Barroso, J. Dean, and U. Holzle, "Web search for a planet: the Google cluster architecture," IEEE Micro 23, (2), 22‒28 (2003).
[CrossRef]

Bauters, J.

J. Bauters, M. Heck, D. John, M.-C. Tien, A. Leinse, R. Heideman, D. Blumenthal, and J. Bowers, "Ultra-low loss silica-based waveguides with millimeter bend radius," 36th European Conf. on Optical Communication (ECOC), Sept. 2010.

Bazzaz, H. H.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, "Helios: a hybrid electrical/optical switch architecture for modular data centers," Comput. Commun. Rev. 40, 339‒350 (2010).

Belady, C. L.

C. L. Belady, "In the data center, power and cooling costs more than the IT equipment it supports," Electronics Cooling (2007) [Online]. Available: http://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/.

Benner, A.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. Offrein, and A. Benner, "Towards exaflop servers and supercomputers: the roadmap for lower power and higher density optical interconnects," 36th European Conf. on Optical Communication (ECOC), Sept. 2010, pp. 1‒14.

A. Benner, "Cost-effective optics: enabling the exascale roadmap," 17th IEEE Symp. on High Performance Interconnects (HOTI), Aug. 2009, pp. 133‒137.

Bergman, K.

Bernasconi, P.

J. LeGrange, J. Simsarian, P. Bernasconi, L. Buhl, J. Gripp, and D. Neilson, "Demonstration of an integrated buffer for an all-optical packet router," IEEE Photon. Technol. Lett. 21, (12), 781‒783 (2009).
[CrossRef]

Biberman, A.

Blumenthal, D.

J. Bauters, M. Heck, D. John, M.-C. Tien, A. Leinse, R. Heideman, D. Blumenthal, and J. Bowers, "Ultra-low loss silica-based waveguides with millimeter bend radius," 36th European Conf. on Optical Communication (ECOC), Sept. 2010.

Bonetto, E.

E. Bonetto, D. Cuda, G. A. G. Castillo, and F. Neri, "The role of arrayed waveguide gratings in energy-efficient optical switching architectures," Optical Fiber Communication Conf. and Exhibit (OFC), 2010, OWY4.

Bowers, J.

E. Burmeister and J. Bowers, "Integrated gate matrix switch for optical packet buffering," IEEE Photon. Technol. Lett. 18, (1), 103‒105 (2006).
[CrossRef]

J. Bauters, M. Heck, D. John, M.-C. Tien, A. Leinse, R. Heideman, D. Blumenthal, and J. Bowers, "Ultra-low loss silica-based waveguides with millimeter bend radius," 36th European Conf. on Optical Communication (ECOC), Sept. 2010.

Brill, K. G.

K. G. Brill, "The invisible crisis in the data center: the economic meltdown of Moore’s law," White PaperSource should not be italic in PDF., Uptime Institute, 2007.

Buhl, L.

J. LeGrange, J. Simsarian, P. Bernasconi, L. Buhl, J. Gripp, and D. Neilson, "Demonstration of an integrated buffer for an all-optical packet router," IEEE Photon. Technol. Lett. 21, (12), 781‒783 (2009).
[CrossRef]

Burmeister, E.

E. Burmeister and J. Bowers, "Integrated gate matrix switch for optical packet buffering," IEEE Photon. Technol. Lett. 18, (1), 103‒105 (2006).
[CrossRef]

Castillo, G.

Castillo, G. A. G.

E. Bonetto, D. Cuda, G. A. G. Castillo, and F. Neri, "The role of arrayed waveguide gratings in energy-efficient optical switching architectures," Optical Fiber Communication Conf. and Exhibit (OFC), 2010, OWY4.

Castoldi, P.

O. Liboiron-Ladouceur, I. Cerutti, P. G. Raponi, N. Andriolli, and P. Castoldi, "Energy-efficient design of a scalable optical multiplane interconnection architecture," IEEE J. Sel. Top. Quantum Electron. 17, (2), 377‒383 (2011).
[CrossRef]

P. G. Raponi, N. Andriolli, I. Cerutti, and P. Castoldi, "Two-step scheduling framework for space–wavelength modular optical interconnection networks," IET Commun. 4, (18), 2155‒2165 (2010).
[CrossRef]

Cerutti, I.

O. Liboiron-Ladouceur, I. Cerutti, P. G. Raponi, N. Andriolli, and P. Castoldi, "Energy-efficient design of a scalable optical multiplane interconnection architecture," IEEE J. Sel. Top. Quantum Electron. 17, (2), 377‒383 (2011).
[CrossRef]

P. G. Raponi, N. Andriolli, I. Cerutti, and P. Castoldi, "Two-step scheduling framework for space–wavelength modular optical interconnection networks," IET Commun. 4, (18), 2155‒2165 (2010).
[CrossRef]

Chen, X.

X. Chen, L.-S. Peh, G.-Y. Wei, Y.-K. Huang, and P. Prucnal, "Exploring the design space of power-aware opto-electronic networked systems," Proc. Int. Symp. High-Performance Computer Architecture, Feb. 2005, pp. 120‒131.

Chiaroni, D.

N. Sahri, D. Prieto, S. Silvestre, D. Keller, F. Pommerau, M. Renaud, O. Rofidal, A. Dupas, F. Dorgeuille, and D. Chiaroni, "A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers," Optical Fiber Communication Conf. and Exhibit (OFC), Vol. 4, 2001, PD32.

Cho, H.

Conforti, E.

C. Gallep and E. Conforti, "Reduction of semiconductor optical amplifier switching times by preimpulse step-injected current technique," IEEE Photon. Technol. Lett. 14, (7), 902‒904 (2002).
[CrossRef]

Cuda, D.

E. Bonetto, D. Cuda, G. A. G. Castillo, and F. Neri, "The role of arrayed waveguide gratings in energy-efficient optical switching architectures," Optical Fiber Communication Conf. and Exhibit (OFC), 2010, OWY4.

Dally, W.

W. Dally and B. Towles, Principles and Practices of Interconnection Networks, Morgan Kaufmann, San Francisco, CA, USA, 2003.

de Vries, T.

Dean, J.

L. Barroso, J. Dean, and U. Holzle, "Web search for a planet: the Google cluster architecture," IEEE Micro 23, (2), 22‒28 (2003).
[CrossRef]

Doany, F.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. Offrein, and A. Benner, "Towards exaflop servers and supercomputers: the roadmap for lower power and higher density optical interconnects," 36th European Conf. on Optical Communication (ECOC), Sept. 2010, pp. 1‒14.

Dorgeuille, F.

N. Sahri, D. Prieto, S. Silvestre, D. Keller, F. Pommerau, M. Renaud, O. Rofidal, A. Dupas, F. Dorgeuille, and D. Chiaroni, "A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers," Optical Fiber Communication Conf. and Exhibit (OFC), Vol. 4, 2001, PD32.

Dorren, H.

Dupas, A.

N. Sahri, D. Prieto, S. Silvestre, D. Keller, F. Pommerau, M. Renaud, O. Rofidal, A. Dupas, F. Dorgeuille, and D. Chiaroni, "A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers," Optical Fiber Communication Conf. and Exhibit (OFC), Vol. 4, 2001, PD32.

Ehrhardt, A.

A. Ehrhardt, M. Eiselt, G. Grossopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, (8), 1287‒1295 (1993).
[CrossRef]

Eiselt, M.

A. Ehrhardt, M. Eiselt, G. Grossopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, (8), 1287‒1295 (1993).
[CrossRef]

Ekawa, M.

S. Tanaka, S.-H. Jeong, S. Yamazaki, A. Uetake, S. Tomabechi, M. Ekawa, and K. Morito, "Monolithically integrated 8:1 SOA gate switch with large extinction ratio and wide input power dynamic range," IEEE J. Quantum Electron. 45, (9), 1155‒1162 (2009).
[CrossRef]

Fainman, Y.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, "Helios: a hybrid electrical/optical switch architecture for modular data centers," Comput. Commun. Rev. 40, 339‒350 (2010).

Farrington, N.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, "Helios: a hybrid electrical/optical switch architecture for modular data centers," Comput. Commun. Rev. 40, 339‒350 (2010).

Finochietto, J.

Ford, C.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, "Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly," Proc. 55th Electronic Components and Technology Conf., Vol. 2, May/June 2005, pp. 1349‒1352.

Gallep, C.

C. Gallep and E. Conforti, "Reduction of semiconductor optical amplifier switching times by preimpulse step-injected current technique," IEEE Photon. Technol. Lett. 14, (7), 902‒904 (2002).
[CrossRef]

Garg, A. S.

Gaudino, R.

Glick, M.

Gold, B. T.

D. Meisner, B. T. Gold, and T. F. Wenisch, "PowerNap: eliminating server idle power," Proc. of the 14th Int. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’09), 2009, pp. 205‒216.

Gomez-Agis, F.

Greenberg, A.

A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, "Towards a next generation data center architecture: scalability and commoditization," Proc. of the ACM Workshop on Programmable Routers for Extensible Services of Tomorrow (PRESTO ’08), 2008, pp. 57‒62.

Gripp, J.

J. LeGrange, J. Simsarian, P. Bernasconi, L. Buhl, J. Gripp, and D. Neilson, "Demonstration of an integrated buffer for an all-optical packet router," IEEE Photon. Technol. Lett. 21, (12), 781‒783 (2009).
[CrossRef]

Grossopf, G.

A. Ehrhardt, M. Eiselt, G. Grossopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, (8), 1287‒1295 (1993).
[CrossRef]

Grzybowski, R.

Harlow, M.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, "Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly," Proc. 55th Electronic Components and Technology Conf., Vol. 2, May/June 2005, pp. 1349‒1352.

Hasegawa, H.

Heck, M.

A. Albores-Mejia, F. Gomez-Agis, H. Dorren, X. Leijtens, T. de Vries, Y.-S. Oei, M. Heck, R. Notzel, D. Robbins, M. Smit, and K. Williams, "Monolithic multistage optoelectronic switch circuit routing 160 Gb/s line-rate data," J. Lightwave Technol. 28, (20), 2984‒2992 (2010).
[CrossRef]

J. Bauters, M. Heck, D. John, M.-C. Tien, A. Leinse, R. Heideman, D. Blumenthal, and J. Bowers, "Ultra-low loss silica-based waveguides with millimeter bend radius," 36th European Conf. on Optical Communication (ECOC), Sept. 2010.

Heideman, R.

J. Bauters, M. Heck, D. John, M.-C. Tien, A. Leinse, R. Heideman, D. Blumenthal, and J. Bowers, "Ultra-low loss silica-based waveguides with millimeter bend radius," 36th European Conf. on Optical Communication (ECOC), Sept. 2010.

Hemenway, R.

Holzle, U.

L. Barroso and U. Holzle, "The case for energy-proportional computing," Computer 40, (12), 33‒37 (2007).
[CrossRef]

L. Barroso, J. Dean, and U. Holzle, "Web search for a planet: the Google cluster architecture," IEEE Micro 23, (2), 22‒28 (2003).
[CrossRef]

Huang, Y.-K.

X. Chen, L.-S. Peh, G.-Y. Wei, Y.-K. Huang, and P. Prucnal, "Exploring the design space of power-aware opto-electronic networked systems," Proc. Int. Symp. High-Performance Computer Architecture, Feb. 2005, pp. 120‒131.

Humphreys, J.

J. Humphreys and J. Scaramella, "The impact of power and cooling on data center infrastructure," Market Research Report Source should not be italic in PDF., IDC, 2006.

Ito, J.

Jeong, S.-H.

S. Tanaka, S.-H. Jeong, S. Yamazaki, A. Uetake, S. Tomabechi, M. Ekawa, and K. Morito, "Monolithically integrated 8:1 SOA gate switch with large extinction ratio and wide input power dynamic range," IEEE J. Quantum Electron. 45, (9), 1155‒1162 (2009).
[CrossRef]

Jinguji, K.

John, D.

J. Bauters, M. Heck, D. John, M.-C. Tien, A. Leinse, R. Heideman, D. Blumenthal, and J. Bowers, "Ultra-low loss silica-based waveguides with millimeter bend radius," 36th European Conf. on Optical Communication (ECOC), Sept. 2010.

Kakehashi, S.

Kamei, S.

Kapur, P.

Kash, J.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. Offrein, and A. Benner, "Towards exaflop servers and supercomputers: the roadmap for lower power and higher density optical interconnects," 36th European Conf. on Optical Communication (ECOC), Sept. 2010, pp. 1‒14.

Keller, D.

N. Sahri, D. Prieto, S. Silvestre, D. Keller, F. Pommerau, M. Renaud, O. Rofidal, A. Dupas, F. Dorgeuille, and D. Chiaroni, "A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers," Optical Fiber Communication Conf. and Exhibit (OFC), Vol. 4, 2001, PD32.

Klausler, P.

D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, "Energy proportional datacenter networks," Proc. of 37th Annu. Int. Symp. Computer Architecture (ISCA ’10), 2010, pp. 338‒347.

Kong, D.

H. Zhu, X. Xu, H. Wang, D. Kong, S. Liang, L. Zhao, and W. Wang, "The fabrication of eight-channel DFB laser array using sampled gratings," IEEE Photon. Technol. Lett. 22, (5), 353‒355 (2010).
[CrossRef]

Koomey, J. G.

J. G. Koomey, "Worldwide electricity used in data centers," Environ. Res. Lett. 3, (3), 1‒8 (2008).
[CrossRef]

Kuchta, D.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. Offrein, and A. Benner, "Towards exaflop servers and supercomputers: the roadmap for lower power and higher density optical interconnects," 36th European Conf. on Optical Communication (ECOC), Sept. 2010, pp. 1‒14.

Kuller, L.

A. Ehrhardt, M. Eiselt, G. Grossopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, (8), 1287‒1295 (1993).
[CrossRef]

Lahiri, P.

A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, "Towards a next generation data center architecture: scalability and commoditization," Proc. of the ACM Workshop on Programmable Routers for Extensible Services of Tomorrow (PRESTO ’08), 2008, pp. 57‒62.

Lai, C.

Lealman, T.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, "Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly," Proc. 55th Electronic Components and Technology Conf., Vol. 2, May/June 2005, pp. 1349‒1352.

Lee, B.

LeGrange, J.

J. LeGrange, J. Simsarian, P. Bernasconi, L. Buhl, J. Gripp, and D. Neilson, "Demonstration of an integrated buffer for an all-optical packet router," IEEE Photon. Technol. Lett. 21, (12), 781‒783 (2009).
[CrossRef]

Leijtens, X.

Leinse, A.

J. Bauters, M. Heck, D. John, M.-C. Tien, A. Leinse, R. Heideman, D. Blumenthal, and J. Bowers, "Ultra-low loss silica-based waveguides with millimeter bend radius," 36th European Conf. on Optical Communication (ECOC), Sept. 2010.

Liang, S.

H. Zhu, X. Xu, H. Wang, D. Kong, S. Liang, L. Zhao, and W. Wang, "The fabrication of eight-channel DFB laser array using sampled gratings," IEEE Photon. Technol. Lett. 22, (5), 353‒355 (2010).
[CrossRef]

Liboiron-Ladouceur, O.

O. Liboiron-Ladouceur, I. Cerutti, P. G. Raponi, N. Andriolli, and P. Castoldi, "Energy-efficient design of a scalable optical multiplane interconnection architecture," IEEE J. Sel. Top. Quantum Electron. 17, (2), 377‒383 (2011).
[CrossRef]

O. Liboiron-Ladouceur, H. Wang, A. S. Garg, and K. Bergman, "Low-power, transparent optical network interface for high bandwidth off-chip interconnects," Opt. Express 17, (8), 6550‒6561 (2009).
[CrossRef] [PubMed]

O. Liboiron-Ladouceur, A. Shacham, B. Small, B. Lee, H. Wang, C. Lai, A. Biberman, and K. Bergman, "The data vortex optical packet switched interconnection network," J. Lightwave Technol. 26, (13), 1777‒1789 (2008).
[CrossRef]

O. Liboiron-Ladouceur and K. Bergman, "Optimization of a switching node for optical multistage interconnection networks," IEEE Photon. Technol. Lett. 19, (20), 1658‒1660 (2007).
[CrossRef]

Lin, T.

Liu, H.

D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, "Energy proportional datacenter networks," Proc. of 37th Annu. Int. Symp. Computer Architecture (ISCA ’10), 2010, pp. 338‒347.

Ludwig, R.

A. Ehrhardt, M. Eiselt, G. Grossopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, (8), 1287‒1295 (1993).
[CrossRef]

Luijten, R.

Maltz, D. A.

A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, "Towards a next generation data center architecture: scalability and commoditization," Proc. of the ACM Workshop on Programmable Routers for Extensible Services of Tomorrow (PRESTO ’08), 2008, pp. 57‒62.

Marty, M. R.

D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, "Energy proportional datacenter networks," Proc. of 37th Annu. Int. Symp. Computer Architecture (ISCA ’10), 2010, pp. 338‒347.

Maxwell, G.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, "Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly," Proc. 55th Electronic Components and Technology Conf., Vol. 2, May/June 2005, pp. 1349‒1352.

McKeown, N.

N. McKeown, "The iSLIP scheduling algorithm for input-queued switches," IEEE/ACM Trans. Netw. 7, (2), 188‒201 (1999).
[CrossRef]

Meisner, D.

D. Meisner, B. T. Gold, and T. F. Wenisch, "PowerNap: eliminating server idle power," Proc. of the 14th Int. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’09), 2009, pp. 205‒216.

S. Pelle, D. Meisner, T. F. Wenisch, and J. W. VanGilder, "Understanding and abstracting total data center power," Proc. Workshop on Energy Efficient Design (WEED), 2009.

Miller, D. A. B.

D. A. B. Miller, "Device requirements for optical interconnects to silicon chips," Proc. IEEE 97, (7), 1166‒1185 (2009).
[CrossRef]

D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," Proc. IEEE 88, (6), 728‒749 (2000).
[CrossRef]

Minkenberg, C.

Moller, M.

M. Moller, "High-speed electronic circuits for 100 Gb/s transport networks," Optical Fiber Communication Conf. and Exhibit (OFC), Mar. 2010, OThC6.

Morito, K.

S. Tanaka, S.-H. Jeong, S. Yamazaki, A. Uetake, S. Tomabechi, M. Ekawa, and K. Morito, "Monolithically integrated 8:1 SOA gate switch with large extinction ratio and wide input power dynamic range," IEEE J. Quantum Electron. 45, (9), 1155‒1162 (2009).
[CrossRef]

Moriwaki, O.

Neilson, D.

J. LeGrange, J. Simsarian, P. Bernasconi, L. Buhl, J. Gripp, and D. Neilson, "Demonstration of an integrated buffer for an all-optical packet router," IEEE Photon. Technol. Lett. 21, (12), 781‒783 (2009).
[CrossRef]

Neri, F.

R. Gaudino, G. Castillo, F. Neri, and J. Finochietto, "Can simple optical switching fabrics scale to terabit per second switch capacities?," J. Opt. Commun. Netw. 1, (3), B56‒B69 (2009).
[CrossRef]

E. Bonetto, D. Cuda, G. A. G. Castillo, and F. Neri, "The role of arrayed waveguide gratings in energy-efficient optical switching architectures," Optical Fiber Communication Conf. and Exhibit (OFC), 2010, OWY4.

Nield, M.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, "Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly," Proc. 55th Electronic Components and Technology Conf., Vol. 2, May/June 2005, pp. 1349‒1352.

Notzel, R.

Oei, Y.-S.

Offrein, B.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. Offrein, and A. Benner, "Towards exaflop servers and supercomputers: the roadmap for lower power and higher density optical interconnects," 36th European Conf. on Optical Communication (ECOC), Sept. 2010, pp. 1‒14.

Oliver, S.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, "Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly," Proc. 55th Electronic Components and Technology Conf., Vol. 2, May/June 2005, pp. 1349‒1352.

Papen, G.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, "Helios: a hybrid electrical/optical switch architecture for modular data centers," Comput. Commun. Rev. 40, 339‒350 (2010).

Patel, P.

A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, "Towards a next generation data center architecture: scalability and commoditization," Proc. of the ACM Workshop on Programmable Routers for Extensible Services of Tomorrow (PRESTO ’08), 2008, pp. 57‒62.

Peh, L.-S.

V. Soteriou and L.-S. Peh, "Exploring the design space of self-regulating power-aware on/off interconnection networks," IEEE Trans. Parallel Distrib. Syst. 18, (3), 393‒408 (2007).
[CrossRef]

X. Chen, L.-S. Peh, G.-Y. Wei, Y.-K. Huang, and P. Prucnal, "Exploring the design space of power-aware opto-electronic networked systems," Proc. Int. Symp. High-Performance Computer Architecture, Feb. 2005, pp. 120‒131.

Pelle, S.

S. Pelle, D. Meisner, T. F. Wenisch, and J. W. VanGilder, "Understanding and abstracting total data center power," Proc. Workshop on Energy Efficient Design (WEED), 2009.

Penty, R.

Pepeljugoski, P.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. Offrein, and A. Benner, "Towards exaflop servers and supercomputers: the roadmap for lower power and higher density optical interconnects," 36th European Conf. on Optical Communication (ECOC), Sept. 2010, pp. 1‒14.

Pieper, W.

A. Ehrhardt, M. Eiselt, G. Grossopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, (8), 1287‒1295 (1993).
[CrossRef]

Pommerau, F.

N. Sahri, D. Prieto, S. Silvestre, D. Keller, F. Pommerau, M. Renaud, O. Rofidal, A. Dupas, F. Dorgeuille, and D. Chiaroni, "A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers," Optical Fiber Communication Conf. and Exhibit (OFC), Vol. 4, 2001, PD32.

Porter, G.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, "Helios: a hybrid electrical/optical switch architecture for modular data centers," Comput. Commun. Rev. 40, 339‒350 (2010).

Poustie, A.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, "Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly," Proc. 55th Electronic Components and Technology Conf., Vol. 2, May/June 2005, pp. 1349‒1352.

Prieto, D.

N. Sahri, D. Prieto, S. Silvestre, D. Keller, F. Pommerau, M. Renaud, O. Rofidal, A. Dupas, F. Dorgeuille, and D. Chiaroni, "A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers," Optical Fiber Communication Conf. and Exhibit (OFC), Vol. 4, 2001, PD32.

Prucnal, P.

X. Chen, L.-S. Peh, G.-Y. Wei, Y.-K. Huang, and P. Prucnal, "Exploring the design space of power-aware opto-electronic networked systems," Proc. Int. Symp. High-Performance Computer Architecture, Feb. 2005, pp. 120‒131.

Radhakrishnan, S.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, "Helios: a hybrid electrical/optical switch architecture for modular data centers," Comput. Commun. Rev. 40, 339‒350 (2010).

Raponi, P. G.

O. Liboiron-Ladouceur, I. Cerutti, P. G. Raponi, N. Andriolli, and P. Castoldi, "Energy-efficient design of a scalable optical multiplane interconnection architecture," IEEE J. Sel. Top. Quantum Electron. 17, (2), 377‒383 (2011).
[CrossRef]

P. G. Raponi, N. Andriolli, I. Cerutti, and P. Castoldi, "Two-step scheduling framework for space–wavelength modular optical interconnection networks," IET Commun. 4, (18), 2155‒2165 (2010).
[CrossRef]

Renaud, M.

N. Sahri, D. Prieto, S. Silvestre, D. Keller, F. Pommerau, M. Renaud, O. Rofidal, A. Dupas, F. Dorgeuille, and D. Chiaroni, "A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers," Optical Fiber Communication Conf. and Exhibit (OFC), Vol. 4, 2001, PD32.

Rivers, L.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, "Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly," Proc. 55th Electronic Components and Technology Conf., Vol. 2, May/June 2005, pp. 1349‒1352.

Robbins, D.

Rofidal, O.

N. Sahri, D. Prieto, S. Silvestre, D. Keller, F. Pommerau, M. Renaud, O. Rofidal, A. Dupas, F. Dorgeuille, and D. Chiaroni, "A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers," Optical Fiber Communication Conf. and Exhibit (OFC), Vol. 4, 2001, PD32.

Sahri, N.

N. Sahri, D. Prieto, S. Silvestre, D. Keller, F. Pommerau, M. Renaud, O. Rofidal, A. Dupas, F. Dorgeuille, and D. Chiaroni, "A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers," Optical Fiber Communication Conf. and Exhibit (OFC), Vol. 4, 2001, PD32.

Saraswat, K.

Sato, K.-i.

Scaramella, J.

J. Humphreys and J. Scaramella, "The impact of power and cooling on data center infrastructure," Market Research Report Source should not be italic in PDF., IDC, 2006.

Schares, L.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. Offrein, and A. Benner, "Towards exaflop servers and supercomputers: the roadmap for lower power and higher density optical interconnects," 36th European Conf. on Optical Communication (ECOC), Sept. 2010, pp. 1‒14.

Schnabel, R.

A. Ehrhardt, M. Eiselt, G. Grossopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, (8), 1287‒1295 (1993).
[CrossRef]

Schow, C.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. Offrein, and A. Benner, "Towards exaflop servers and supercomputers: the roadmap for lower power and higher density optical interconnects," 36th European Conf. on Optical Communication (ECOC), Sept. 2010, pp. 1‒14.

Sengupta, S.

A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, "Towards a next generation data center architecture: scalability and commoditization," Proc. of the ACM Workshop on Programmable Routers for Extensible Services of Tomorrow (PRESTO ’08), 2008, pp. 57‒62.

Shacham, A.

Silvestre, S.

N. Sahri, D. Prieto, S. Silvestre, D. Keller, F. Pommerau, M. Renaud, O. Rofidal, A. Dupas, F. Dorgeuille, and D. Chiaroni, "A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers," Optical Fiber Communication Conf. and Exhibit (OFC), Vol. 4, 2001, PD32.

Simsarian, J.

J. LeGrange, J. Simsarian, P. Bernasconi, L. Buhl, J. Gripp, and D. Neilson, "Demonstration of an integrated buffer for an all-optical packet router," IEEE Photon. Technol. Lett. 21, (12), 781‒783 (2009).
[CrossRef]

Small, B.

Smit, M.

Soteriou, V.

V. Soteriou and L.-S. Peh, "Exploring the design space of self-regulating power-aware on/off interconnection networks," IEEE Trans. Parallel Distrib. Syst. 18, (3), 393‒408 (2007).
[CrossRef]

Subramanya, V.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, "Helios: a hybrid electrical/optical switch architecture for modular data centers," Comput. Commun. Rev. 40, 339‒350 (2010).

Tai, C.

C. Tai and W. Way, "Dynamic range and switching speed limitations of an N×N optical packet switch based on low-gain semiconductor optical amplifiers," J. Lightwave Technol. 14, (4), 525‒533 (1996).
[CrossRef]

Tanaka, S.

S. Tanaka, S.-H. Jeong, S. Yamazaki, A. Uetake, S. Tomabechi, M. Ekawa, and K. Morito, "Monolithically integrated 8:1 SOA gate switch with large extinction ratio and wide input power dynamic range," IEEE J. Quantum Electron. 45, (9), 1155‒1162 (2009).
[CrossRef]

Taubenblatt, M.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. Offrein, and A. Benner, "Towards exaflop servers and supercomputers: the roadmap for lower power and higher density optical interconnects," 36th European Conf. on Optical Communication (ECOC), Sept. 2010, pp. 1‒14.

Tien, M.-C.

J. Bauters, M. Heck, D. John, M.-C. Tien, A. Leinse, R. Heideman, D. Blumenthal, and J. Bowers, "Ultra-low loss silica-based waveguides with millimeter bend radius," 36th European Conf. on Optical Communication (ECOC), Sept. 2010.

Tomabechi, S.

S. Tanaka, S.-H. Jeong, S. Yamazaki, A. Uetake, S. Tomabechi, M. Ekawa, and K. Morito, "Monolithically integrated 8:1 SOA gate switch with large extinction ratio and wide input power dynamic range," IEEE J. Quantum Electron. 45, (9), 1155‒1162 (2009).
[CrossRef]

Towles, B.

W. Dally and B. Towles, Principles and Practices of Interconnection Networks, Morgan Kaufmann, San Francisco, CA, USA, 2003.

Townley, P.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, "Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly," Proc. 55th Electronic Components and Technology Conf., Vol. 2, May/June 2005, pp. 1349‒1352.

Tsuda, H.

Tucker, R. S.

R. S. Tucker, "Green optical communications—part II: Energy limitations in networks," IEEE J. Sel. Top. Quantum Electron. 17, (2), 261‒274 (2011).
[CrossRef]

R. S. Tucker, "The role of optics and electronics in high-capacity routers," J. Lightwave Technol. 24, (12), 4655‒4673 (2006).
[CrossRef]

Uetake, A.

S. Tanaka, S.-H. Jeong, S. Yamazaki, A. Uetake, S. Tomabechi, M. Ekawa, and K. Morito, "Monolithically integrated 8:1 SOA gate switch with large extinction ratio and wide input power dynamic range," IEEE J. Quantum Electron. 45, (9), 1155‒1162 (2009).
[CrossRef]

Vahdat, A.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, "Helios: a hybrid electrical/optical switch architecture for modular data centers," Comput. Commun. Rev. 40, 339‒350 (2010).

VanGilder, J. W.

S. Pelle, D. Meisner, T. F. Wenisch, and J. W. VanGilder, "Understanding and abstracting total data center power," Proc. Workshop on Energy Efficient Design (WEED), 2009.

Waller, R.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, "Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly," Proc. 55th Electronic Components and Technology Conf., Vol. 2, May/June 2005, pp. 1349‒1352.

Wang, H.

Wang, W.

H. Zhu, X. Xu, H. Wang, D. Kong, S. Liang, L. Zhao, and W. Wang, "The fabrication of eight-channel DFB laser array using sampled gratings," IEEE Photon. Technol. Lett. 22, (5), 353‒355 (2010).
[CrossRef]

Way, W.

C. Tai and W. Way, "Dynamic range and switching speed limitations of an N×N optical packet switch based on low-gain semiconductor optical amplifiers," J. Lightwave Technol. 14, (4), 525‒533 (1996).
[CrossRef]

Weber, H.

A. Ehrhardt, M. Eiselt, G. Grossopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, (8), 1287‒1295 (1993).
[CrossRef]

Wei, G.-Y.

X. Chen, L.-S. Peh, G.-Y. Wei, Y.-K. Huang, and P. Prucnal, "Exploring the design space of power-aware opto-electronic networked systems," Proc. Int. Symp. High-Performance Computer Architecture, Feb. 2005, pp. 120‒131.

Wells, P. M.

D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, "Energy proportional datacenter networks," Proc. of 37th Annu. Int. Symp. Computer Architecture (ISCA ’10), 2010, pp. 338‒347.

Wenisch, T. F.

S. Pelle, D. Meisner, T. F. Wenisch, and J. W. VanGilder, "Understanding and abstracting total data center power," Proc. Workshop on Energy Efficient Design (WEED), 2009.

D. Meisner, B. T. Gold, and T. F. Wenisch, "PowerNap: eliminating server idle power," Proc. of the 14th Int. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’09), 2009, pp. 205‒216.

White, I.

Williams, K.

Xu, X.

H. Zhu, X. Xu, H. Wang, D. Kong, S. Liang, L. Zhao, and W. Wang, "The fabrication of eight-channel DFB laser array using sampled gratings," IEEE Photon. Technol. Lett. 22, (5), 353‒355 (2010).
[CrossRef]

Yamazaki, S.

S. Tanaka, S.-H. Jeong, S. Yamazaki, A. Uetake, S. Tomabechi, M. Ekawa, and K. Morito, "Monolithically integrated 8:1 SOA gate switch with large extinction ratio and wide input power dynamic range," IEEE J. Quantum Electron. 45, (9), 1155‒1162 (2009).
[CrossRef]

Yasui, T.

Zhao, L.

H. Zhu, X. Xu, H. Wang, D. Kong, S. Liang, L. Zhao, and W. Wang, "The fabrication of eight-channel DFB laser array using sampled gratings," IEEE Photon. Technol. Lett. 22, (5), 353‒355 (2010).
[CrossRef]

Zhu, H.

H. Zhu, X. Xu, H. Wang, D. Kong, S. Liang, L. Zhao, and W. Wang, "The fabrication of eight-channel DFB laser array using sampled gratings," IEEE Photon. Technol. Lett. 22, (5), 353‒355 (2010).
[CrossRef]

Comput. Commun. Rev. (1)

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, "Helios: a hybrid electrical/optical switch architecture for modular data centers," Comput. Commun. Rev. 40, 339‒350 (2010).

Computer (1)

L. Barroso and U. Holzle, "The case for energy-proportional computing," Computer 40, (12), 33‒37 (2007).
[CrossRef]

Electronics Cooling (1)

C. L. Belady, "In the data center, power and cooling costs more than the IT equipment it supports," Electronics Cooling (2007) [Online]. Available: http://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/.

Environ. Res. Lett. (1)

J. G. Koomey, "Worldwide electricity used in data centers," Environ. Res. Lett. 3, (3), 1‒8 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Tanaka, S.-H. Jeong, S. Yamazaki, A. Uetake, S. Tomabechi, M. Ekawa, and K. Morito, "Monolithically integrated 8:1 SOA gate switch with large extinction ratio and wide input power dynamic range," IEEE J. Quantum Electron. 45, (9), 1155‒1162 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

R. S. Tucker, "Green optical communications—part II: Energy limitations in networks," IEEE J. Sel. Top. Quantum Electron. 17, (2), 261‒274 (2011).
[CrossRef]

O. Liboiron-Ladouceur, I. Cerutti, P. G. Raponi, N. Andriolli, and P. Castoldi, "Energy-efficient design of a scalable optical multiplane interconnection architecture," IEEE J. Sel. Top. Quantum Electron. 17, (2), 377‒383 (2011).
[CrossRef]

IEEE Micro (1)

L. Barroso, J. Dean, and U. Holzle, "Web search for a planet: the Google cluster architecture," IEEE Micro 23, (2), 22‒28 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

J. LeGrange, J. Simsarian, P. Bernasconi, L. Buhl, J. Gripp, and D. Neilson, "Demonstration of an integrated buffer for an all-optical packet router," IEEE Photon. Technol. Lett. 21, (12), 781‒783 (2009).
[CrossRef]

C. Gallep and E. Conforti, "Reduction of semiconductor optical amplifier switching times by preimpulse step-injected current technique," IEEE Photon. Technol. Lett. 14, (7), 902‒904 (2002).
[CrossRef]

O. Liboiron-Ladouceur and K. Bergman, "Optimization of a switching node for optical multistage interconnection networks," IEEE Photon. Technol. Lett. 19, (20), 1658‒1660 (2007).
[CrossRef]

E. Burmeister and J. Bowers, "Integrated gate matrix switch for optical packet buffering," IEEE Photon. Technol. Lett. 18, (1), 103‒105 (2006).
[CrossRef]

H. Zhu, X. Xu, H. Wang, D. Kong, S. Liang, L. Zhao, and W. Wang, "The fabrication of eight-channel DFB laser array using sampled gratings," IEEE Photon. Technol. Lett. 22, (5), 353‒355 (2010).
[CrossRef]

IEEE Trans. Parallel Distrib. Syst. (1)

V. Soteriou and L.-S. Peh, "Exploring the design space of self-regulating power-aware on/off interconnection networks," IEEE Trans. Parallel Distrib. Syst. 18, (3), 393‒408 (2007).
[CrossRef]

IEEE/ACM Trans. Netw. (1)

N. McKeown, "The iSLIP scheduling algorithm for input-queued switches," IEEE/ACM Trans. Netw. 7, (2), 188‒201 (1999).
[CrossRef]

IET Commun. (1)

P. G. Raponi, N. Andriolli, I. Cerutti, and P. Castoldi, "Two-step scheduling framework for space–wavelength modular optical interconnection networks," IET Commun. 4, (18), 2155‒2165 (2010).
[CrossRef]

J. Lightwave Technol. (10)

A. Albores-Mejia, F. Gomez-Agis, H. Dorren, X. Leijtens, T. de Vries, Y.-S. Oei, M. Heck, R. Notzel, D. Robbins, M. Smit, and K. Williams, "Monolithic multistage optoelectronic switch circuit routing 160 Gb/s line-rate data," J. Lightwave Technol. 28, (20), 2984‒2992 (2010).
[CrossRef]

J. Ito and H. Tsuda, "Small bend structures using trenches filled with low-refractive index material for miniaturizing silica planar lightwave circuits," J. Lightwave Technol. 27, (6), 786‒790 (2009).
[CrossRef]

R. S. Tucker, "The role of optics and electronics in high-capacity routers," J. Lightwave Technol. 24, (12), 4655‒4673 (2006).
[CrossRef]

T. Lin, K. Williams, R. Penty, I. White, and M. Glick, "Capacity scaling in a multihost wavelength-striped SOA-based switch fabric," J. Lightwave Technol. 25, (3), 655‒663 (2007).
[CrossRef]

K. Jinguji and T. Yasui, "Synthesis of one-input M-output optical FIR lattice circuits," J. Lightwave Technol. 26, (7), 853‒866 (2008).
[CrossRef]

O. Liboiron-Ladouceur, A. Shacham, B. Small, B. Lee, H. Wang, C. Lai, A. Biberman, and K. Bergman, "The data vortex optical packet switched interconnection network," J. Lightwave Technol. 26, (13), 1777‒1789 (2008).
[CrossRef]

S. Kakehashi, H. Hasegawa, K.-i. Sato, O. Moriwaki, and S. Kamei, "Analysis and development of fixed and variable waveband MUX/DEMUX utilizing AWG routing functions," J. Lightwave Technol. 27, (1), 30‒40 (2009).
[CrossRef]

A. Ehrhardt, M. Eiselt, G. Grossopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. Weber, "Semiconductor laser amplifier as optical switching gate," J. Lightwave Technol. 11, (8), 1287‒1295 (1993).
[CrossRef]

H. Cho, P. Kapur, and K. Saraswat, "Power comparison between high-speed electrical and optical interconnects for interchip communication," J. Lightwave Technol. 22, (9), 2021‒2033 (2004).
[CrossRef]

C. Tai and W. Way, "Dynamic range and switching speed limitations of an N×N optical packet switch based on low-gain semiconductor optical amplifiers," J. Lightwave Technol. 14, (4), 525‒533 (1996).
[CrossRef]

J. Opt. Commun. Netw. (1)

J. Opt. Netw. (1)

Opt. Express (1)

Proc. IEEE (2)

D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," Proc. IEEE 88, (6), 728‒749 (2000).
[CrossRef]

D. A. B. Miller, "Device requirements for optical interconnects to silicon chips," Proc. IEEE 97, (7), 1166‒1185 (2009).
[CrossRef]

Other (17)

A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, "Towards a next generation data center architecture: scalability and commoditization," Proc. of the ACM Workshop on Programmable Routers for Extensible Services of Tomorrow (PRESTO ’08), 2008, pp. 57‒62.

X. Chen, L.-S. Peh, G.-Y. Wei, Y.-K. Huang, and P. Prucnal, "Exploring the design space of power-aware opto-electronic networked systems," Proc. Int. Symp. High-Performance Computer Architecture, Feb. 2005, pp. 120‒131.

D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, "Energy proportional datacenter networks," Proc. of 37th Annu. Int. Symp. Computer Architecture (ISCA ’10), 2010, pp. 338‒347.

A. Benner, "Cost-effective optics: enabling the exascale roadmap," 17th IEEE Symp. on High Performance Interconnects (HOTI), Aug. 2009, pp. 133‒137.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. Offrein, and A. Benner, "Towards exaflop servers and supercomputers: the roadmap for lower power and higher density optical interconnects," 36th European Conf. on Optical Communication (ECOC), Sept. 2010, pp. 1‒14.

Energy Star Program, Report to congress on server and data center energy efficiency: Public law 109-431, US Environmental Protection Agency, 2007.

S. Pelle, D. Meisner, T. F. Wenisch, and J. W. VanGilder, "Understanding and abstracting total data center power," Proc. Workshop on Energy Efficient Design (WEED), 2009.

D. Meisner, B. T. Gold, and T. F. Wenisch, "PowerNap: eliminating server idle power," Proc. of the 14th Int. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’09), 2009, pp. 205‒216.

Intel Xeon Processor Data Center Optimization and CERN openlabs, "Reducing data center energy consumption," Intel Xeon Processor White Paper Source should not be italic in PDF., 2008.

K. G. Brill, "The invisible crisis in the data center: the economic meltdown of Moore’s law," White PaperSource should not be italic in PDF., Uptime Institute, 2007.

J. Humphreys and J. Scaramella, "The impact of power and cooling on data center infrastructure," Market Research Report Source should not be italic in PDF., IDC, 2006.

N. Sahri, D. Prieto, S. Silvestre, D. Keller, F. Pommerau, M. Renaud, O. Rofidal, A. Dupas, F. Dorgeuille, and D. Chiaroni, "A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers," Optical Fiber Communication Conf. and Exhibit (OFC), Vol. 4, 2001, PD32.

J. Bauters, M. Heck, D. John, M.-C. Tien, A. Leinse, R. Heideman, D. Blumenthal, and J. Bowers, "Ultra-low loss silica-based waveguides with millimeter bend radius," 36th European Conf. on Optical Communication (ECOC), Sept. 2010.

G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, "Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly," Proc. 55th Electronic Components and Technology Conf., Vol. 2, May/June 2005, pp. 1349‒1352.

W. Dally and B. Towles, Principles and Practices of Interconnection Networks, Morgan Kaufmann, San Francisco, CA, USA, 2003.

M. Moller, "High-speed electronic circuits for 100 Gb/s transport networks," Optical Fiber Communication Conf. and Exhibit (OFC), Mar. 2010, OThC6.

E. Bonetto, D. Cuda, G. A. G. Castillo, and F. Neri, "The role of arrayed waveguide gratings in energy-efficient optical switching architectures," Optical Fiber Communication Conf. and Exhibit (OFC), 2010, OWY4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(Color online) (a) Switching domains and their respective scalability limitations. (b) Switching domains exploited in the space–time (ST) architecture.

Fig. 2
Fig. 2

(Color online) Time compressed WDM packets in a card through PWM.

Fig. 3
Fig. 3

(Color online) Space–time interconnection network architecture for M cards and N ports.

Fig. 4
Fig. 4

(Color online) PWM performing the time-compression of the serial packet at the transmitting card and time-expansion at the receiving card.

Fig. 5
Fig. 5

(Color online) Illustration of the M × M space-switch interconnection comprised of 1 × M space-switches and M : 1 .

Fig. 6
Fig. 6

(Color online) Energy-efficient self-enabled SOA.

Fig. 7
Fig. 7

(Color online) Queuing delay versus number of ports.

Fig. 8
Fig. 8

(Color online) Energy per bit for the SOA-based M × M space-switch interconnection for 5 mW and 0.5 mW power dissipation of the SOA in idle mode.

Fig. 9
Fig. 9

(Color online) Energy per bit of the space–time (ST) architecture compared with the space–wavelength (SW) and the single-plane (S) architectures for various network sizes M × N (idle SOA dissipates 5 mW).