Abstract

This paper proposes a theoretical and experimental performance study to characterize the transmission of code-division-multiple-access-based wireless signals over a radio frequency on free-space optical (RF-FSO) system using an aperture averaging (AA) technique. First, we propose an analytical model including the carrier-to-noise-plus-interference ratio (CNIR) and outage probability expressions taking into consideration the use of the AA technique, the laser diode nonlinear distortion, and the multiple-access interference. Furthermore, we show that there is a design trade-off between an optimum optical modulation index in the transmitter side and the receiver aperture size to achieve a required average CNIR ensuring a substantial scintillation fade reduction. We thus provide preliminary criteria for optimizing both the transmitter and the receiver design of our RF-FSO system. Using an experimental RF-FSO system, we conduct investigations to characterize the deployment environment influencing the transmission of wideband code division multiple access (W-CDMA) signals over a 1 km free-space optical communication (FSO) link. Important performance metric parameters like the CNIR and adjacent channel leakage ratio are measured and analyzed to quantify the influence of atmospheric effects. We then validate the proposed mathematical model by performing a comparison with the experimental results obtained from the W-CDMA signal transmission over RF-FSO experiments. The presented work can be used as a baseline for the design and performance evaluation of FSO systems able to transmit different broadband wireless services signals.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Willebrand and B. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today’s Networks, Sams Publishing, 2002.
  2. S. Bloom, E. Korevarr, J. Schuster, and H. Willebrand, "Understanding the performance of free-space optics," J. Opt. Netw. 2, (6), 178‒200 (2003).
  3. K. Wakamori, K. Kazaura, and I. Oka, "Experiment on regional broadband network using free-space-optical communication systems," J. Lightwave Technol. 25, (11), 3265‒3273 (2007).
    [CrossRef]
  4. K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, "Performance evaluation of next generation free-space optical communication system," IEICE Trans. Electron. E90-C, (2), 381‒388 (2007).
    [CrossRef]
  5. L. C. Andrews and R. L. Philips, Laser Beam Propagation Through Random Media, SPIE, Bellingham, WA, 2005.
  6. H. Yuksel, S. Milner, and C. C. Davis, "Aperture averaging for optimizing receiver design and system performance on free-space optical communication links," J. Opt. Netw. 4, 462‒475 (2005).
    [CrossRef]
  7. F. S. Vetelino, C. Young, L. C. Andrews, and J. Recolons, "Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence," Appl. Opt. 46, 2099‒2108 (2007).
    [CrossRef]
  8. M. A. Khaligi, N. Schwartz, N. Aitamer, and S. Bourennane, "Fading reduction by aperture averaging and spatial diversity in optical wireless systems," J. Opt. Commun. Netw. 1, 580‒592 (2009).
    [CrossRef]
  9. R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, "Subcarrier multiplexing for high speed optical transmission," J. Lightwave Technol. 20, (3), 417‒427 (2002).
    [CrossRef]
  10. H. Al-Raweshidy and S. Komaki, ed., Radio Over Fiber Technologies for Mobile Communications Networks, 1st ed., Artech House Publishers, 2002.
  11. R. Prasad and T. Ojanpera, "An overview of CDMA evolution toward wideband CDMA," IEEE Commun. Surv. Tutorials 1, 2‒28 (1998).
    [CrossRef]
  12. L. B. Milstein, "Wideband code division multiple access," IEEE J. Sel. Areas Commun. 18, (8), 1344‒1354 (2000).
    [CrossRef]
  13. K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, "RoFSO: a universal platform for convergence of fiber and free-space optical communication networks," IEEE Commun. Mag. 48, (2), 130‒137 (2010).
    [CrossRef]
  14. A. Bekkali, P. T. Dat, K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, "Performance evaluation of an advanced DWDM RoFSO system for transmitting multiple RF signals," IEICE Trans. Fundamentals E92-A, (11), 2697‒2705 (2009).
    [CrossRef]
  15. H. Mizuguti, T. Okuno, S. Komaki, and N. Morinaga, "Performance analysis of optical fiber link for microcellular mobile communication systems," IEICE Trans. Electron. E76-C, (2), 271‒278 (1993).
  16. B. J. Koshy and P. M. Shankar, "Spread-spectrum techniques for fiber-fed microcellular networks," IEEE Trans. Veh. Technol. 48, 847‒857 (1999).
    [CrossRef]
  17. W. Huang and M. Nakagawa, "Nonlinear effect of direct-sequence CDMA in optical transmission," IEICE Trans. Commun. E78-B, 702‒708 (1995).
  18. J. Yu, Y. Kim, M. Lee, K. Lee, and J. Park, "Analysis of nonlinear effects in subcarrier-multiplexed fiber-optic links for CDMA RF signal transmissions," Microwave Opt. Technol. Lett. 29, 37‒40 (2001).
    [CrossRef]
  19. W. Huang, J. Takayanagi, T. Sakagawa, and M. Nakagawa, "Atmospheric optical communication system using subcarrier PSK modulation," IEICE Trans. Commun. E76-B, 1169‒1176 (1993).
  20. K. Wakafuji and T. Ohtsuki, "Performance analysis of atmospheric optical subcarrier-multiplexing systems and atmospheric optical subcarrier-modulated code-division multiplexing systems," J. Lightwave Technol. 23, 1676‒1682 (2005).
    [CrossRef]
  21. N. Cvijetic and W. Ting, "WiMAX over free-space optics—evaluating OFDM muti-subcarrier modulation in optical channels," Proc. IEEE Sarnoff Symp., 2006, Princeton, NJ, pp. 1‒4.
  22. M. S. Alam, P. T. Dat, K. Kazaura, K. Wakamori, T. Suzuki, K. Omae, M. Matsumoto, Y. Aburakawa, K. Takahashi, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, "Characterization of RF signal transmission using FSO links considering atmospheric effects," Proc. SPIE 6877, 68770D (2008).
  23. A. Bekkali, C. Ben Naila, K. Kazaura, K. Wakamori, and M. Mastumoto, "Transmission analysis of OFDM-based wireless services over turbulent radio-on-FSO links modeled by Gamma–Gamma distribution," IEEE Photonics J. 2, 510‒520 (2010).
    [CrossRef]
  24. T. S. Rappaport, Wireless Communications, Principles and Practice, Prentice Hall Inc., 1996.
  25. F. Khaleghi and M. Kavehrad, "A subcarrier multiplexed CDM optical local area network, theory and experiment," IEEE Trans. Commun. 43, (1), 75‒87 (1995).
    [CrossRef]
  26. H. S. Al-Raweshidy and R. Prasad, "Spread spectrum technique to improve the performance of radio over fibre for microcellular GSM networks," Wireless Pers. Commun. 14, (2), 133‒145 (2000).
    [CrossRef]
  27. A. Gameiro, "Influence of the laser diode nonlinearity in fiber-fed microcellular networks," Fiber Integr. Opt. 19, (2), 99‒117 (2000).
    [CrossRef]
  28. K. Tsukamoto, A. Hashimoto, Y. Aburakawa, and M. Matsumoto, "The case for free space," IEEE Microw. Mag. 10, (5), 84‒92 (2009).
    [CrossRef]
  29. I. Kim, B. McArthur, and E. Korevaar, "Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications," Proc. SPIE 4214, 26‒37 (2001).
  30. 3GPP TS 25.141, 3rd Generation Partnership Project, 2002, [Online]. Available: http://www.3gpp.org/

2010 (2)

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, "RoFSO: a universal platform for convergence of fiber and free-space optical communication networks," IEEE Commun. Mag. 48, (2), 130‒137 (2010).
[CrossRef]

A. Bekkali, C. Ben Naila, K. Kazaura, K. Wakamori, and M. Mastumoto, "Transmission analysis of OFDM-based wireless services over turbulent radio-on-FSO links modeled by Gamma–Gamma distribution," IEEE Photonics J. 2, 510‒520 (2010).
[CrossRef]

2009 (3)

K. Tsukamoto, A. Hashimoto, Y. Aburakawa, and M. Matsumoto, "The case for free space," IEEE Microw. Mag. 10, (5), 84‒92 (2009).
[CrossRef]

A. Bekkali, P. T. Dat, K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, "Performance evaluation of an advanced DWDM RoFSO system for transmitting multiple RF signals," IEICE Trans. Fundamentals E92-A, (11), 2697‒2705 (2009).
[CrossRef]

M. A. Khaligi, N. Schwartz, N. Aitamer, and S. Bourennane, "Fading reduction by aperture averaging and spatial diversity in optical wireless systems," J. Opt. Commun. Netw. 1, 580‒592 (2009).
[CrossRef]

2008 (1)

M. S. Alam, P. T. Dat, K. Kazaura, K. Wakamori, T. Suzuki, K. Omae, M. Matsumoto, Y. Aburakawa, K. Takahashi, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, "Characterization of RF signal transmission using FSO links considering atmospheric effects," Proc. SPIE 6877, 68770D (2008).

2007 (3)

2005 (2)

2003 (1)

2002 (1)

2001 (2)

I. Kim, B. McArthur, and E. Korevaar, "Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications," Proc. SPIE 4214, 26‒37 (2001).

J. Yu, Y. Kim, M. Lee, K. Lee, and J. Park, "Analysis of nonlinear effects in subcarrier-multiplexed fiber-optic links for CDMA RF signal transmissions," Microwave Opt. Technol. Lett. 29, 37‒40 (2001).
[CrossRef]

2000 (3)

L. B. Milstein, "Wideband code division multiple access," IEEE J. Sel. Areas Commun. 18, (8), 1344‒1354 (2000).
[CrossRef]

H. S. Al-Raweshidy and R. Prasad, "Spread spectrum technique to improve the performance of radio over fibre for microcellular GSM networks," Wireless Pers. Commun. 14, (2), 133‒145 (2000).
[CrossRef]

A. Gameiro, "Influence of the laser diode nonlinearity in fiber-fed microcellular networks," Fiber Integr. Opt. 19, (2), 99‒117 (2000).
[CrossRef]

1999 (1)

B. J. Koshy and P. M. Shankar, "Spread-spectrum techniques for fiber-fed microcellular networks," IEEE Trans. Veh. Technol. 48, 847‒857 (1999).
[CrossRef]

1998 (1)

R. Prasad and T. Ojanpera, "An overview of CDMA evolution toward wideband CDMA," IEEE Commun. Surv. Tutorials 1, 2‒28 (1998).
[CrossRef]

1995 (2)

W. Huang and M. Nakagawa, "Nonlinear effect of direct-sequence CDMA in optical transmission," IEICE Trans. Commun. E78-B, 702‒708 (1995).

F. Khaleghi and M. Kavehrad, "A subcarrier multiplexed CDM optical local area network, theory and experiment," IEEE Trans. Commun. 43, (1), 75‒87 (1995).
[CrossRef]

1993 (2)

W. Huang, J. Takayanagi, T. Sakagawa, and M. Nakagawa, "Atmospheric optical communication system using subcarrier PSK modulation," IEICE Trans. Commun. E76-B, 1169‒1176 (1993).

H. Mizuguti, T. Okuno, S. Komaki, and N. Morinaga, "Performance analysis of optical fiber link for microcellular mobile communication systems," IEICE Trans. Electron. E76-C, (2), 271‒278 (1993).

Aburakawa, Y.

K. Tsukamoto, A. Hashimoto, Y. Aburakawa, and M. Matsumoto, "The case for free space," IEEE Microw. Mag. 10, (5), 84‒92 (2009).
[CrossRef]

M. S. Alam, P. T. Dat, K. Kazaura, K. Wakamori, T. Suzuki, K. Omae, M. Matsumoto, Y. Aburakawa, K. Takahashi, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, "Characterization of RF signal transmission using FSO links considering atmospheric effects," Proc. SPIE 6877, 68770D (2008).

Aitamer, N.

Alam, M. S.

M. S. Alam, P. T. Dat, K. Kazaura, K. Wakamori, T. Suzuki, K. Omae, M. Matsumoto, Y. Aburakawa, K. Takahashi, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, "Characterization of RF signal transmission using FSO links considering atmospheric effects," Proc. SPIE 6877, 68770D (2008).

Allen, C. T.

Al-Raweshidy, H. S.

H. S. Al-Raweshidy and R. Prasad, "Spread spectrum technique to improve the performance of radio over fibre for microcellular GSM networks," Wireless Pers. Commun. 14, (2), 133‒145 (2000).
[CrossRef]

Andrews, L. C.

Arimoto, Y.

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, "Performance evaluation of next generation free-space optical communication system," IEICE Trans. Electron. E90-C, (2), 381‒388 (2007).
[CrossRef]

Bekkali, A.

A. Bekkali, C. Ben Naila, K. Kazaura, K. Wakamori, and M. Mastumoto, "Transmission analysis of OFDM-based wireless services over turbulent radio-on-FSO links modeled by Gamma–Gamma distribution," IEEE Photonics J. 2, 510‒520 (2010).
[CrossRef]

A. Bekkali, P. T. Dat, K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, "Performance evaluation of an advanced DWDM RoFSO system for transmitting multiple RF signals," IEICE Trans. Fundamentals E92-A, (11), 2697‒2705 (2009).
[CrossRef]

Ben Naila, C.

A. Bekkali, C. Ben Naila, K. Kazaura, K. Wakamori, and M. Mastumoto, "Transmission analysis of OFDM-based wireless services over turbulent radio-on-FSO links modeled by Gamma–Gamma distribution," IEEE Photonics J. 2, 510‒520 (2010).
[CrossRef]

Bloom, S.

Bourennane, S.

Cvijetic, N.

N. Cvijetic and W. Ting, "WiMAX over free-space optics—evaluating OFDM muti-subcarrier modulation in optical channels," Proc. IEEE Sarnoff Symp., 2006, Princeton, NJ, pp. 1‒4.

Dat, P. T.

A. Bekkali, P. T. Dat, K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, "Performance evaluation of an advanced DWDM RoFSO system for transmitting multiple RF signals," IEICE Trans. Fundamentals E92-A, (11), 2697‒2705 (2009).
[CrossRef]

M. S. Alam, P. T. Dat, K. Kazaura, K. Wakamori, T. Suzuki, K. Omae, M. Matsumoto, Y. Aburakawa, K. Takahashi, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, "Characterization of RF signal transmission using FSO links considering atmospheric effects," Proc. SPIE 6877, 68770D (2008).

Davis, C. C.

Demarest, K. R.

Gameiro, A.

A. Gameiro, "Influence of the laser diode nonlinearity in fiber-fed microcellular networks," Fiber Integr. Opt. 19, (2), 99‒117 (2000).
[CrossRef]

Ghuman, B.

H. Willebrand and B. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today’s Networks, Sams Publishing, 2002.

Hashimoto, A.

K. Tsukamoto, A. Hashimoto, Y. Aburakawa, and M. Matsumoto, "The case for free space," IEEE Microw. Mag. 10, (5), 84‒92 (2009).
[CrossRef]

Higashino, T.

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, "RoFSO: a universal platform for convergence of fiber and free-space optical communication networks," IEEE Commun. Mag. 48, (2), 130‒137 (2010).
[CrossRef]

A. Bekkali, P. T. Dat, K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, "Performance evaluation of an advanced DWDM RoFSO system for transmitting multiple RF signals," IEICE Trans. Fundamentals E92-A, (11), 2697‒2705 (2009).
[CrossRef]

M. S. Alam, P. T. Dat, K. Kazaura, K. Wakamori, T. Suzuki, K. Omae, M. Matsumoto, Y. Aburakawa, K. Takahashi, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, "Characterization of RF signal transmission using FSO links considering atmospheric effects," Proc. SPIE 6877, 68770D (2008).

Huang, R.

Huang, W.

W. Huang and M. Nakagawa, "Nonlinear effect of direct-sequence CDMA in optical transmission," IEICE Trans. Commun. E78-B, 702‒708 (1995).

W. Huang, J. Takayanagi, T. Sakagawa, and M. Nakagawa, "Atmospheric optical communication system using subcarrier PSK modulation," IEICE Trans. Commun. E76-B, 1169‒1176 (1993).

Hui, R.

Kavehrad, M.

F. Khaleghi and M. Kavehrad, "A subcarrier multiplexed CDM optical local area network, theory and experiment," IEEE Trans. Commun. 43, (1), 75‒87 (1995).
[CrossRef]

Kazaura, K.

A. Bekkali, C. Ben Naila, K. Kazaura, K. Wakamori, and M. Mastumoto, "Transmission analysis of OFDM-based wireless services over turbulent radio-on-FSO links modeled by Gamma–Gamma distribution," IEEE Photonics J. 2, 510‒520 (2010).
[CrossRef]

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, "RoFSO: a universal platform for convergence of fiber and free-space optical communication networks," IEEE Commun. Mag. 48, (2), 130‒137 (2010).
[CrossRef]

A. Bekkali, P. T. Dat, K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, "Performance evaluation of an advanced DWDM RoFSO system for transmitting multiple RF signals," IEICE Trans. Fundamentals E92-A, (11), 2697‒2705 (2009).
[CrossRef]

M. S. Alam, P. T. Dat, K. Kazaura, K. Wakamori, T. Suzuki, K. Omae, M. Matsumoto, Y. Aburakawa, K. Takahashi, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, "Characterization of RF signal transmission using FSO links considering atmospheric effects," Proc. SPIE 6877, 68770D (2008).

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, "Performance evaluation of next generation free-space optical communication system," IEICE Trans. Electron. E90-C, (2), 381‒388 (2007).
[CrossRef]

K. Wakamori, K. Kazaura, and I. Oka, "Experiment on regional broadband network using free-space-optical communication systems," J. Lightwave Technol. 25, (11), 3265‒3273 (2007).
[CrossRef]

Khaleghi, F.

F. Khaleghi and M. Kavehrad, "A subcarrier multiplexed CDM optical local area network, theory and experiment," IEEE Trans. Commun. 43, (1), 75‒87 (1995).
[CrossRef]

Khaligi, M. A.

Kim, I.

I. Kim, B. McArthur, and E. Korevaar, "Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications," Proc. SPIE 4214, 26‒37 (2001).

Kim, Y.

J. Yu, Y. Kim, M. Lee, K. Lee, and J. Park, "Analysis of nonlinear effects in subcarrier-multiplexed fiber-optic links for CDMA RF signal transmissions," Microwave Opt. Technol. Lett. 29, 37‒40 (2001).
[CrossRef]

Komaki, S.

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, "RoFSO: a universal platform for convergence of fiber and free-space optical communication networks," IEEE Commun. Mag. 48, (2), 130‒137 (2010).
[CrossRef]

A. Bekkali, P. T. Dat, K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, "Performance evaluation of an advanced DWDM RoFSO system for transmitting multiple RF signals," IEICE Trans. Fundamentals E92-A, (11), 2697‒2705 (2009).
[CrossRef]

M. S. Alam, P. T. Dat, K. Kazaura, K. Wakamori, T. Suzuki, K. Omae, M. Matsumoto, Y. Aburakawa, K. Takahashi, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, "Characterization of RF signal transmission using FSO links considering atmospheric effects," Proc. SPIE 6877, 68770D (2008).

H. Mizuguti, T. Okuno, S. Komaki, and N. Morinaga, "Performance analysis of optical fiber link for microcellular mobile communication systems," IEICE Trans. Electron. E76-C, (2), 271‒278 (1993).

Korevaar, E.

I. Kim, B. McArthur, and E. Korevaar, "Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications," Proc. SPIE 4214, 26‒37 (2001).

Korevarr, E.

Koshy, B. J.

B. J. Koshy and P. M. Shankar, "Spread-spectrum techniques for fiber-fed microcellular networks," IEEE Trans. Veh. Technol. 48, 847‒857 (1999).
[CrossRef]

Lee, K.

J. Yu, Y. Kim, M. Lee, K. Lee, and J. Park, "Analysis of nonlinear effects in subcarrier-multiplexed fiber-optic links for CDMA RF signal transmissions," Microwave Opt. Technol. Lett. 29, 37‒40 (2001).
[CrossRef]

Lee, M.

J. Yu, Y. Kim, M. Lee, K. Lee, and J. Park, "Analysis of nonlinear effects in subcarrier-multiplexed fiber-optic links for CDMA RF signal transmissions," Microwave Opt. Technol. Lett. 29, 37‒40 (2001).
[CrossRef]

Mastumoto, M.

A. Bekkali, C. Ben Naila, K. Kazaura, K. Wakamori, and M. Mastumoto, "Transmission analysis of OFDM-based wireless services over turbulent radio-on-FSO links modeled by Gamma–Gamma distribution," IEEE Photonics J. 2, 510‒520 (2010).
[CrossRef]

Matsumoto, H.

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, "Performance evaluation of next generation free-space optical communication system," IEICE Trans. Electron. E90-C, (2), 381‒388 (2007).
[CrossRef]

Matsumoto, M.

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, "RoFSO: a universal platform for convergence of fiber and free-space optical communication networks," IEEE Commun. Mag. 48, (2), 130‒137 (2010).
[CrossRef]

K. Tsukamoto, A. Hashimoto, Y. Aburakawa, and M. Matsumoto, "The case for free space," IEEE Microw. Mag. 10, (5), 84‒92 (2009).
[CrossRef]

A. Bekkali, P. T. Dat, K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, "Performance evaluation of an advanced DWDM RoFSO system for transmitting multiple RF signals," IEICE Trans. Fundamentals E92-A, (11), 2697‒2705 (2009).
[CrossRef]

M. S. Alam, P. T. Dat, K. Kazaura, K. Wakamori, T. Suzuki, K. Omae, M. Matsumoto, Y. Aburakawa, K. Takahashi, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, "Characterization of RF signal transmission using FSO links considering atmospheric effects," Proc. SPIE 6877, 68770D (2008).

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, "Performance evaluation of next generation free-space optical communication system," IEICE Trans. Electron. E90-C, (2), 381‒388 (2007).
[CrossRef]

McArthur, B.

I. Kim, B. McArthur, and E. Korevaar, "Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications," Proc. SPIE 4214, 26‒37 (2001).

Milner, S.

Milstein, L. B.

L. B. Milstein, "Wideband code division multiple access," IEEE J. Sel. Areas Commun. 18, (8), 1344‒1354 (2000).
[CrossRef]

Mizuguti, H.

H. Mizuguti, T. Okuno, S. Komaki, and N. Morinaga, "Performance analysis of optical fiber link for microcellular mobile communication systems," IEICE Trans. Electron. E76-C, (2), 271‒278 (1993).

Morinaga, N.

H. Mizuguti, T. Okuno, S. Komaki, and N. Morinaga, "Performance analysis of optical fiber link for microcellular mobile communication systems," IEICE Trans. Electron. E76-C, (2), 271‒278 (1993).

Murakami, T.

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, "Performance evaluation of next generation free-space optical communication system," IEICE Trans. Electron. E90-C, (2), 381‒388 (2007).
[CrossRef]

Mutafungwa, E.

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, "Performance evaluation of next generation free-space optical communication system," IEICE Trans. Electron. E90-C, (2), 381‒388 (2007).
[CrossRef]

Nakagawa, M.

W. Huang and M. Nakagawa, "Nonlinear effect of direct-sequence CDMA in optical transmission," IEICE Trans. Commun. E78-B, 702‒708 (1995).

W. Huang, J. Takayanagi, T. Sakagawa, and M. Nakagawa, "Atmospheric optical communication system using subcarrier PSK modulation," IEICE Trans. Commun. E76-B, 1169‒1176 (1993).

Nakamura, T.

M. S. Alam, P. T. Dat, K. Kazaura, K. Wakamori, T. Suzuki, K. Omae, M. Matsumoto, Y. Aburakawa, K. Takahashi, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, "Characterization of RF signal transmission using FSO links considering atmospheric effects," Proc. SPIE 6877, 68770D (2008).

Ohtsuki, T.

Ojanpera, T.

R. Prasad and T. Ojanpera, "An overview of CDMA evolution toward wideband CDMA," IEEE Commun. Surv. Tutorials 1, 2‒28 (1998).
[CrossRef]

Oka, I.

Okuno, T.

H. Mizuguti, T. Okuno, S. Komaki, and N. Morinaga, "Performance analysis of optical fiber link for microcellular mobile communication systems," IEICE Trans. Electron. E76-C, (2), 271‒278 (1993).

Omae, K.

M. S. Alam, P. T. Dat, K. Kazaura, K. Wakamori, T. Suzuki, K. Omae, M. Matsumoto, Y. Aburakawa, K. Takahashi, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, "Characterization of RF signal transmission using FSO links considering atmospheric effects," Proc. SPIE 6877, 68770D (2008).

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, "Performance evaluation of next generation free-space optical communication system," IEICE Trans. Electron. E90-C, (2), 381‒388 (2007).
[CrossRef]

Park, J.

J. Yu, Y. Kim, M. Lee, K. Lee, and J. Park, "Analysis of nonlinear effects in subcarrier-multiplexed fiber-optic links for CDMA RF signal transmissions," Microwave Opt. Technol. Lett. 29, 37‒40 (2001).
[CrossRef]

Philips, R. L.

L. C. Andrews and R. L. Philips, Laser Beam Propagation Through Random Media, SPIE, Bellingham, WA, 2005.

Prasad, R.

H. S. Al-Raweshidy and R. Prasad, "Spread spectrum technique to improve the performance of radio over fibre for microcellular GSM networks," Wireless Pers. Commun. 14, (2), 133‒145 (2000).
[CrossRef]

R. Prasad and T. Ojanpera, "An overview of CDMA evolution toward wideband CDMA," IEEE Commun. Surv. Tutorials 1, 2‒28 (1998).
[CrossRef]

Rappaport, T. S.

T. S. Rappaport, Wireless Communications, Principles and Practice, Prentice Hall Inc., 1996.

Recolons, J.

Richards, D.

Sakagawa, T.

W. Huang, J. Takayanagi, T. Sakagawa, and M. Nakagawa, "Atmospheric optical communication system using subcarrier PSK modulation," IEICE Trans. Commun. E76-B, 1169‒1176 (1993).

Schuster, J.

Schwartz, N.

Shankar, P. M.

B. J. Koshy and P. M. Shankar, "Spread-spectrum techniques for fiber-fed microcellular networks," IEEE Trans. Veh. Technol. 48, 847‒857 (1999).
[CrossRef]

Suzuki, T.

M. S. Alam, P. T. Dat, K. Kazaura, K. Wakamori, T. Suzuki, K. Omae, M. Matsumoto, Y. Aburakawa, K. Takahashi, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, "Characterization of RF signal transmission using FSO links considering atmospheric effects," Proc. SPIE 6877, 68770D (2008).

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, "Performance evaluation of next generation free-space optical communication system," IEICE Trans. Electron. E90-C, (2), 381‒388 (2007).
[CrossRef]

Takahashi, K.

M. S. Alam, P. T. Dat, K. Kazaura, K. Wakamori, T. Suzuki, K. Omae, M. Matsumoto, Y. Aburakawa, K. Takahashi, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, "Characterization of RF signal transmission using FSO links considering atmospheric effects," Proc. SPIE 6877, 68770D (2008).

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, "Performance evaluation of next generation free-space optical communication system," IEICE Trans. Electron. E90-C, (2), 381‒388 (2007).
[CrossRef]

Takayanagi, J.

W. Huang, J. Takayanagi, T. Sakagawa, and M. Nakagawa, "Atmospheric optical communication system using subcarrier PSK modulation," IEICE Trans. Commun. E76-B, 1169‒1176 (1993).

Ting, W.

N. Cvijetic and W. Ting, "WiMAX over free-space optics—evaluating OFDM muti-subcarrier modulation in optical channels," Proc. IEEE Sarnoff Symp., 2006, Princeton, NJ, pp. 1‒4.

Tsukamoto, K.

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, "RoFSO: a universal platform for convergence of fiber and free-space optical communication networks," IEEE Commun. Mag. 48, (2), 130‒137 (2010).
[CrossRef]

K. Tsukamoto, A. Hashimoto, Y. Aburakawa, and M. Matsumoto, "The case for free space," IEEE Microw. Mag. 10, (5), 84‒92 (2009).
[CrossRef]

A. Bekkali, P. T. Dat, K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, "Performance evaluation of an advanced DWDM RoFSO system for transmitting multiple RF signals," IEICE Trans. Fundamentals E92-A, (11), 2697‒2705 (2009).
[CrossRef]

M. S. Alam, P. T. Dat, K. Kazaura, K. Wakamori, T. Suzuki, K. Omae, M. Matsumoto, Y. Aburakawa, K. Takahashi, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, "Characterization of RF signal transmission using FSO links considering atmospheric effects," Proc. SPIE 6877, 68770D (2008).

Vetelino, F. S.

Wakafuji, K.

Wakamori, K.

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, "RoFSO: a universal platform for convergence of fiber and free-space optical communication networks," IEEE Commun. Mag. 48, (2), 130‒137 (2010).
[CrossRef]

A. Bekkali, C. Ben Naila, K. Kazaura, K. Wakamori, and M. Mastumoto, "Transmission analysis of OFDM-based wireless services over turbulent radio-on-FSO links modeled by Gamma–Gamma distribution," IEEE Photonics J. 2, 510‒520 (2010).
[CrossRef]

A. Bekkali, P. T. Dat, K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, "Performance evaluation of an advanced DWDM RoFSO system for transmitting multiple RF signals," IEICE Trans. Fundamentals E92-A, (11), 2697‒2705 (2009).
[CrossRef]

M. S. Alam, P. T. Dat, K. Kazaura, K. Wakamori, T. Suzuki, K. Omae, M. Matsumoto, Y. Aburakawa, K. Takahashi, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, "Characterization of RF signal transmission using FSO links considering atmospheric effects," Proc. SPIE 6877, 68770D (2008).

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, "Performance evaluation of next generation free-space optical communication system," IEICE Trans. Electron. E90-C, (2), 381‒388 (2007).
[CrossRef]

K. Wakamori, K. Kazaura, and I. Oka, "Experiment on regional broadband network using free-space-optical communication systems," J. Lightwave Technol. 25, (11), 3265‒3273 (2007).
[CrossRef]

Willebrand, H.

S. Bloom, E. Korevarr, J. Schuster, and H. Willebrand, "Understanding the performance of free-space optics," J. Opt. Netw. 2, (6), 178‒200 (2003).

H. Willebrand and B. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today’s Networks, Sams Publishing, 2002.

Young, C.

Yu, J.

J. Yu, Y. Kim, M. Lee, K. Lee, and J. Park, "Analysis of nonlinear effects in subcarrier-multiplexed fiber-optic links for CDMA RF signal transmissions," Microwave Opt. Technol. Lett. 29, 37‒40 (2001).
[CrossRef]

Yuksel, H.

Zhu, B.

Appl. Opt. (1)

Fiber Integr. Opt. (1)

A. Gameiro, "Influence of the laser diode nonlinearity in fiber-fed microcellular networks," Fiber Integr. Opt. 19, (2), 99‒117 (2000).
[CrossRef]

IEEE Commun. Mag. (1)

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, "RoFSO: a universal platform for convergence of fiber and free-space optical communication networks," IEEE Commun. Mag. 48, (2), 130‒137 (2010).
[CrossRef]

IEEE Commun. Surv. Tutorials (1)

R. Prasad and T. Ojanpera, "An overview of CDMA evolution toward wideband CDMA," IEEE Commun. Surv. Tutorials 1, 2‒28 (1998).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

L. B. Milstein, "Wideband code division multiple access," IEEE J. Sel. Areas Commun. 18, (8), 1344‒1354 (2000).
[CrossRef]

IEEE Microw. Mag. (1)

K. Tsukamoto, A. Hashimoto, Y. Aburakawa, and M. Matsumoto, "The case for free space," IEEE Microw. Mag. 10, (5), 84‒92 (2009).
[CrossRef]

IEEE Photonics J. (1)

A. Bekkali, C. Ben Naila, K. Kazaura, K. Wakamori, and M. Mastumoto, "Transmission analysis of OFDM-based wireless services over turbulent radio-on-FSO links modeled by Gamma–Gamma distribution," IEEE Photonics J. 2, 510‒520 (2010).
[CrossRef]

IEEE Trans. Commun. (1)

F. Khaleghi and M. Kavehrad, "A subcarrier multiplexed CDM optical local area network, theory and experiment," IEEE Trans. Commun. 43, (1), 75‒87 (1995).
[CrossRef]

IEEE Trans. Veh. Technol. (1)

B. J. Koshy and P. M. Shankar, "Spread-spectrum techniques for fiber-fed microcellular networks," IEEE Trans. Veh. Technol. 48, 847‒857 (1999).
[CrossRef]

IEICE Trans. Commun. (2)

W. Huang and M. Nakagawa, "Nonlinear effect of direct-sequence CDMA in optical transmission," IEICE Trans. Commun. E78-B, 702‒708 (1995).

W. Huang, J. Takayanagi, T. Sakagawa, and M. Nakagawa, "Atmospheric optical communication system using subcarrier PSK modulation," IEICE Trans. Commun. E76-B, 1169‒1176 (1993).

IEICE Trans. Electron. (2)

H. Mizuguti, T. Okuno, S. Komaki, and N. Morinaga, "Performance analysis of optical fiber link for microcellular mobile communication systems," IEICE Trans. Electron. E76-C, (2), 271‒278 (1993).

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, "Performance evaluation of next generation free-space optical communication system," IEICE Trans. Electron. E90-C, (2), 381‒388 (2007).
[CrossRef]

IEICE Trans. Fundamentals (1)

A. Bekkali, P. T. Dat, K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, "Performance evaluation of an advanced DWDM RoFSO system for transmitting multiple RF signals," IEICE Trans. Fundamentals E92-A, (11), 2697‒2705 (2009).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

J. Opt. Netw. (2)

Microwave Opt. Technol. Lett. (1)

J. Yu, Y. Kim, M. Lee, K. Lee, and J. Park, "Analysis of nonlinear effects in subcarrier-multiplexed fiber-optic links for CDMA RF signal transmissions," Microwave Opt. Technol. Lett. 29, 37‒40 (2001).
[CrossRef]

Proc. SPIE (2)

I. Kim, B. McArthur, and E. Korevaar, "Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications," Proc. SPIE 4214, 26‒37 (2001).

M. S. Alam, P. T. Dat, K. Kazaura, K. Wakamori, T. Suzuki, K. Omae, M. Matsumoto, Y. Aburakawa, K. Takahashi, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, "Characterization of RF signal transmission using FSO links considering atmospheric effects," Proc. SPIE 6877, 68770D (2008).

Wireless Pers. Commun. (1)

H. S. Al-Raweshidy and R. Prasad, "Spread spectrum technique to improve the performance of radio over fibre for microcellular GSM networks," Wireless Pers. Commun. 14, (2), 133‒145 (2000).
[CrossRef]

Other (6)

L. C. Andrews and R. L. Philips, Laser Beam Propagation Through Random Media, SPIE, Bellingham, WA, 2005.

H. Willebrand and B. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today’s Networks, Sams Publishing, 2002.

3GPP TS 25.141, 3rd Generation Partnership Project, 2002, [Online]. Available: http://www.3gpp.org/

N. Cvijetic and W. Ting, "WiMAX over free-space optics—evaluating OFDM muti-subcarrier modulation in optical channels," Proc. IEEE Sarnoff Symp., 2006, Princeton, NJ, pp. 1‒4.

T. S. Rappaport, Wireless Communications, Principles and Practice, Prentice Hall Inc., 1996.

H. Al-Raweshidy and S. Komaki, ed., Radio Over Fiber Technologies for Mobile Communications Networks, 1st ed., Artech House Publishers, 2002.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(Color online) Deployment scenario of RF-FSO links providing broadband wireless connectivity in urban and rural areas.

Fig. 2
Fig. 2

(Color online) Basic configuration of a CDMA signal over an RF-FSO link.

Fig. 3
Fig. 3

(Color online) Aperture averaging factor F against aperture diameter D in the weak and strong turbulence regimes.

Fig. 4
Fig. 4

(Color online) Average CNIR versus optical modulation index OMI with the receiver aperture diameter D = 10 cm , in the weak and strong turbulence regimes.

Fig. 5
Fig. 5

(Color online) Gain in the average CNIR versus receiver aperture diameter D in the weak and strong turbulence regimes.

Fig. 6
Fig. 6

(Color online) Variation of the outage probability P O u t versus the received optical power P r in the weak and strong turbulence regimes.

Fig. 7
Fig. 7

(Color online) Variation of the outage probability P O u t versus the number of users K in the weak and strong turbulence regimes.

Fig. 8
Fig. 8

(Color online) (a) Devices set up on the rooftop of a building at Waseda University and (b) experimental setup diagram of W-CDMA signal transmission using FSO links.

Fig. 9
Fig. 9

(Color online) Relationship between the CNIR and the ACLR of the RF-FSO system.

Fig. 10
Fig. 10

(Color online) W-CDMA received signal spectrum in clear weather and in the presence of heavy rainfall.

Fig. 11
Fig. 11

(Color online) Measured and analytical CNIR characteristics of the RF-FSO system under different weather conditions.

Fig. 12
Fig. 12

(Color online) Correlation between the measured and analytical CNIR and scintillation index σ I 2 .

Tables (3)

Tables Icon

Table I CDMA-FSO Link Parameters

Tables Icon

Table II Specifications of the RF-FSO Antenna

Tables Icon

Table III W-CDMA Signal Parameters

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

I r , l = I 0 W 0 2 W 2 l exp r 2 W 2 l ,
P r = 0 2 π 0 D / 2 I r , l d r d θ π 8 D 2 I 0 , l ,
σ I 2 D = exp σ ln x 2 D + σ ln y 2 D 1 .
σ ln x 2 D = 0 . 49 σ B 2 Ω G Λ Ω G + Λ 2 0 . 33 0 . 5 Θ ¯ + 0 . 2 Θ ¯ 2 × η x 7 / 6 1 + 0 . 4 η x 2 Θ ¯ Ω G + Λ 7 / 6 ,
σ ln y 2 D = 0 . 51 σ B 2 1 + 0 . 69 σ B 12 / 5 5 / 6 × 1 + 1 . 2 σ B 2 / σ R 2 6 / 5 + 0 . 83 σ R 12 / 5 / Ω G + Λ 1 ,
p I = 1 I 1 2 π σ I 2 D exp ln ( I I ) + σ I 2 D 2 2 2 σ I 2 D , I > 0 ,
s C D M A ( t ) = k = 1 K s k ( t τ k ) = k = 1 K d k ( t τ k ) c k ( t τ k ) cos ( ω c t + ϕ k ) ,
P ( t ) = P 0 1 + k = 0 K 1 m k s k ( t ) + a 3 k = 0 K 1 m k s k ( t ) 3 ,
I r t = ρ M P r , 0 ( t ) + n t ,
P r , 0 t = P ( t ) L F S O ,
L F S O d B = L G e o + L R a i n + L V i s + L C o u p + L P o i n t  (dB),
δ V = 1 . 6 V > 50  km 1 . 3 6  km < V < 50  km 0 . 16 V + 0 . 34 1  km < V < 6  km V 0 . 5 0 . 5  km < V < 1  km 0 V < 0 . 5  km .
N 0 = N R I N + N s h o t + N d a r k + N t h = R I N I p h 2 + 2 q M 1 + F I p h + 2 q M 2 + F I d r + 4 K B T N R L ,
I p h = ρ M P r , 0 t ,
y k ( X ) = 0 T i ( t , X ) c k ( t ) cos ( ω c t ) = S k + I k + n o p t ,
CNIR 0 = S k 2 V a r ( n o p t ) G p + V a r ( I k ) ,
S k 2 = C = 1 2 m 2 I p h 2 ,
V a r ( n o p t ) = σ N 2 = N 0 B ,
V a r ( I k ) = σ I M D 2 + σ I n t 2 + σ c l i p 2 ,
σ I M D 2 = 1 2 ( m I p h ) 2 a 3 m 2 K ( K 1 ) 2 G p + a 3 2 m 4 ( K 1 ) 64 9 + 252 K 2 + 300 K 648 10 G p ,
σ I n t 2 = ( m I p h ) 2 K 1 12 G p ,
σ c l i p = 2 I p h 2 m 6 K 3 27 . 2 exp 1 2 m 2 K .
CNIR = i r 2 σ i 2 = G p CNIR 0 1 + 1 . 63 σ R 12 / 5 Λ 2 + σ I 2 D CNIR 0 .
P O u t ( CNIR t h ) Pr ( CNIR < CNIR t h ) = Pr CNIR X 2 I X 2 < CNIR t h ,
P O u t ( CNIR t h ) = 0 C t h p ( X ) d X = 0 C t h 1 X 1 2 π σ I 2 D exp ln ( X I X ) + σ I 2 D 2 2 2 σ I 2 D d X .