Abstract

The impact of optical OFDM (orthogonal frequency division multiplexing) with adaptive modulation on reducing the filter concatenation effect is investigated, for the first time, in intensity modulation and direct-detection transparent metropolitan/regional network systems incorporating cascaded reconfigurable optical add/drop multiplexers (ROADMs). The ROADMs considered are based on different optical filters including fiber Bragg grating, Chebyshev, thin film and wavelength-blocker/wavelength-selective switch devices. It is shown that, in comparison with conventional identical modulation, adaptive modulation can improve the system performance by a factor of up to 60%. The utilization of adaptive modulation can also significantly enhance the network tolerance to filter loss ripple, group delay ripple and frequency dip.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Papagiannakis, D. Klonidis, J. Kikidis, A. N. Birbas, and I. Tomkos, "Electronic mitigation of the filter concatenation effect of low-cost 2.5 Gb/s rated DMLs sources operated at 10 Gb/s," Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2009, Anaheim, CA, OWE3.
  2. I. Tomkos, R. Hesse, N. Antoniades, and A. Boskovic, "Impact of filter concatenation on the performance of metropolitan area optical networks utilizing directly modulated lasers," Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2000, Anaheim, CA, WBB4.
  3. Y. Tang and W. Shieh, "Filter concatenation impact on 107-Gb/s coherent optical OFDM system," OptoElectronics and Communications Conf. (OECC), 2009, pp. 1‒2.
  4. E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, "Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs," IEEE Photonics J. 2, 130‒140 (2010).
    [CrossRef]
  5. J. M. Tang and K. A. Shore, "30-Gb/s signal transmission over 40-km directly modulated DFB-laser-based singlemode-fibre links without optical amplification and dispersion compensation," J. Lightwave Technol. 24, 2318‒2327 (2006).
    [CrossRef]
  6. J. D. Downie, I. Tomkos, N. Antoniades, and A. Boskovic, "Effects of filter concatenation for directly modulated transmission lasers at 2.5 and 10 Gb/s," J. Lightwave Technol. 20, 218‒228 (2002).
    [CrossRef]
  7. X. Liu, X. Wei, A. H. Gnauck, C. R. Doerr, and S. Chandrasekhar, "Analysis of loss ripple and its application to the mitigation of optical filtering penalty," IEEE Photon. Technol. Lett. 17, 82‒84 (2005).
    [CrossRef]
  8. N. N. Khrais, A. F. Elrefaie, R. E. Wagner, and S. Ahmed, "Performance of cascaded misaligned optical (de)multiplexers in multiwavelength optical networks," IEEE Photon. Technol. Lett. 8, 1073‒1075 (1996).
    [CrossRef]
  9. J. K. Rhee, "Variable passband optical add–drop multiplexer using wavelength selective switch," Proc. 27th European Conf. on Optical Communications, Vol. 4, 2001, pp. 550‒551.
  10. S. Sygletos, A. Tzanakaki, and I. Tomkos, "Numerical study of cascadability performance of continuous spectrum wavelength blocker/selective switch at 10/40/160 Gb/s," IEEE Photon. Technol. Lett. 18, 2608‒2610 (2006).
    [CrossRef]
  11. H. Fadhil, S. Aljunid, and B. Ahmed, "Performance of OCDMA systems using random diagonal code for different decoders architecture schemes," The Int. Arab J. Inform. Technol. 7, (1), 1‒5 (2010).
  12. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective, 2nd ed., Morgan Kauffman, San Mateo, CA, 2001.
  13. G. Lenz, B. Eggleton, C. Madsen, C. Giles, and G. Nykolak, "Optimal dispersion of optical filters for WDM systems," IEEE Photon. Technol. Lett. 10, 567‒569 (1998).
    [CrossRef]
  14. J. D. Downie, "Relationship of Q penalty to eye-closure penalty for NRZ and RZ signals with signal-dependent noise," J. Lightwave Technol. 23, (6), 2031‒2038 (2005).
    [CrossRef]

2010 (2)

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, "Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs," IEEE Photonics J. 2, 130‒140 (2010).
[CrossRef]

H. Fadhil, S. Aljunid, and B. Ahmed, "Performance of OCDMA systems using random diagonal code for different decoders architecture schemes," The Int. Arab J. Inform. Technol. 7, (1), 1‒5 (2010).

2006 (2)

S. Sygletos, A. Tzanakaki, and I. Tomkos, "Numerical study of cascadability performance of continuous spectrum wavelength blocker/selective switch at 10/40/160 Gb/s," IEEE Photon. Technol. Lett. 18, 2608‒2610 (2006).
[CrossRef]

J. M. Tang and K. A. Shore, "30-Gb/s signal transmission over 40-km directly modulated DFB-laser-based singlemode-fibre links without optical amplification and dispersion compensation," J. Lightwave Technol. 24, 2318‒2327 (2006).
[CrossRef]

2005 (2)

X. Liu, X. Wei, A. H. Gnauck, C. R. Doerr, and S. Chandrasekhar, "Analysis of loss ripple and its application to the mitigation of optical filtering penalty," IEEE Photon. Technol. Lett. 17, 82‒84 (2005).
[CrossRef]

J. D. Downie, "Relationship of Q penalty to eye-closure penalty for NRZ and RZ signals with signal-dependent noise," J. Lightwave Technol. 23, (6), 2031‒2038 (2005).
[CrossRef]

2002 (1)

1998 (1)

G. Lenz, B. Eggleton, C. Madsen, C. Giles, and G. Nykolak, "Optimal dispersion of optical filters for WDM systems," IEEE Photon. Technol. Lett. 10, 567‒569 (1998).
[CrossRef]

1996 (1)

N. N. Khrais, A. F. Elrefaie, R. E. Wagner, and S. Ahmed, "Performance of cascaded misaligned optical (de)multiplexers in multiwavelength optical networks," IEEE Photon. Technol. Lett. 8, 1073‒1075 (1996).
[CrossRef]

Ahmed, B.

H. Fadhil, S. Aljunid, and B. Ahmed, "Performance of OCDMA systems using random diagonal code for different decoders architecture schemes," The Int. Arab J. Inform. Technol. 7, (1), 1‒5 (2010).

Ahmed, S.

N. N. Khrais, A. F. Elrefaie, R. E. Wagner, and S. Ahmed, "Performance of cascaded misaligned optical (de)multiplexers in multiwavelength optical networks," IEEE Photon. Technol. Lett. 8, 1073‒1075 (1996).
[CrossRef]

Aljunid, S.

H. Fadhil, S. Aljunid, and B. Ahmed, "Performance of OCDMA systems using random diagonal code for different decoders architecture schemes," The Int. Arab J. Inform. Technol. 7, (1), 1‒5 (2010).

Antoniades, N.

J. D. Downie, I. Tomkos, N. Antoniades, and A. Boskovic, "Effects of filter concatenation for directly modulated transmission lasers at 2.5 and 10 Gb/s," J. Lightwave Technol. 20, 218‒228 (2002).
[CrossRef]

I. Tomkos, R. Hesse, N. Antoniades, and A. Boskovic, "Impact of filter concatenation on the performance of metropolitan area optical networks utilizing directly modulated lasers," Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2000, Anaheim, CA, WBB4.

Birbas, A. N.

I. Papagiannakis, D. Klonidis, J. Kikidis, A. N. Birbas, and I. Tomkos, "Electronic mitigation of the filter concatenation effect of low-cost 2.5 Gb/s rated DMLs sources operated at 10 Gb/s," Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2009, Anaheim, CA, OWE3.

Boskovic, A.

J. D. Downie, I. Tomkos, N. Antoniades, and A. Boskovic, "Effects of filter concatenation for directly modulated transmission lasers at 2.5 and 10 Gb/s," J. Lightwave Technol. 20, 218‒228 (2002).
[CrossRef]

I. Tomkos, R. Hesse, N. Antoniades, and A. Boskovic, "Impact of filter concatenation on the performance of metropolitan area optical networks utilizing directly modulated lasers," Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2000, Anaheim, CA, WBB4.

Chandrasekhar, S.

X. Liu, X. Wei, A. H. Gnauck, C. R. Doerr, and S. Chandrasekhar, "Analysis of loss ripple and its application to the mitigation of optical filtering penalty," IEEE Photon. Technol. Lett. 17, 82‒84 (2005).
[CrossRef]

Doerr, C. R.

X. Liu, X. Wei, A. H. Gnauck, C. R. Doerr, and S. Chandrasekhar, "Analysis of loss ripple and its application to the mitigation of optical filtering penalty," IEEE Photon. Technol. Lett. 17, 82‒84 (2005).
[CrossRef]

Downie, J. D.

Eggleton, B.

G. Lenz, B. Eggleton, C. Madsen, C. Giles, and G. Nykolak, "Optimal dispersion of optical filters for WDM systems," IEEE Photon. Technol. Lett. 10, 567‒569 (1998).
[CrossRef]

Elrefaie, A. F.

N. N. Khrais, A. F. Elrefaie, R. E. Wagner, and S. Ahmed, "Performance of cascaded misaligned optical (de)multiplexers in multiwavelength optical networks," IEEE Photon. Technol. Lett. 8, 1073‒1075 (1996).
[CrossRef]

Fadhil, H.

H. Fadhil, S. Aljunid, and B. Ahmed, "Performance of OCDMA systems using random diagonal code for different decoders architecture schemes," The Int. Arab J. Inform. Technol. 7, (1), 1‒5 (2010).

Giacoumidis, E.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, "Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs," IEEE Photonics J. 2, 130‒140 (2010).
[CrossRef]

Giles, C.

G. Lenz, B. Eggleton, C. Madsen, C. Giles, and G. Nykolak, "Optimal dispersion of optical filters for WDM systems," IEEE Photon. Technol. Lett. 10, 567‒569 (1998).
[CrossRef]

Gnauck, A. H.

X. Liu, X. Wei, A. H. Gnauck, C. R. Doerr, and S. Chandrasekhar, "Analysis of loss ripple and its application to the mitigation of optical filtering penalty," IEEE Photon. Technol. Lett. 17, 82‒84 (2005).
[CrossRef]

Hesse, R.

I. Tomkos, R. Hesse, N. Antoniades, and A. Boskovic, "Impact of filter concatenation on the performance of metropolitan area optical networks utilizing directly modulated lasers," Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2000, Anaheim, CA, WBB4.

Khrais, N. N.

N. N. Khrais, A. F. Elrefaie, R. E. Wagner, and S. Ahmed, "Performance of cascaded misaligned optical (de)multiplexers in multiwavelength optical networks," IEEE Photon. Technol. Lett. 8, 1073‒1075 (1996).
[CrossRef]

Kikidis, J.

I. Papagiannakis, D. Klonidis, J. Kikidis, A. N. Birbas, and I. Tomkos, "Electronic mitigation of the filter concatenation effect of low-cost 2.5 Gb/s rated DMLs sources operated at 10 Gb/s," Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2009, Anaheim, CA, OWE3.

Klonidis, D.

I. Papagiannakis, D. Klonidis, J. Kikidis, A. N. Birbas, and I. Tomkos, "Electronic mitigation of the filter concatenation effect of low-cost 2.5 Gb/s rated DMLs sources operated at 10 Gb/s," Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2009, Anaheim, CA, OWE3.

Lenz, G.

G. Lenz, B. Eggleton, C. Madsen, C. Giles, and G. Nykolak, "Optimal dispersion of optical filters for WDM systems," IEEE Photon. Technol. Lett. 10, 567‒569 (1998).
[CrossRef]

Liu, X.

X. Liu, X. Wei, A. H. Gnauck, C. R. Doerr, and S. Chandrasekhar, "Analysis of loss ripple and its application to the mitigation of optical filtering penalty," IEEE Photon. Technol. Lett. 17, 82‒84 (2005).
[CrossRef]

Madsen, C.

G. Lenz, B. Eggleton, C. Madsen, C. Giles, and G. Nykolak, "Optimal dispersion of optical filters for WDM systems," IEEE Photon. Technol. Lett. 10, 567‒569 (1998).
[CrossRef]

Nykolak, G.

G. Lenz, B. Eggleton, C. Madsen, C. Giles, and G. Nykolak, "Optimal dispersion of optical filters for WDM systems," IEEE Photon. Technol. Lett. 10, 567‒569 (1998).
[CrossRef]

Papagiannakis, I.

I. Papagiannakis, D. Klonidis, J. Kikidis, A. N. Birbas, and I. Tomkos, "Electronic mitigation of the filter concatenation effect of low-cost 2.5 Gb/s rated DMLs sources operated at 10 Gb/s," Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2009, Anaheim, CA, OWE3.

Ramaswami, R.

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective, 2nd ed., Morgan Kauffman, San Mateo, CA, 2001.

Rhee, J. K.

J. K. Rhee, "Variable passband optical add–drop multiplexer using wavelength selective switch," Proc. 27th European Conf. on Optical Communications, Vol. 4, 2001, pp. 550‒551.

Shieh, W.

Y. Tang and W. Shieh, "Filter concatenation impact on 107-Gb/s coherent optical OFDM system," OptoElectronics and Communications Conf. (OECC), 2009, pp. 1‒2.

Shore, K. A.

Sivarajan, K. N.

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective, 2nd ed., Morgan Kauffman, San Mateo, CA, 2001.

Sygletos, S.

S. Sygletos, A. Tzanakaki, and I. Tomkos, "Numerical study of cascadability performance of continuous spectrum wavelength blocker/selective switch at 10/40/160 Gb/s," IEEE Photon. Technol. Lett. 18, 2608‒2610 (2006).
[CrossRef]

Tang, J. M.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, "Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs," IEEE Photonics J. 2, 130‒140 (2010).
[CrossRef]

Tang, J. M.

Tang, Y.

Y. Tang and W. Shieh, "Filter concatenation impact on 107-Gb/s coherent optical OFDM system," OptoElectronics and Communications Conf. (OECC), 2009, pp. 1‒2.

Tomkos, I.

S. Sygletos, A. Tzanakaki, and I. Tomkos, "Numerical study of cascadability performance of continuous spectrum wavelength blocker/selective switch at 10/40/160 Gb/s," IEEE Photon. Technol. Lett. 18, 2608‒2610 (2006).
[CrossRef]

J. D. Downie, I. Tomkos, N. Antoniades, and A. Boskovic, "Effects of filter concatenation for directly modulated transmission lasers at 2.5 and 10 Gb/s," J. Lightwave Technol. 20, 218‒228 (2002).
[CrossRef]

I. Tomkos, R. Hesse, N. Antoniades, and A. Boskovic, "Impact of filter concatenation on the performance of metropolitan area optical networks utilizing directly modulated lasers," Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2000, Anaheim, CA, WBB4.

I. Papagiannakis, D. Klonidis, J. Kikidis, A. N. Birbas, and I. Tomkos, "Electronic mitigation of the filter concatenation effect of low-cost 2.5 Gb/s rated DMLs sources operated at 10 Gb/s," Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2009, Anaheim, CA, OWE3.

Tsokanos, A.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, "Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs," IEEE Photonics J. 2, 130‒140 (2010).
[CrossRef]

Tzanakaki, A.

S. Sygletos, A. Tzanakaki, and I. Tomkos, "Numerical study of cascadability performance of continuous spectrum wavelength blocker/selective switch at 10/40/160 Gb/s," IEEE Photon. Technol. Lett. 18, 2608‒2610 (2006).
[CrossRef]

Wagner, R. E.

N. N. Khrais, A. F. Elrefaie, R. E. Wagner, and S. Ahmed, "Performance of cascaded misaligned optical (de)multiplexers in multiwavelength optical networks," IEEE Photon. Technol. Lett. 8, 1073‒1075 (1996).
[CrossRef]

Wei, J. L.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, "Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs," IEEE Photonics J. 2, 130‒140 (2010).
[CrossRef]

Wei, X.

X. Liu, X. Wei, A. H. Gnauck, C. R. Doerr, and S. Chandrasekhar, "Analysis of loss ripple and its application to the mitigation of optical filtering penalty," IEEE Photon. Technol. Lett. 17, 82‒84 (2005).
[CrossRef]

Yang, X. L.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, "Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs," IEEE Photonics J. 2, 130‒140 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

X. Liu, X. Wei, A. H. Gnauck, C. R. Doerr, and S. Chandrasekhar, "Analysis of loss ripple and its application to the mitigation of optical filtering penalty," IEEE Photon. Technol. Lett. 17, 82‒84 (2005).
[CrossRef]

N. N. Khrais, A. F. Elrefaie, R. E. Wagner, and S. Ahmed, "Performance of cascaded misaligned optical (de)multiplexers in multiwavelength optical networks," IEEE Photon. Technol. Lett. 8, 1073‒1075 (1996).
[CrossRef]

S. Sygletos, A. Tzanakaki, and I. Tomkos, "Numerical study of cascadability performance of continuous spectrum wavelength blocker/selective switch at 10/40/160 Gb/s," IEEE Photon. Technol. Lett. 18, 2608‒2610 (2006).
[CrossRef]

G. Lenz, B. Eggleton, C. Madsen, C. Giles, and G. Nykolak, "Optimal dispersion of optical filters for WDM systems," IEEE Photon. Technol. Lett. 10, 567‒569 (1998).
[CrossRef]

IEEE Photonics J. (1)

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, "Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs," IEEE Photonics J. 2, 130‒140 (2010).
[CrossRef]

J. Lightwave Technol. (3)

The Int. Arab J. Inform. Technol. (1)

H. Fadhil, S. Aljunid, and B. Ahmed, "Performance of OCDMA systems using random diagonal code for different decoders architecture schemes," The Int. Arab J. Inform. Technol. 7, (1), 1‒5 (2010).

Other (5)

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective, 2nd ed., Morgan Kauffman, San Mateo, CA, 2001.

J. K. Rhee, "Variable passband optical add–drop multiplexer using wavelength selective switch," Proc. 27th European Conf. on Optical Communications, Vol. 4, 2001, pp. 550‒551.

I. Papagiannakis, D. Klonidis, J. Kikidis, A. N. Birbas, and I. Tomkos, "Electronic mitigation of the filter concatenation effect of low-cost 2.5 Gb/s rated DMLs sources operated at 10 Gb/s," Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2009, Anaheim, CA, OWE3.

I. Tomkos, R. Hesse, N. Antoniades, and A. Boskovic, "Impact of filter concatenation on the performance of metropolitan area optical networks utilizing directly modulated lasers," Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2000, Anaheim, CA, WBB4.

Y. Tang and W. Shieh, "Filter concatenation impact on 107-Gb/s coherent optical OFDM system," OptoElectronics and Communications Conf. (OECC), 2009, pp. 1‒2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(Color online) Simulation schematic diagram of an IM/DD OOFDM system using both the adaptive and identical modulation techniques.

Fig. 2
Fig. 2

(Color online) BER versus frequency detuning for different signal modulation formats: (a) no filtering, (b) five FBGs, and (b) ten FBGs.

Fig. 3
Fig. 3

(Color online) BER versus frequency detuning for ten Chebyshev filters with different ripple factors. 256 QAM is used on all subcarriers.

Fig. 4
Fig. 4

(Color online) Signal capacity versus laser detuning for ten FBGs and WB/WSS devices using adaptive and identical modulation.

Fig. 5
Fig. 5

(Color online) Example of adaptive modulation allocation on subcarriers, for FBG amplitude response and group delay ripple. This simple example shows 22 subcarriers.

Fig. 6
Fig. 6

(Color online) Example of adaptive modulation allocation on subcarriers, for WB/WSS amplitude response and group delay ripple. This example shows 29 of the 32 subcarriers generated, since two are dropped due to very high BERs even when DBPSK is used, and one carries no information (zero power).

Fig. 7
Fig. 7

(Color online) Signal capacity versus laser detuning for ten FBGs, thin films and Chebyshev filters with 2 dB ripple factor, using both adaptive and identical modulation.

Fig. 8
Fig. 8

(Color online) Signal capacity versus node number (a) with filter misalignment and (b) without filter misalignment for FBGs, thin films and Chebyshev filters with 2 dB ripple factor, using both adaptive and identical modulation.

Fig. 9
Fig. 9

(Color online) Q penalty versus node number for cases of including/excluding filter misalignment. FBG filters are considered and 64 QAM is taken on all the subcarriers.

Tables (1)

Tables Icon

Table I OOFDM Transceiver Parameters