Abstract

We numerically evaluate the deep-space communication performance in a broadband lossy channel of coherent pulse position modulation (PPM) with an on/off receiver, single-symbol square root detection, and Holevo information. We also consider quadrature amplitude modulation (QAM) signals and phase-shift keying signals with dyne-type detections. We show the quantitative gap between these detection strategies in terms of the capacity, particularly in the quantum-limited region where the quantum noise seriously limits the transmission rate. In particular, we find that for an extremely weak signal input power, use of a multilevel PPM system is a good strategy, whereas for an extremely strong signal, use of a multilevel QAM system is recommended.

©2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum detection of wavelength-division-multiplexing optical coherent signals

Atsushi Waseda, Masahiro Takeoka, Masahide Sasaki, Mikio Fujiwara, and Hidema Tanaka
J. Opt. Soc. Am. B 27(2) 259-265 (2010)

Coded PPM and Multipulse PPM and Iterative Detection for Free-Space Optical Links

Fang Xu, Mohammad-Ali Khalighi, and Salah Bourennane
J. Opt. Commun. Netw. 1(5) 404-415 (2009)

Analytical results on channel capacity in uncompensated optical links with coherent detection

G. Bosco, P. Poggiolini, A. Carena, V. Curri, and F. Forghieri
Opt. Express 19(26) B440-B451 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription