Abstract

In this paper we study slotted ALOHA random access optical code division multiple access packet-switching networks with a chip-level receiver structure. We use generalized optical orthogonal codes (GOOCs) and the overlapping pulse position modulation (OPPM) signaling technique to improve system performance. The impact of physical layer parameters such as the GOOC cross-correlation value and the OPPM overlapping index on key performance benchmarks such as network throughput and delay are analyzed. We also study the stability of the network based on the number of backlogged users, using the expected state drift. It has been shown that using GOOC instead of strict optical orthogonal codes improves the network average delay and throughput. Moreover, by comparing M-ary OPPM and conventional OOK signaling with a fair criterion we have demonstrated that OPPM signaling can substantially improve both steady state and transient network characteristics. This improvement can be obtained without introducing additional complexity in the receiver and transmitter structure.

© 2011 OSA

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription