Abstract

This paper analyzes the performance of indoor orthogonal frequency division multiplexing (OFDM) optical wireless communication systems in the presence of light emitting diode (LED) nonlinear distortions. There are several forms of optical OFDM using intensity modulation [7th Int. Symp. on Communication Systems Networks and Digital Signal Processing (CSNDSP), 2010, pp. 566–570]. In this paper, DC-biased optical OFDM (DCO-OFDM) and asymmetrically clipped optical OFDM (ACO-OFDM) are considered. ACO-OFDM produces a half-wave symmetry time signal at the output of the OFDM modulator by special assignment of subcarriers, thus allowing signal clipping at the zero level and avoiding the need for DC bias at the expense of data rate reduction. DCO-OFDM assigns data to all possible subcarriers to increase the data rate. However, half-wave symmetry signals cannot be achieved and a high DC bias is needed to convert the bipolar signal to a unipolar signal before modulating the LED intensity. This paper considers a practical LED model and studies the performance of both systems in terms of average electrical OFDM signal power versus bit error ratio in the presence of an additive white Gaussian noise (AWGN) channel. In addition, DC power consumption and the transmitted optical power for the two systems are compared. The analytical results are validated through Monte Carlo simulations and the obtained results demonstrate close match. It is shown that LED clipping has significant impact on the performance of both systems and an optimum system design should take into account the OFDM signal power, DC-bias point, and LED dynamic range.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Randel, F. Breyer, S. C. J. Lee, and J. W. Walewski, "Advanced modulation schemes for short-range optical communications [invited paper]," IEEE J. Sel. Top. Quantum Electron. 16, (5), 1280‒1289 (2010).
  2. A. M. Street, P. N. Stavrinou, D. C. O’brien, and D. J. Edwards, "Indoor optical wireless systems—a review," Opt. Quantum Electron. 29, (3), 349‒378 (1997).
    [CrossRef]
  3. J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE 85, (2), 265‒298 (1997).
    [CrossRef]
  4. M. Akbulut, C. Chen, M. Hargis, A. Weiner, M. Melloch, and J. Woodall, "Digital communications above 1 Gb/s using 890-nm surface-emitting light-emitting diodes," IEEE Photon. Technol. Lett. 13, (1), 85‒87 (2001).
    [CrossRef]
  5. J. M. Kahn, W. J. Krause, and J. B. Carruthers, "Experimental characterization of non-directed indoor infrared channels," IEEE Trans. Commun. 43, (234), 1613‒1623 (1995).
    [CrossRef]
  6. Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, "Indoor visible light data transmission system utilizing white LED lights," IEICE Trans. Commun. E86-B, (8), 2440‒2454 (2003).
  7. M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, "Visible light communication using OFDM," Proc. of the 2nd Int. Conf. on Testbeds and Research Infrastructures for the Development of Networks and Communities (TRIDENTCOM), Mar. 1–3, 2006, IEEE, Barcelona, Spain, pp. 129‒134.
  8. H. Elgala, R. Mesleh, H. Haas, and B. Pricope, "OFDM visible light wireless communication based on white LEDs," Proc. of the 64th IEEE Vehicular Technology Conference (VTC), Apr. 22–25, 2007, Dublin, Ireland.
  9. J. Armstrong and B. J. C. Schmidt, "Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN," IEEE Commun. Lett. 12, (5), 343‒345 (2008).
    [CrossRef]
  10. J. Armstrong and A. Lowery, "Power efficient optical OFDM," Electron. Lett. 42, (6), 370‒372 (2006).
    [CrossRef]
  11. J. Armstrong, "OFDM for optical communications," J. Lightwave Technol. 27, (3), 189‒204 (2009).
    [CrossRef]
  12. S. C. J. Lee, S. Randel, F. Breyer, and A. M. J. Koonen, "PAM-DMT for intensity-modulated and direct-detection optical communication systems," IEEE Photon. Technol. Lett. 21, (23), 1749‒1751 (2009).
    [CrossRef]
  13. J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11, (3), 367‒379 (1993).
    [CrossRef]
  14. R. Mesleh, H. Elgala, and H. Haas, "An overview of indoor OFDM/DMT optical wireless communication systems," 7th Int. Symp. on Communication Systems Networks and Digital Signal Processing (CSNDSP), July 21–23, 2010, pp. 566‒570Please update the status of publication of Ref. [1]..
  15. H. Elgala, R. Mesleh, and H. Haas, "A study of LED nonlinearity effects on optical wireless transmission using OFDM," Proc. 6th IEEE Int. Conf. on Wireless and Optical Communications Networks (WOCN), Apr. 28–30, 2009, Cairo, Egypt.
  16. H. Elgala, R. Mesleh, and H. Haas, "Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs," Int. J. Ultra Wideband Commun. Syst. 1, (2), 143‒150 (2009).
    [CrossRef]
  17. OSRAM GmbH, Datasheet: ZW W5SG Golden DRAGON White LED, Aug. 2010, [Online]. Available: http://www.osram.de.
  18. E. Schubert, Light-Emitting Diodes, 1st ed., Cambridge Univ. Press, 2003.
  19. H. Elgala, R. Mesleh, and H. Haas, "Modeling for predistortion of LEDs in optical wireless transmission using OFDM," Proc. of the IEEE 10th Int. Conf. on Hybrid Intelligent Systems (HIS), Aug. 12–14, 2009, Shenyang Liaoning, China.
  20. L. Zyga, "White LEDs with super-high luminous efficacy could satisfy all general lighting needs," PhysOrg.com (2010) [Online]. Available: http://www.physorg.com/news202453100.html.
  21. I. Neokosmidis, T. Kamalakis, J. W. Walewski, B. Inan, and T. Sphicopoulos, "Impact of nonlinear LED transfer function on discrete multitone modulation: Analytical approach," J. Lightwave Technol. 27, (22), 4970‒4978 (2009).
    [CrossRef]
  22. K.-D. Langer, J. Grubor, O. Bouchet, M. El Tabach, J. Walewski, S. Randel, M. Franke, S. Nerreter, D. O’Brien, G. Faulkner, I. Neokosmidis, G. Ntogari, and M. Wolf, "Optical wireless communications for broadband access in home area networks," Proc. of the 10th Anniversary Int. Conf. Transparent Optical Networks (ICTON 08), Vol. 4, June 22–26, 2008, Athens, Greece, pp. 149‒154.
  23. H. Elgala, R. Mesleh, and H. Haas, "Practical considerations for indoor wireless optical system implementation using OFDM," Proc. of the IEEE 10th Int. Conf. on Telecommunications (ConTel), June 8–10, 2009, Zagreb, Croatia.
  24. J. Bussgang, "Cross correlation function of amplitude-distorted Gaussian signals," Tech. Rep. 216, Cambridge, MA, Research Laboratory for Electronics, Massachusetts Institute of Technology, Mar. 1952.
  25. K. Cho and D. Yoon, "On the general BER expression of one- and two-dimensional amplitude modulations," IEEE Trans. Commun. 50, (7), 1074‒1080 (2002).
    [CrossRef]
  26. J. Grubor, S. Randel, K. Langer, and J. Walewski, "Bandwidth efficient indoor optical wireless communications with white light emitting diodes," Proc. of the 6th Int. Symp. on Communication Systems, Networks and Digital Signal Processing, Vol. 1, June 23–25, 2008, Graz, Austria, pp. 165‒169.
  27. D. O’Brien, G. Parry, and P. Stavrinou, "Optical hotspots speed up wireless communication," Nat. Photonics 1, 245‒247 (2007).
    [CrossRef]

2010 (2)

S. Randel, F. Breyer, S. C. J. Lee, and J. W. Walewski, "Advanced modulation schemes for short-range optical communications [invited paper]," IEEE J. Sel. Top. Quantum Electron. 16, (5), 1280‒1289 (2010).

L. Zyga, "White LEDs with super-high luminous efficacy could satisfy all general lighting needs," PhysOrg.com (2010) [Online]. Available: http://www.physorg.com/news202453100.html.

2009 (4)

H. Elgala, R. Mesleh, and H. Haas, "Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs," Int. J. Ultra Wideband Commun. Syst. 1, (2), 143‒150 (2009).
[CrossRef]

J. Armstrong, "OFDM for optical communications," J. Lightwave Technol. 27, (3), 189‒204 (2009).
[CrossRef]

I. Neokosmidis, T. Kamalakis, J. W. Walewski, B. Inan, and T. Sphicopoulos, "Impact of nonlinear LED transfer function on discrete multitone modulation: Analytical approach," J. Lightwave Technol. 27, (22), 4970‒4978 (2009).
[CrossRef]

S. C. J. Lee, S. Randel, F. Breyer, and A. M. J. Koonen, "PAM-DMT for intensity-modulated and direct-detection optical communication systems," IEEE Photon. Technol. Lett. 21, (23), 1749‒1751 (2009).
[CrossRef]

2008 (1)

J. Armstrong and B. J. C. Schmidt, "Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN," IEEE Commun. Lett. 12, (5), 343‒345 (2008).
[CrossRef]

2007 (1)

D. O’Brien, G. Parry, and P. Stavrinou, "Optical hotspots speed up wireless communication," Nat. Photonics 1, 245‒247 (2007).
[CrossRef]

2006 (1)

J. Armstrong and A. Lowery, "Power efficient optical OFDM," Electron. Lett. 42, (6), 370‒372 (2006).
[CrossRef]

2003 (1)

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, "Indoor visible light data transmission system utilizing white LED lights," IEICE Trans. Commun. E86-B, (8), 2440‒2454 (2003).

2002 (1)

K. Cho and D. Yoon, "On the general BER expression of one- and two-dimensional amplitude modulations," IEEE Trans. Commun. 50, (7), 1074‒1080 (2002).
[CrossRef]

2001 (1)

M. Akbulut, C. Chen, M. Hargis, A. Weiner, M. Melloch, and J. Woodall, "Digital communications above 1 Gb/s using 890-nm surface-emitting light-emitting diodes," IEEE Photon. Technol. Lett. 13, (1), 85‒87 (2001).
[CrossRef]

1997 (2)

A. M. Street, P. N. Stavrinou, D. C. O’brien, and D. J. Edwards, "Indoor optical wireless systems—a review," Opt. Quantum Electron. 29, (3), 349‒378 (1997).
[CrossRef]

J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE 85, (2), 265‒298 (1997).
[CrossRef]

1995 (1)

J. M. Kahn, W. J. Krause, and J. B. Carruthers, "Experimental characterization of non-directed indoor infrared channels," IEEE Trans. Commun. 43, (234), 1613‒1623 (1995).
[CrossRef]

1993 (1)

J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11, (3), 367‒379 (1993).
[CrossRef]

Afgani, M. Z.

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, "Visible light communication using OFDM," Proc. of the 2nd Int. Conf. on Testbeds and Research Infrastructures for the Development of Networks and Communities (TRIDENTCOM), Mar. 1–3, 2006, IEEE, Barcelona, Spain, pp. 129‒134.

Akbulut, M.

M. Akbulut, C. Chen, M. Hargis, A. Weiner, M. Melloch, and J. Woodall, "Digital communications above 1 Gb/s using 890-nm surface-emitting light-emitting diodes," IEEE Photon. Technol. Lett. 13, (1), 85‒87 (2001).
[CrossRef]

Armstrong, J.

J. Armstrong, "OFDM for optical communications," J. Lightwave Technol. 27, (3), 189‒204 (2009).
[CrossRef]

J. Armstrong and B. J. C. Schmidt, "Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN," IEEE Commun. Lett. 12, (5), 343‒345 (2008).
[CrossRef]

J. Armstrong and A. Lowery, "Power efficient optical OFDM," Electron. Lett. 42, (6), 370‒372 (2006).
[CrossRef]

Barry, J.

J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11, (3), 367‒379 (1993).
[CrossRef]

Barry, J. R.

J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE 85, (2), 265‒298 (1997).
[CrossRef]

Bouchet, O.

K.-D. Langer, J. Grubor, O. Bouchet, M. El Tabach, J. Walewski, S. Randel, M. Franke, S. Nerreter, D. O’Brien, G. Faulkner, I. Neokosmidis, G. Ntogari, and M. Wolf, "Optical wireless communications for broadband access in home area networks," Proc. of the 10th Anniversary Int. Conf. Transparent Optical Networks (ICTON 08), Vol. 4, June 22–26, 2008, Athens, Greece, pp. 149‒154.

Breyer, F.

S. Randel, F. Breyer, S. C. J. Lee, and J. W. Walewski, "Advanced modulation schemes for short-range optical communications [invited paper]," IEEE J. Sel. Top. Quantum Electron. 16, (5), 1280‒1289 (2010).

S. C. J. Lee, S. Randel, F. Breyer, and A. M. J. Koonen, "PAM-DMT for intensity-modulated and direct-detection optical communication systems," IEEE Photon. Technol. Lett. 21, (23), 1749‒1751 (2009).
[CrossRef]

Bussgang, J.

J. Bussgang, "Cross correlation function of amplitude-distorted Gaussian signals," Tech. Rep. 216, Cambridge, MA, Research Laboratory for Electronics, Massachusetts Institute of Technology, Mar. 1952.

Carruthers, J. B.

J. M. Kahn, W. J. Krause, and J. B. Carruthers, "Experimental characterization of non-directed indoor infrared channels," IEEE Trans. Commun. 43, (234), 1613‒1623 (1995).
[CrossRef]

Chen, C.

M. Akbulut, C. Chen, M. Hargis, A. Weiner, M. Melloch, and J. Woodall, "Digital communications above 1 Gb/s using 890-nm surface-emitting light-emitting diodes," IEEE Photon. Technol. Lett. 13, (1), 85‒87 (2001).
[CrossRef]

Cho, K.

K. Cho and D. Yoon, "On the general BER expression of one- and two-dimensional amplitude modulations," IEEE Trans. Commun. 50, (7), 1074‒1080 (2002).
[CrossRef]

Edwards, D. J.

A. M. Street, P. N. Stavrinou, D. C. O’brien, and D. J. Edwards, "Indoor optical wireless systems—a review," Opt. Quantum Electron. 29, (3), 349‒378 (1997).
[CrossRef]

El Tabach, M.

K.-D. Langer, J. Grubor, O. Bouchet, M. El Tabach, J. Walewski, S. Randel, M. Franke, S. Nerreter, D. O’Brien, G. Faulkner, I. Neokosmidis, G. Ntogari, and M. Wolf, "Optical wireless communications for broadband access in home area networks," Proc. of the 10th Anniversary Int. Conf. Transparent Optical Networks (ICTON 08), Vol. 4, June 22–26, 2008, Athens, Greece, pp. 149‒154.

Elgala, H.

H. Elgala, R. Mesleh, and H. Haas, "Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs," Int. J. Ultra Wideband Commun. Syst. 1, (2), 143‒150 (2009).
[CrossRef]

H. Elgala, R. Mesleh, and H. Haas, "Modeling for predistortion of LEDs in optical wireless transmission using OFDM," Proc. of the IEEE 10th Int. Conf. on Hybrid Intelligent Systems (HIS), Aug. 12–14, 2009, Shenyang Liaoning, China.

R. Mesleh, H. Elgala, and H. Haas, "An overview of indoor OFDM/DMT optical wireless communication systems," 7th Int. Symp. on Communication Systems Networks and Digital Signal Processing (CSNDSP), July 21–23, 2010, pp. 566‒570Please update the status of publication of Ref. [1]..

H. Elgala, R. Mesleh, and H. Haas, "A study of LED nonlinearity effects on optical wireless transmission using OFDM," Proc. 6th IEEE Int. Conf. on Wireless and Optical Communications Networks (WOCN), Apr. 28–30, 2009, Cairo, Egypt.

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, "Visible light communication using OFDM," Proc. of the 2nd Int. Conf. on Testbeds and Research Infrastructures for the Development of Networks and Communities (TRIDENTCOM), Mar. 1–3, 2006, IEEE, Barcelona, Spain, pp. 129‒134.

H. Elgala, R. Mesleh, H. Haas, and B. Pricope, "OFDM visible light wireless communication based on white LEDs," Proc. of the 64th IEEE Vehicular Technology Conference (VTC), Apr. 22–25, 2007, Dublin, Ireland.

H. Elgala, R. Mesleh, and H. Haas, "Practical considerations for indoor wireless optical system implementation using OFDM," Proc. of the IEEE 10th Int. Conf. on Telecommunications (ConTel), June 8–10, 2009, Zagreb, Croatia.

Faulkner, G.

K.-D. Langer, J. Grubor, O. Bouchet, M. El Tabach, J. Walewski, S. Randel, M. Franke, S. Nerreter, D. O’Brien, G. Faulkner, I. Neokosmidis, G. Ntogari, and M. Wolf, "Optical wireless communications for broadband access in home area networks," Proc. of the 10th Anniversary Int. Conf. Transparent Optical Networks (ICTON 08), Vol. 4, June 22–26, 2008, Athens, Greece, pp. 149‒154.

Franke, M.

K.-D. Langer, J. Grubor, O. Bouchet, M. El Tabach, J. Walewski, S. Randel, M. Franke, S. Nerreter, D. O’Brien, G. Faulkner, I. Neokosmidis, G. Ntogari, and M. Wolf, "Optical wireless communications for broadband access in home area networks," Proc. of the 10th Anniversary Int. Conf. Transparent Optical Networks (ICTON 08), Vol. 4, June 22–26, 2008, Athens, Greece, pp. 149‒154.

Grubor, J.

J. Grubor, S. Randel, K. Langer, and J. Walewski, "Bandwidth efficient indoor optical wireless communications with white light emitting diodes," Proc. of the 6th Int. Symp. on Communication Systems, Networks and Digital Signal Processing, Vol. 1, June 23–25, 2008, Graz, Austria, pp. 165‒169.

K.-D. Langer, J. Grubor, O. Bouchet, M. El Tabach, J. Walewski, S. Randel, M. Franke, S. Nerreter, D. O’Brien, G. Faulkner, I. Neokosmidis, G. Ntogari, and M. Wolf, "Optical wireless communications for broadband access in home area networks," Proc. of the 10th Anniversary Int. Conf. Transparent Optical Networks (ICTON 08), Vol. 4, June 22–26, 2008, Athens, Greece, pp. 149‒154.

Haas, H.

H. Elgala, R. Mesleh, and H. Haas, "Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs," Int. J. Ultra Wideband Commun. Syst. 1, (2), 143‒150 (2009).
[CrossRef]

H. Elgala, R. Mesleh, and H. Haas, "Modeling for predistortion of LEDs in optical wireless transmission using OFDM," Proc. of the IEEE 10th Int. Conf. on Hybrid Intelligent Systems (HIS), Aug. 12–14, 2009, Shenyang Liaoning, China.

H. Elgala, R. Mesleh, and H. Haas, "A study of LED nonlinearity effects on optical wireless transmission using OFDM," Proc. 6th IEEE Int. Conf. on Wireless and Optical Communications Networks (WOCN), Apr. 28–30, 2009, Cairo, Egypt.

R. Mesleh, H. Elgala, and H. Haas, "An overview of indoor OFDM/DMT optical wireless communication systems," 7th Int. Symp. on Communication Systems Networks and Digital Signal Processing (CSNDSP), July 21–23, 2010, pp. 566‒570Please update the status of publication of Ref. [1]..

H. Elgala, R. Mesleh, H. Haas, and B. Pricope, "OFDM visible light wireless communication based on white LEDs," Proc. of the 64th IEEE Vehicular Technology Conference (VTC), Apr. 22–25, 2007, Dublin, Ireland.

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, "Visible light communication using OFDM," Proc. of the 2nd Int. Conf. on Testbeds and Research Infrastructures for the Development of Networks and Communities (TRIDENTCOM), Mar. 1–3, 2006, IEEE, Barcelona, Spain, pp. 129‒134.

H. Elgala, R. Mesleh, and H. Haas, "Practical considerations for indoor wireless optical system implementation using OFDM," Proc. of the IEEE 10th Int. Conf. on Telecommunications (ConTel), June 8–10, 2009, Zagreb, Croatia.

Hargis, M.

M. Akbulut, C. Chen, M. Hargis, A. Weiner, M. Melloch, and J. Woodall, "Digital communications above 1 Gb/s using 890-nm surface-emitting light-emitting diodes," IEEE Photon. Technol. Lett. 13, (1), 85‒87 (2001).
[CrossRef]

Haruyama, S.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, "Indoor visible light data transmission system utilizing white LED lights," IEICE Trans. Commun. E86-B, (8), 2440‒2454 (2003).

Inan, B.

Kahn, J.

J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11, (3), 367‒379 (1993).
[CrossRef]

Kahn, J. M.

J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE 85, (2), 265‒298 (1997).
[CrossRef]

J. M. Kahn, W. J. Krause, and J. B. Carruthers, "Experimental characterization of non-directed indoor infrared channels," IEEE Trans. Commun. 43, (234), 1613‒1623 (1995).
[CrossRef]

Kamalakis, T.

Knipp, D.

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, "Visible light communication using OFDM," Proc. of the 2nd Int. Conf. on Testbeds and Research Infrastructures for the Development of Networks and Communities (TRIDENTCOM), Mar. 1–3, 2006, IEEE, Barcelona, Spain, pp. 129‒134.

Komine, T.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, "Indoor visible light data transmission system utilizing white LED lights," IEICE Trans. Commun. E86-B, (8), 2440‒2454 (2003).

Koonen, A. M. J.

S. C. J. Lee, S. Randel, F. Breyer, and A. M. J. Koonen, "PAM-DMT for intensity-modulated and direct-detection optical communication systems," IEEE Photon. Technol. Lett. 21, (23), 1749‒1751 (2009).
[CrossRef]

Krause, W.

J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11, (3), 367‒379 (1993).
[CrossRef]

Krause, W. J.

J. M. Kahn, W. J. Krause, and J. B. Carruthers, "Experimental characterization of non-directed indoor infrared channels," IEEE Trans. Commun. 43, (234), 1613‒1623 (1995).
[CrossRef]

Langer, K.

J. Grubor, S. Randel, K. Langer, and J. Walewski, "Bandwidth efficient indoor optical wireless communications with white light emitting diodes," Proc. of the 6th Int. Symp. on Communication Systems, Networks and Digital Signal Processing, Vol. 1, June 23–25, 2008, Graz, Austria, pp. 165‒169.

Langer, K.-D.

K.-D. Langer, J. Grubor, O. Bouchet, M. El Tabach, J. Walewski, S. Randel, M. Franke, S. Nerreter, D. O’Brien, G. Faulkner, I. Neokosmidis, G. Ntogari, and M. Wolf, "Optical wireless communications for broadband access in home area networks," Proc. of the 10th Anniversary Int. Conf. Transparent Optical Networks (ICTON 08), Vol. 4, June 22–26, 2008, Athens, Greece, pp. 149‒154.

Lee, E.

J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11, (3), 367‒379 (1993).
[CrossRef]

Lee, S. C. J.

S. Randel, F. Breyer, S. C. J. Lee, and J. W. Walewski, "Advanced modulation schemes for short-range optical communications [invited paper]," IEEE J. Sel. Top. Quantum Electron. 16, (5), 1280‒1289 (2010).

S. C. J. Lee, S. Randel, F. Breyer, and A. M. J. Koonen, "PAM-DMT for intensity-modulated and direct-detection optical communication systems," IEEE Photon. Technol. Lett. 21, (23), 1749‒1751 (2009).
[CrossRef]

Lowery, A.

J. Armstrong and A. Lowery, "Power efficient optical OFDM," Electron. Lett. 42, (6), 370‒372 (2006).
[CrossRef]

Melloch, M.

M. Akbulut, C. Chen, M. Hargis, A. Weiner, M. Melloch, and J. Woodall, "Digital communications above 1 Gb/s using 890-nm surface-emitting light-emitting diodes," IEEE Photon. Technol. Lett. 13, (1), 85‒87 (2001).
[CrossRef]

Mesleh, R.

H. Elgala, R. Mesleh, and H. Haas, "Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs," Int. J. Ultra Wideband Commun. Syst. 1, (2), 143‒150 (2009).
[CrossRef]

H. Elgala, R. Mesleh, and H. Haas, "Modeling for predistortion of LEDs in optical wireless transmission using OFDM," Proc. of the IEEE 10th Int. Conf. on Hybrid Intelligent Systems (HIS), Aug. 12–14, 2009, Shenyang Liaoning, China.

R. Mesleh, H. Elgala, and H. Haas, "An overview of indoor OFDM/DMT optical wireless communication systems," 7th Int. Symp. on Communication Systems Networks and Digital Signal Processing (CSNDSP), July 21–23, 2010, pp. 566‒570Please update the status of publication of Ref. [1]..

H. Elgala, R. Mesleh, and H. Haas, "A study of LED nonlinearity effects on optical wireless transmission using OFDM," Proc. 6th IEEE Int. Conf. on Wireless and Optical Communications Networks (WOCN), Apr. 28–30, 2009, Cairo, Egypt.

H. Elgala, R. Mesleh, H. Haas, and B. Pricope, "OFDM visible light wireless communication based on white LEDs," Proc. of the 64th IEEE Vehicular Technology Conference (VTC), Apr. 22–25, 2007, Dublin, Ireland.

H. Elgala, R. Mesleh, and H. Haas, "Practical considerations for indoor wireless optical system implementation using OFDM," Proc. of the IEEE 10th Int. Conf. on Telecommunications (ConTel), June 8–10, 2009, Zagreb, Croatia.

Messerschmitt, D.

J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11, (3), 367‒379 (1993).
[CrossRef]

Nakagawa, M.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, "Indoor visible light data transmission system utilizing white LED lights," IEICE Trans. Commun. E86-B, (8), 2440‒2454 (2003).

Neokosmidis, I.

I. Neokosmidis, T. Kamalakis, J. W. Walewski, B. Inan, and T. Sphicopoulos, "Impact of nonlinear LED transfer function on discrete multitone modulation: Analytical approach," J. Lightwave Technol. 27, (22), 4970‒4978 (2009).
[CrossRef]

K.-D. Langer, J. Grubor, O. Bouchet, M. El Tabach, J. Walewski, S. Randel, M. Franke, S. Nerreter, D. O’Brien, G. Faulkner, I. Neokosmidis, G. Ntogari, and M. Wolf, "Optical wireless communications for broadband access in home area networks," Proc. of the 10th Anniversary Int. Conf. Transparent Optical Networks (ICTON 08), Vol. 4, June 22–26, 2008, Athens, Greece, pp. 149‒154.

Nerreter, S.

K.-D. Langer, J. Grubor, O. Bouchet, M. El Tabach, J. Walewski, S. Randel, M. Franke, S. Nerreter, D. O’Brien, G. Faulkner, I. Neokosmidis, G. Ntogari, and M. Wolf, "Optical wireless communications for broadband access in home area networks," Proc. of the 10th Anniversary Int. Conf. Transparent Optical Networks (ICTON 08), Vol. 4, June 22–26, 2008, Athens, Greece, pp. 149‒154.

Ntogari, G.

K.-D. Langer, J. Grubor, O. Bouchet, M. El Tabach, J. Walewski, S. Randel, M. Franke, S. Nerreter, D. O’Brien, G. Faulkner, I. Neokosmidis, G. Ntogari, and M. Wolf, "Optical wireless communications for broadband access in home area networks," Proc. of the 10th Anniversary Int. Conf. Transparent Optical Networks (ICTON 08), Vol. 4, June 22–26, 2008, Athens, Greece, pp. 149‒154.

O’Brien, D.

D. O’Brien, G. Parry, and P. Stavrinou, "Optical hotspots speed up wireless communication," Nat. Photonics 1, 245‒247 (2007).
[CrossRef]

K.-D. Langer, J. Grubor, O. Bouchet, M. El Tabach, J. Walewski, S. Randel, M. Franke, S. Nerreter, D. O’Brien, G. Faulkner, I. Neokosmidis, G. Ntogari, and M. Wolf, "Optical wireless communications for broadband access in home area networks," Proc. of the 10th Anniversary Int. Conf. Transparent Optical Networks (ICTON 08), Vol. 4, June 22–26, 2008, Athens, Greece, pp. 149‒154.

O’brien, D. C.

A. M. Street, P. N. Stavrinou, D. C. O’brien, and D. J. Edwards, "Indoor optical wireless systems—a review," Opt. Quantum Electron. 29, (3), 349‒378 (1997).
[CrossRef]

Parry, G.

D. O’Brien, G. Parry, and P. Stavrinou, "Optical hotspots speed up wireless communication," Nat. Photonics 1, 245‒247 (2007).
[CrossRef]

Pricope, B.

H. Elgala, R. Mesleh, H. Haas, and B. Pricope, "OFDM visible light wireless communication based on white LEDs," Proc. of the 64th IEEE Vehicular Technology Conference (VTC), Apr. 22–25, 2007, Dublin, Ireland.

Randel, S.

S. Randel, F. Breyer, S. C. J. Lee, and J. W. Walewski, "Advanced modulation schemes for short-range optical communications [invited paper]," IEEE J. Sel. Top. Quantum Electron. 16, (5), 1280‒1289 (2010).

S. C. J. Lee, S. Randel, F. Breyer, and A. M. J. Koonen, "PAM-DMT for intensity-modulated and direct-detection optical communication systems," IEEE Photon. Technol. Lett. 21, (23), 1749‒1751 (2009).
[CrossRef]

J. Grubor, S. Randel, K. Langer, and J. Walewski, "Bandwidth efficient indoor optical wireless communications with white light emitting diodes," Proc. of the 6th Int. Symp. on Communication Systems, Networks and Digital Signal Processing, Vol. 1, June 23–25, 2008, Graz, Austria, pp. 165‒169.

K.-D. Langer, J. Grubor, O. Bouchet, M. El Tabach, J. Walewski, S. Randel, M. Franke, S. Nerreter, D. O’Brien, G. Faulkner, I. Neokosmidis, G. Ntogari, and M. Wolf, "Optical wireless communications for broadband access in home area networks," Proc. of the 10th Anniversary Int. Conf. Transparent Optical Networks (ICTON 08), Vol. 4, June 22–26, 2008, Athens, Greece, pp. 149‒154.

Schmidt, B. J. C.

J. Armstrong and B. J. C. Schmidt, "Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN," IEEE Commun. Lett. 12, (5), 343‒345 (2008).
[CrossRef]

Schubert, E.

E. Schubert, Light-Emitting Diodes, 1st ed., Cambridge Univ. Press, 2003.

Sphicopoulos, T.

Stavrinou, P.

D. O’Brien, G. Parry, and P. Stavrinou, "Optical hotspots speed up wireless communication," Nat. Photonics 1, 245‒247 (2007).
[CrossRef]

Stavrinou, P. N.

A. M. Street, P. N. Stavrinou, D. C. O’brien, and D. J. Edwards, "Indoor optical wireless systems—a review," Opt. Quantum Electron. 29, (3), 349‒378 (1997).
[CrossRef]

Street, A. M.

A. M. Street, P. N. Stavrinou, D. C. O’brien, and D. J. Edwards, "Indoor optical wireless systems—a review," Opt. Quantum Electron. 29, (3), 349‒378 (1997).
[CrossRef]

Tanaka, Y.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, "Indoor visible light data transmission system utilizing white LED lights," IEICE Trans. Commun. E86-B, (8), 2440‒2454 (2003).

Walewski, J.

K.-D. Langer, J. Grubor, O. Bouchet, M. El Tabach, J. Walewski, S. Randel, M. Franke, S. Nerreter, D. O’Brien, G. Faulkner, I. Neokosmidis, G. Ntogari, and M. Wolf, "Optical wireless communications for broadband access in home area networks," Proc. of the 10th Anniversary Int. Conf. Transparent Optical Networks (ICTON 08), Vol. 4, June 22–26, 2008, Athens, Greece, pp. 149‒154.

J. Grubor, S. Randel, K. Langer, and J. Walewski, "Bandwidth efficient indoor optical wireless communications with white light emitting diodes," Proc. of the 6th Int. Symp. on Communication Systems, Networks and Digital Signal Processing, Vol. 1, June 23–25, 2008, Graz, Austria, pp. 165‒169.

Walewski, J. W.

S. Randel, F. Breyer, S. C. J. Lee, and J. W. Walewski, "Advanced modulation schemes for short-range optical communications [invited paper]," IEEE J. Sel. Top. Quantum Electron. 16, (5), 1280‒1289 (2010).

I. Neokosmidis, T. Kamalakis, J. W. Walewski, B. Inan, and T. Sphicopoulos, "Impact of nonlinear LED transfer function on discrete multitone modulation: Analytical approach," J. Lightwave Technol. 27, (22), 4970‒4978 (2009).
[CrossRef]

Weiner, A.

M. Akbulut, C. Chen, M. Hargis, A. Weiner, M. Melloch, and J. Woodall, "Digital communications above 1 Gb/s using 890-nm surface-emitting light-emitting diodes," IEEE Photon. Technol. Lett. 13, (1), 85‒87 (2001).
[CrossRef]

Wolf, M.

K.-D. Langer, J. Grubor, O. Bouchet, M. El Tabach, J. Walewski, S. Randel, M. Franke, S. Nerreter, D. O’Brien, G. Faulkner, I. Neokosmidis, G. Ntogari, and M. Wolf, "Optical wireless communications for broadband access in home area networks," Proc. of the 10th Anniversary Int. Conf. Transparent Optical Networks (ICTON 08), Vol. 4, June 22–26, 2008, Athens, Greece, pp. 149‒154.

Woodall, J.

M. Akbulut, C. Chen, M. Hargis, A. Weiner, M. Melloch, and J. Woodall, "Digital communications above 1 Gb/s using 890-nm surface-emitting light-emitting diodes," IEEE Photon. Technol. Lett. 13, (1), 85‒87 (2001).
[CrossRef]

Yoon, D.

K. Cho and D. Yoon, "On the general BER expression of one- and two-dimensional amplitude modulations," IEEE Trans. Commun. 50, (7), 1074‒1080 (2002).
[CrossRef]

Zyga, L.

L. Zyga, "White LEDs with super-high luminous efficacy could satisfy all general lighting needs," PhysOrg.com (2010) [Online]. Available: http://www.physorg.com/news202453100.html.

Electron. Lett. (1)

J. Armstrong and A. Lowery, "Power efficient optical OFDM," Electron. Lett. 42, (6), 370‒372 (2006).
[CrossRef]

IEEE Commun. Lett. (1)

J. Armstrong and B. J. C. Schmidt, "Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN," IEEE Commun. Lett. 12, (5), 343‒345 (2008).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11, (3), 367‒379 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Randel, F. Breyer, S. C. J. Lee, and J. W. Walewski, "Advanced modulation schemes for short-range optical communications [invited paper]," IEEE J. Sel. Top. Quantum Electron. 16, (5), 1280‒1289 (2010).

IEEE Photon. Technol. Lett. (2)

S. C. J. Lee, S. Randel, F. Breyer, and A. M. J. Koonen, "PAM-DMT for intensity-modulated and direct-detection optical communication systems," IEEE Photon. Technol. Lett. 21, (23), 1749‒1751 (2009).
[CrossRef]

M. Akbulut, C. Chen, M. Hargis, A. Weiner, M. Melloch, and J. Woodall, "Digital communications above 1 Gb/s using 890-nm surface-emitting light-emitting diodes," IEEE Photon. Technol. Lett. 13, (1), 85‒87 (2001).
[CrossRef]

IEEE Trans. Commun. (2)

J. M. Kahn, W. J. Krause, and J. B. Carruthers, "Experimental characterization of non-directed indoor infrared channels," IEEE Trans. Commun. 43, (234), 1613‒1623 (1995).
[CrossRef]

K. Cho and D. Yoon, "On the general BER expression of one- and two-dimensional amplitude modulations," IEEE Trans. Commun. 50, (7), 1074‒1080 (2002).
[CrossRef]

IEICE Trans. Commun. (1)

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, "Indoor visible light data transmission system utilizing white LED lights," IEICE Trans. Commun. E86-B, (8), 2440‒2454 (2003).

Int. J. Ultra Wideband Commun. Syst. (1)

H. Elgala, R. Mesleh, and H. Haas, "Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs," Int. J. Ultra Wideband Commun. Syst. 1, (2), 143‒150 (2009).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (1)

D. O’Brien, G. Parry, and P. Stavrinou, "Optical hotspots speed up wireless communication," Nat. Photonics 1, 245‒247 (2007).
[CrossRef]

Opt. Quantum Electron. (1)

A. M. Street, P. N. Stavrinou, D. C. O’brien, and D. J. Edwards, "Indoor optical wireless systems—a review," Opt. Quantum Electron. 29, (3), 349‒378 (1997).
[CrossRef]

PhysOrg.com (1)

L. Zyga, "White LEDs with super-high luminous efficacy could satisfy all general lighting needs," PhysOrg.com (2010) [Online]. Available: http://www.physorg.com/news202453100.html.

Proc. IEEE (1)

J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE 85, (2), 265‒298 (1997).
[CrossRef]

Other (11)

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, "Visible light communication using OFDM," Proc. of the 2nd Int. Conf. on Testbeds and Research Infrastructures for the Development of Networks and Communities (TRIDENTCOM), Mar. 1–3, 2006, IEEE, Barcelona, Spain, pp. 129‒134.

H. Elgala, R. Mesleh, H. Haas, and B. Pricope, "OFDM visible light wireless communication based on white LEDs," Proc. of the 64th IEEE Vehicular Technology Conference (VTC), Apr. 22–25, 2007, Dublin, Ireland.

K.-D. Langer, J. Grubor, O. Bouchet, M. El Tabach, J. Walewski, S. Randel, M. Franke, S. Nerreter, D. O’Brien, G. Faulkner, I. Neokosmidis, G. Ntogari, and M. Wolf, "Optical wireless communications for broadband access in home area networks," Proc. of the 10th Anniversary Int. Conf. Transparent Optical Networks (ICTON 08), Vol. 4, June 22–26, 2008, Athens, Greece, pp. 149‒154.

H. Elgala, R. Mesleh, and H. Haas, "Practical considerations for indoor wireless optical system implementation using OFDM," Proc. of the IEEE 10th Int. Conf. on Telecommunications (ConTel), June 8–10, 2009, Zagreb, Croatia.

J. Bussgang, "Cross correlation function of amplitude-distorted Gaussian signals," Tech. Rep. 216, Cambridge, MA, Research Laboratory for Electronics, Massachusetts Institute of Technology, Mar. 1952.

OSRAM GmbH, Datasheet: ZW W5SG Golden DRAGON White LED, Aug. 2010, [Online]. Available: http://www.osram.de.

E. Schubert, Light-Emitting Diodes, 1st ed., Cambridge Univ. Press, 2003.

H. Elgala, R. Mesleh, and H. Haas, "Modeling for predistortion of LEDs in optical wireless transmission using OFDM," Proc. of the IEEE 10th Int. Conf. on Hybrid Intelligent Systems (HIS), Aug. 12–14, 2009, Shenyang Liaoning, China.

J. Grubor, S. Randel, K. Langer, and J. Walewski, "Bandwidth efficient indoor optical wireless communications with white light emitting diodes," Proc. of the 6th Int. Symp. on Communication Systems, Networks and Digital Signal Processing, Vol. 1, June 23–25, 2008, Graz, Austria, pp. 165‒169.

R. Mesleh, H. Elgala, and H. Haas, "An overview of indoor OFDM/DMT optical wireless communication systems," 7th Int. Symp. on Communication Systems Networks and Digital Signal Processing (CSNDSP), July 21–23, 2010, pp. 566‒570Please update the status of publication of Ref. [1]..

H. Elgala, R. Mesleh, and H. Haas, "A study of LED nonlinearity effects on optical wireless transmission using OFDM," Proc. 6th IEEE Int. Conf. on Wireless and Optical Communications Networks (WOCN), Apr. 28–30, 2009, Cairo, Egypt.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(Color online) Indoor OWC OFDM system model.

Fig. 2
Fig. 2

(Color online) The output OFDM time signals for the ACO-OFDM and DCO-OFDM systems for N = 16 . Half-wave symmetry signals are achieved for ACO-OFDM. For DCO-OFDM, however, a DC bias must be used.

Fig. 3
Fig. 3

(Color online) (a) Discrete data sheet values and the LED polynomial curve. (b) The data sheet curve.

Fig. 4
Fig. 4

(Color online) The VI dashed curve using the developed LED polynomial function after subtracting the TOV from the values of the forward voltages across the LED. The linearized VI solid curve with the predistorter.

Fig. 5
Fig. 5

(Color online) The relation between the forward current through the LED and the radiated power in watts.

Fig. 6
Fig. 6

(Color online) ACO-OFDM BER performance for different QAM modulation orders.

Fig. 7
Fig. 7

(Color online) DCO-OFDM BER performance for different QAM modulation orders.

Fig. 8
Fig. 8

(Color online) ACO-OFDM DC power consumption and the average output optical power for different input OFDM electrical signal powers.

Fig. 9
Fig. 9

(Color online) DCO-OFDM DC power consumption and the average output optical power for different input OFDM electrical signal powers.

Fig. 10
Fig. 10

(Color online) DCO-OFDM optimum bias point analysis. A 16-QAM constellation is considered and the BER versus electrical OFDM signal power is calculated for different bias points.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

S n = 1 N k = 0 N 1 s k cos 2 π k N n s k sin 2 π k N n + j 1 N k = 0 N 1 s k sin 2 π k N n + s k cos 2 π k N n , = 0 n = 0 , 1 , , N 1 ,
s = 0 s 0 0 s 1 0 s N / 4 1 0 s N / 4 1 0 s 1 0 s 0 T .
s k k = 0 N 1 = 0 { x k } k = 1 N / 2 1 0 { x k } k = N / 2 1 1 ,
R ACO = N / 4 1 N + N g B log 2 M bits/s ,
Y = h S + w ,
Y ̃ = h S ̃ + w ̃ ,
y ˆ = H s ˆ + w ˆ ,
y ˆ o = H o s ˆ o + w ˆ o ,
s ˆ o = 1 2 s ˆ 0 s ˆ 1 s ˆ N / 4 1 s ˆ N / 4 1 s ˆ N / 4 2 s ˆ 0 T .
x ˆ = 2 H o H H o 1 H o H y ˆ o ,
s = s 0 s 1 s N / 2 1 0 s N / 2 1 s 1 s 0 T .
R DC biased = N / 2 1 N + N g B log 2 M bits/s .
p o = f 2 f 1 V W .
p S n = z = p z = 1 2 π σ 2 exp z 2 2 σ 2 .
ρ = OFDM signal power Effective noise power = σ 2 σ n 2 + σ clip 2 ,
σ clip 2 = σ uc 2 + σ lc 2 ,
σ clip 2 = c u z c u 2 p z d z .
σ clip 2 = c u z c u 2 p z d z + c l z c l 2 p z d z .
BER = M 1 M log 2 M erfc 3 ρ 2 M 1 , square M QAM 1 log 2 U × J U 1 U erfc 3 ρ U 2 + J 2 2 + J 1 J erfc 3 ρ U 2 + J 2 2 , M = U × J rectangular QAM .