Abstract

The quality of an optical signal degrades due to physical layer impairments as it propagates from a transmitter to a receiver. As a result, the signal quality at the receiver of a lightpath may not be sufficiently high, leading to increased call blocking. Consequently, an all-optical network’s routing and wavelength assignment algorithm must verify the quality of the lightpath before accepting it. In this paper, analytical expressions for the total blocking probability are derived for first-fit wavelength assignment for networks suffering from transmission impairments. The new technique effectively predicts the performance of wavelength selection techniques that consider either a single candidate channel or all channels for quality of transmission compliance. The analysis is also applicable to first-fit algorithms with different static channel orderings.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Martinez, C. Pinart, F. Cugini, N. Andriolli, L. Valcarenghi, P. Castoldi, L. Wosinska, J. Comellas, and G. Junyent, "Challenges and requirements for introducing impairment-awareness into the management and control planes of ASON/GMPLS WDM networks," IEEE Commun. Mag. 44, (12), 76‒85 (2006).
    [CrossRef]
  2. J. Berthold, A. Saleh, L. Blair, and J. Simmons, "Optical networking: past, present, and future," J. Lightwave Technol. 26, (9), 1104‒1118 (2008).
    [CrossRef]
  3. T. Deng, S. Subramaniam, and J. Xu, "Crosstalk-aware wavelength assignment in dynamic wavelength-routed optical networks," Proc. Broadnets, Oct. 2004, San Jose, CA, USA, pp. 140‒149.
  4. I. Tomkos, D. Vogiatzis, C. Mas, I. Zacharopoulos, A. Tzanakaki, and E. Varvarigos, "Performance engineering of metropolitan area optical networks through impairment constraint routing," IEEE Commun. Mag. 42, (8), S40‒S47 (2004).
    [CrossRef]
  5. J. He, M. Brandt-Pearce, Y. Pointurier, and S. Subramaniam, "Adaptive wavelength assignment using wavelength spectrum separation for distributed optical networks," Proc. IEEE Int. Conf. on Communications (ICC), June 2007, Glasgow, UK, pp. 2406‒2411.
  6. S. Pachnicke, T. Paschenda, and P. Krummrich, "Assessment of a constraint based routing algorithm for translucent 10 Gbits/s DWDM networks considering fiber nonlinearities," J. Opt. Netw. 7, (4), 365‒377 (2008).
    [CrossRef]
  7. G. Pavani, L. Zuliani, H. Waldman, and M. Magalhaes, "Distributed approaches for impairment-aware routing and wavelength assignment algorithms in GMPLS networks," Comput. Netw. 52, (10), 1905‒1915 (2008).
    [CrossRef]
  8. J. He, M. Brandt-Pearce, and S. Subramaniam, "QoS-aware wavelength assignment with BER and latency constraints for all-optical networks," J. Lightwave Technol. 27, 462‒474 (2009).
    [CrossRef]
  9. S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Pareta, and I. Tomkos, "A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks," Comput. Netw. 53, (7), 926‒944 (2009).
    [CrossRef]
  10. S. Azodolmolky, Y. Pointurier, M. Angelou, J. Solé Pareta, and I. Tomkos, "Routing and wavelength assignment for transparent optical networks with QoT estimation inaccuracies," Proc. IEEE/OSA Optical Fiber Communication Conf. (OFC), Mar. 2010, San Diego, CA, USA, pp. 1‒3.
  11. A. Birman and A. Kershenbaum, "Routing and wavelength assignment methods in single-hop all-optical networks with blocking," Proc. INFOCOM, Vol. 2, Apr. 1995, Boston, MA, USA, pp. 431‒438.
  12. Y. Zhu, G. Rouskas, and H. Perros, "A path decomposition approach for computing blocking probabilities in wavelength-routing networks," IEEE/ACM Trans. Netw. 8, 747‒762 (2000).
    [CrossRef]
  13. A. Sridharan and K. Sivarajan, "Blocking in all-optical networks," IEEE/ACM Trans. Netw. 12, 384‒397 (2004).
    [CrossRef]
  14. C. Xin, C. Qiao, and S. Dixit, "Analysis of single-hop traffic grooming in mesh WDM optical networks," Proc. SPIE 5285, 91‒101 (2003).
  15. H. Waldman, D. R. Campelo, and J. Raul C Almeida, "A new analytical approach for the estimation of blocking probabilities in wavelength-routing networks," SPIE 5285, 324‒335 (2003).
  16. H. Harai, M. Murata, and H. Miyahara, "Performance analysis of wavelength assignment policies in all-optical networks with limited-range wavelength conversion," IEEE J. Sel. Areas Commun. 16, 1051‒1060 (1998).
    [CrossRef]
  17. A. Alyatama, "Wavelength decomposition approach for computing blocking probabilities in WDM optical networks without wavelength conversions," Comput. Netw. 49, 727‒742 (2005).
    [CrossRef]
  18. Y. Pointurier, M. Brandt-Pearce, and S. Subramaniam, "Analysis of blocking probability in noise and crosstalk impaired in all-optical networks," J. Opt. Commun. Netw. 1, 543‒554 (2009).
    [CrossRef]
  19. B. Mukherjee, Y. Huang, and J. Heritage, "Impairment-aware routing in wavelength-routed optical networks," IEEE LEOS 2004, Vol. 1, 7–11 Nov. 2004, pp. 428‒429.
  20. L. Eldada, "Optical add/drop multiplexing architecture for metro area networks," SPIE Newsroom, Jan.Jan. 2008
  21. G. Agrawal, Fiber-Optic Communication Systems, 3rd ed., Wiley, New York, NY, USA, 2002.
  22. X. Ma and G.-S. Kuo, "Optical switching technology comparison: optical MEMS vs. other technologies," IEEE Commun. Mag. 41, (11), S16‒S23 (2003).
    [CrossRef]
  23. H. Takahashi, K. Oda, and H. Toba, "Impact of crosstalk in an arrayed-waveguide multiplexer on N×N optical interconnection," J. Lightwave Technol. 14, 1097‒1105 (1996).
    [CrossRef]
  24. J. He, M. Brandt-Pearce, and S. Subramaniam, "Optimal RWA for static traffic in transmission-impaired wavelength-routed networks," IEEE Commun. Lett. 12, 694‒695 (2008).
    [CrossRef]
  25. C. R. Menyuk and A. Galtarossa, Polarization Mode Dispersion, Springer, 2005.
  26. F. P. Kelly, Reversibility and Stochastic Networks, Wiley, New York, NY, USA, 1979.
  27. C.-T. Lea and A. Alyatama, "Bandwidth quantization and states reduction in the broadband ISDN," IEEE/ACM Trans. Netw. 3, (3), 352‒360 (1995).
    [CrossRef]
  28. A. Girard, Routing and Dimensioning in Circuit-Switched Networks, Addison-Wesley, 1990.
  29. Juniper networks router-integrated OTN, [Online]. Available: http://www.juniper.net/us/en/local/pdf/datasheets/1000263-en.pdf

2009 (3)

2008 (4)

J. He, M. Brandt-Pearce, and S. Subramaniam, "Optimal RWA for static traffic in transmission-impaired wavelength-routed networks," IEEE Commun. Lett. 12, 694‒695 (2008).
[CrossRef]

J. Berthold, A. Saleh, L. Blair, and J. Simmons, "Optical networking: past, present, and future," J. Lightwave Technol. 26, (9), 1104‒1118 (2008).
[CrossRef]

S. Pachnicke, T. Paschenda, and P. Krummrich, "Assessment of a constraint based routing algorithm for translucent 10 Gbits/s DWDM networks considering fiber nonlinearities," J. Opt. Netw. 7, (4), 365‒377 (2008).
[CrossRef]

G. Pavani, L. Zuliani, H. Waldman, and M. Magalhaes, "Distributed approaches for impairment-aware routing and wavelength assignment algorithms in GMPLS networks," Comput. Netw. 52, (10), 1905‒1915 (2008).
[CrossRef]

2006 (1)

R. Martinez, C. Pinart, F. Cugini, N. Andriolli, L. Valcarenghi, P. Castoldi, L. Wosinska, J. Comellas, and G. Junyent, "Challenges and requirements for introducing impairment-awareness into the management and control planes of ASON/GMPLS WDM networks," IEEE Commun. Mag. 44, (12), 76‒85 (2006).
[CrossRef]

2005 (1)

A. Alyatama, "Wavelength decomposition approach for computing blocking probabilities in WDM optical networks without wavelength conversions," Comput. Netw. 49, 727‒742 (2005).
[CrossRef]

2004 (2)

I. Tomkos, D. Vogiatzis, C. Mas, I. Zacharopoulos, A. Tzanakaki, and E. Varvarigos, "Performance engineering of metropolitan area optical networks through impairment constraint routing," IEEE Commun. Mag. 42, (8), S40‒S47 (2004).
[CrossRef]

A. Sridharan and K. Sivarajan, "Blocking in all-optical networks," IEEE/ACM Trans. Netw. 12, 384‒397 (2004).
[CrossRef]

2003 (3)

C. Xin, C. Qiao, and S. Dixit, "Analysis of single-hop traffic grooming in mesh WDM optical networks," Proc. SPIE 5285, 91‒101 (2003).

H. Waldman, D. R. Campelo, and J. Raul C Almeida, "A new analytical approach for the estimation of blocking probabilities in wavelength-routing networks," SPIE 5285, 324‒335 (2003).

X. Ma and G.-S. Kuo, "Optical switching technology comparison: optical MEMS vs. other technologies," IEEE Commun. Mag. 41, (11), S16‒S23 (2003).
[CrossRef]

2000 (1)

Y. Zhu, G. Rouskas, and H. Perros, "A path decomposition approach for computing blocking probabilities in wavelength-routing networks," IEEE/ACM Trans. Netw. 8, 747‒762 (2000).
[CrossRef]

1998 (1)

H. Harai, M. Murata, and H. Miyahara, "Performance analysis of wavelength assignment policies in all-optical networks with limited-range wavelength conversion," IEEE J. Sel. Areas Commun. 16, 1051‒1060 (1998).
[CrossRef]

1996 (1)

H. Takahashi, K. Oda, and H. Toba, "Impact of crosstalk in an arrayed-waveguide multiplexer on N×N optical interconnection," J. Lightwave Technol. 14, 1097‒1105 (1996).
[CrossRef]

1995 (1)

C.-T. Lea and A. Alyatama, "Bandwidth quantization and states reduction in the broadband ISDN," IEEE/ACM Trans. Netw. 3, (3), 352‒360 (1995).
[CrossRef]

Agrawal, G.

G. Agrawal, Fiber-Optic Communication Systems, 3rd ed., Wiley, New York, NY, USA, 2002.

Alyatama, A.

A. Alyatama, "Wavelength decomposition approach for computing blocking probabilities in WDM optical networks without wavelength conversions," Comput. Netw. 49, 727‒742 (2005).
[CrossRef]

C.-T. Lea and A. Alyatama, "Bandwidth quantization and states reduction in the broadband ISDN," IEEE/ACM Trans. Netw. 3, (3), 352‒360 (1995).
[CrossRef]

Andriolli, N.

R. Martinez, C. Pinart, F. Cugini, N. Andriolli, L. Valcarenghi, P. Castoldi, L. Wosinska, J. Comellas, and G. Junyent, "Challenges and requirements for introducing impairment-awareness into the management and control planes of ASON/GMPLS WDM networks," IEEE Commun. Mag. 44, (12), 76‒85 (2006).
[CrossRef]

Angelou, M.

S. Azodolmolky, Y. Pointurier, M. Angelou, J. Solé Pareta, and I. Tomkos, "Routing and wavelength assignment for transparent optical networks with QoT estimation inaccuracies," Proc. IEEE/OSA Optical Fiber Communication Conf. (OFC), Mar. 2010, San Diego, CA, USA, pp. 1‒3.

Azodolmolky, S.

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Pareta, and I. Tomkos, "A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks," Comput. Netw. 53, (7), 926‒944 (2009).
[CrossRef]

S. Azodolmolky, Y. Pointurier, M. Angelou, J. Solé Pareta, and I. Tomkos, "Routing and wavelength assignment for transparent optical networks with QoT estimation inaccuracies," Proc. IEEE/OSA Optical Fiber Communication Conf. (OFC), Mar. 2010, San Diego, CA, USA, pp. 1‒3.

Berthold, J.

Birman, A.

A. Birman and A. Kershenbaum, "Routing and wavelength assignment methods in single-hop all-optical networks with blocking," Proc. INFOCOM, Vol. 2, Apr. 1995, Boston, MA, USA, pp. 431‒438.

Blair, L.

Brandt-Pearce, M.

J. He, M. Brandt-Pearce, and S. Subramaniam, "QoS-aware wavelength assignment with BER and latency constraints for all-optical networks," J. Lightwave Technol. 27, 462‒474 (2009).
[CrossRef]

Y. Pointurier, M. Brandt-Pearce, and S. Subramaniam, "Analysis of blocking probability in noise and crosstalk impaired in all-optical networks," J. Opt. Commun. Netw. 1, 543‒554 (2009).
[CrossRef]

J. He, M. Brandt-Pearce, and S. Subramaniam, "Optimal RWA for static traffic in transmission-impaired wavelength-routed networks," IEEE Commun. Lett. 12, 694‒695 (2008).
[CrossRef]

J. He, M. Brandt-Pearce, Y. Pointurier, and S. Subramaniam, "Adaptive wavelength assignment using wavelength spectrum separation for distributed optical networks," Proc. IEEE Int. Conf. on Communications (ICC), June 2007, Glasgow, UK, pp. 2406‒2411.

Campelo, D. R.

H. Waldman, D. R. Campelo, and J. Raul C Almeida, "A new analytical approach for the estimation of blocking probabilities in wavelength-routing networks," SPIE 5285, 324‒335 (2003).

Careglio, D.

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Pareta, and I. Tomkos, "A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks," Comput. Netw. 53, (7), 926‒944 (2009).
[CrossRef]

Castoldi, P.

R. Martinez, C. Pinart, F. Cugini, N. Andriolli, L. Valcarenghi, P. Castoldi, L. Wosinska, J. Comellas, and G. Junyent, "Challenges and requirements for introducing impairment-awareness into the management and control planes of ASON/GMPLS WDM networks," IEEE Commun. Mag. 44, (12), 76‒85 (2006).
[CrossRef]

Comellas, J.

R. Martinez, C. Pinart, F. Cugini, N. Andriolli, L. Valcarenghi, P. Castoldi, L. Wosinska, J. Comellas, and G. Junyent, "Challenges and requirements for introducing impairment-awareness into the management and control planes of ASON/GMPLS WDM networks," IEEE Commun. Mag. 44, (12), 76‒85 (2006).
[CrossRef]

Cugini, F.

R. Martinez, C. Pinart, F. Cugini, N. Andriolli, L. Valcarenghi, P. Castoldi, L. Wosinska, J. Comellas, and G. Junyent, "Challenges and requirements for introducing impairment-awareness into the management and control planes of ASON/GMPLS WDM networks," IEEE Commun. Mag. 44, (12), 76‒85 (2006).
[CrossRef]

Deng, T.

T. Deng, S. Subramaniam, and J. Xu, "Crosstalk-aware wavelength assignment in dynamic wavelength-routed optical networks," Proc. Broadnets, Oct. 2004, San Jose, CA, USA, pp. 140‒149.

Dixit, S.

C. Xin, C. Qiao, and S. Dixit, "Analysis of single-hop traffic grooming in mesh WDM optical networks," Proc. SPIE 5285, 91‒101 (2003).

Galtarossa, A.

C. R. Menyuk and A. Galtarossa, Polarization Mode Dispersion, Springer, 2005.

Girard, A.

A. Girard, Routing and Dimensioning in Circuit-Switched Networks, Addison-Wesley, 1990.

Harai, H.

H. Harai, M. Murata, and H. Miyahara, "Performance analysis of wavelength assignment policies in all-optical networks with limited-range wavelength conversion," IEEE J. Sel. Areas Commun. 16, 1051‒1060 (1998).
[CrossRef]

He, J.

J. He, M. Brandt-Pearce, and S. Subramaniam, "QoS-aware wavelength assignment with BER and latency constraints for all-optical networks," J. Lightwave Technol. 27, 462‒474 (2009).
[CrossRef]

J. He, M. Brandt-Pearce, and S. Subramaniam, "Optimal RWA for static traffic in transmission-impaired wavelength-routed networks," IEEE Commun. Lett. 12, 694‒695 (2008).
[CrossRef]

J. He, M. Brandt-Pearce, Y. Pointurier, and S. Subramaniam, "Adaptive wavelength assignment using wavelength spectrum separation for distributed optical networks," Proc. IEEE Int. Conf. on Communications (ICC), June 2007, Glasgow, UK, pp. 2406‒2411.

Heritage, J.

B. Mukherjee, Y. Huang, and J. Heritage, "Impairment-aware routing in wavelength-routed optical networks," IEEE LEOS 2004, Vol. 1, 7–11 Nov. 2004, pp. 428‒429.

Huang, Y.

B. Mukherjee, Y. Huang, and J. Heritage, "Impairment-aware routing in wavelength-routed optical networks," IEEE LEOS 2004, Vol. 1, 7–11 Nov. 2004, pp. 428‒429.

Junyent, G.

R. Martinez, C. Pinart, F. Cugini, N. Andriolli, L. Valcarenghi, P. Castoldi, L. Wosinska, J. Comellas, and G. Junyent, "Challenges and requirements for introducing impairment-awareness into the management and control planes of ASON/GMPLS WDM networks," IEEE Commun. Mag. 44, (12), 76‒85 (2006).
[CrossRef]

Kelly, F. P.

F. P. Kelly, Reversibility and Stochastic Networks, Wiley, New York, NY, USA, 1979.

Kershenbaum, A.

A. Birman and A. Kershenbaum, "Routing and wavelength assignment methods in single-hop all-optical networks with blocking," Proc. INFOCOM, Vol. 2, Apr. 1995, Boston, MA, USA, pp. 431‒438.

Klinkowski, M.

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Pareta, and I. Tomkos, "A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks," Comput. Netw. 53, (7), 926‒944 (2009).
[CrossRef]

Krummrich, P.

Kuo, G.-S.

X. Ma and G.-S. Kuo, "Optical switching technology comparison: optical MEMS vs. other technologies," IEEE Commun. Mag. 41, (11), S16‒S23 (2003).
[CrossRef]

Lea, C.-T.

C.-T. Lea and A. Alyatama, "Bandwidth quantization and states reduction in the broadband ISDN," IEEE/ACM Trans. Netw. 3, (3), 352‒360 (1995).
[CrossRef]

Ma, X.

X. Ma and G.-S. Kuo, "Optical switching technology comparison: optical MEMS vs. other technologies," IEEE Commun. Mag. 41, (11), S16‒S23 (2003).
[CrossRef]

Magalhaes, M.

G. Pavani, L. Zuliani, H. Waldman, and M. Magalhaes, "Distributed approaches for impairment-aware routing and wavelength assignment algorithms in GMPLS networks," Comput. Netw. 52, (10), 1905‒1915 (2008).
[CrossRef]

Marin, E.

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Pareta, and I. Tomkos, "A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks," Comput. Netw. 53, (7), 926‒944 (2009).
[CrossRef]

Martinez, R.

R. Martinez, C. Pinart, F. Cugini, N. Andriolli, L. Valcarenghi, P. Castoldi, L. Wosinska, J. Comellas, and G. Junyent, "Challenges and requirements for introducing impairment-awareness into the management and control planes of ASON/GMPLS WDM networks," IEEE Commun. Mag. 44, (12), 76‒85 (2006).
[CrossRef]

Mas, C.

I. Tomkos, D. Vogiatzis, C. Mas, I. Zacharopoulos, A. Tzanakaki, and E. Varvarigos, "Performance engineering of metropolitan area optical networks through impairment constraint routing," IEEE Commun. Mag. 42, (8), S40‒S47 (2004).
[CrossRef]

Menyuk, C. R.

C. R. Menyuk and A. Galtarossa, Polarization Mode Dispersion, Springer, 2005.

Miyahara, H.

H. Harai, M. Murata, and H. Miyahara, "Performance analysis of wavelength assignment policies in all-optical networks with limited-range wavelength conversion," IEEE J. Sel. Areas Commun. 16, 1051‒1060 (1998).
[CrossRef]

Mukherjee, B.

B. Mukherjee, Y. Huang, and J. Heritage, "Impairment-aware routing in wavelength-routed optical networks," IEEE LEOS 2004, Vol. 1, 7–11 Nov. 2004, pp. 428‒429.

Murata, M.

H. Harai, M. Murata, and H. Miyahara, "Performance analysis of wavelength assignment policies in all-optical networks with limited-range wavelength conversion," IEEE J. Sel. Areas Commun. 16, 1051‒1060 (1998).
[CrossRef]

Oda, K.

H. Takahashi, K. Oda, and H. Toba, "Impact of crosstalk in an arrayed-waveguide multiplexer on N×N optical interconnection," J. Lightwave Technol. 14, 1097‒1105 (1996).
[CrossRef]

Pachnicke, S.

Pareta, J.

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Pareta, and I. Tomkos, "A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks," Comput. Netw. 53, (7), 926‒944 (2009).
[CrossRef]

Paschenda, T.

Pavani, G.

G. Pavani, L. Zuliani, H. Waldman, and M. Magalhaes, "Distributed approaches for impairment-aware routing and wavelength assignment algorithms in GMPLS networks," Comput. Netw. 52, (10), 1905‒1915 (2008).
[CrossRef]

Perros, H.

Y. Zhu, G. Rouskas, and H. Perros, "A path decomposition approach for computing blocking probabilities in wavelength-routing networks," IEEE/ACM Trans. Netw. 8, 747‒762 (2000).
[CrossRef]

Pinart, C.

R. Martinez, C. Pinart, F. Cugini, N. Andriolli, L. Valcarenghi, P. Castoldi, L. Wosinska, J. Comellas, and G. Junyent, "Challenges and requirements for introducing impairment-awareness into the management and control planes of ASON/GMPLS WDM networks," IEEE Commun. Mag. 44, (12), 76‒85 (2006).
[CrossRef]

Pointurier, Y.

Y. Pointurier, M. Brandt-Pearce, and S. Subramaniam, "Analysis of blocking probability in noise and crosstalk impaired in all-optical networks," J. Opt. Commun. Netw. 1, 543‒554 (2009).
[CrossRef]

S. Azodolmolky, Y. Pointurier, M. Angelou, J. Solé Pareta, and I. Tomkos, "Routing and wavelength assignment for transparent optical networks with QoT estimation inaccuracies," Proc. IEEE/OSA Optical Fiber Communication Conf. (OFC), Mar. 2010, San Diego, CA, USA, pp. 1‒3.

J. He, M. Brandt-Pearce, Y. Pointurier, and S. Subramaniam, "Adaptive wavelength assignment using wavelength spectrum separation for distributed optical networks," Proc. IEEE Int. Conf. on Communications (ICC), June 2007, Glasgow, UK, pp. 2406‒2411.

Qiao, C.

C. Xin, C. Qiao, and S. Dixit, "Analysis of single-hop traffic grooming in mesh WDM optical networks," Proc. SPIE 5285, 91‒101 (2003).

Raul C Almeida, J.

H. Waldman, D. R. Campelo, and J. Raul C Almeida, "A new analytical approach for the estimation of blocking probabilities in wavelength-routing networks," SPIE 5285, 324‒335 (2003).

Rouskas, G.

Y. Zhu, G. Rouskas, and H. Perros, "A path decomposition approach for computing blocking probabilities in wavelength-routing networks," IEEE/ACM Trans. Netw. 8, 747‒762 (2000).
[CrossRef]

Saleh, A.

Simmons, J.

Sivarajan, K.

A. Sridharan and K. Sivarajan, "Blocking in all-optical networks," IEEE/ACM Trans. Netw. 12, 384‒397 (2004).
[CrossRef]

Solé Pareta, J.

S. Azodolmolky, Y. Pointurier, M. Angelou, J. Solé Pareta, and I. Tomkos, "Routing and wavelength assignment for transparent optical networks with QoT estimation inaccuracies," Proc. IEEE/OSA Optical Fiber Communication Conf. (OFC), Mar. 2010, San Diego, CA, USA, pp. 1‒3.

Sridharan, A.

A. Sridharan and K. Sivarajan, "Blocking in all-optical networks," IEEE/ACM Trans. Netw. 12, 384‒397 (2004).
[CrossRef]

Subramaniam, S.

Y. Pointurier, M. Brandt-Pearce, and S. Subramaniam, "Analysis of blocking probability in noise and crosstalk impaired in all-optical networks," J. Opt. Commun. Netw. 1, 543‒554 (2009).
[CrossRef]

J. He, M. Brandt-Pearce, and S. Subramaniam, "QoS-aware wavelength assignment with BER and latency constraints for all-optical networks," J. Lightwave Technol. 27, 462‒474 (2009).
[CrossRef]

J. He, M. Brandt-Pearce, and S. Subramaniam, "Optimal RWA for static traffic in transmission-impaired wavelength-routed networks," IEEE Commun. Lett. 12, 694‒695 (2008).
[CrossRef]

J. He, M. Brandt-Pearce, Y. Pointurier, and S. Subramaniam, "Adaptive wavelength assignment using wavelength spectrum separation for distributed optical networks," Proc. IEEE Int. Conf. on Communications (ICC), June 2007, Glasgow, UK, pp. 2406‒2411.

T. Deng, S. Subramaniam, and J. Xu, "Crosstalk-aware wavelength assignment in dynamic wavelength-routed optical networks," Proc. Broadnets, Oct. 2004, San Jose, CA, USA, pp. 140‒149.

Takahashi, H.

H. Takahashi, K. Oda, and H. Toba, "Impact of crosstalk in an arrayed-waveguide multiplexer on N×N optical interconnection," J. Lightwave Technol. 14, 1097‒1105 (1996).
[CrossRef]

Toba, H.

H. Takahashi, K. Oda, and H. Toba, "Impact of crosstalk in an arrayed-waveguide multiplexer on N×N optical interconnection," J. Lightwave Technol. 14, 1097‒1105 (1996).
[CrossRef]

Tomkos, I.

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Pareta, and I. Tomkos, "A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks," Comput. Netw. 53, (7), 926‒944 (2009).
[CrossRef]

I. Tomkos, D. Vogiatzis, C. Mas, I. Zacharopoulos, A. Tzanakaki, and E. Varvarigos, "Performance engineering of metropolitan area optical networks through impairment constraint routing," IEEE Commun. Mag. 42, (8), S40‒S47 (2004).
[CrossRef]

S. Azodolmolky, Y. Pointurier, M. Angelou, J. Solé Pareta, and I. Tomkos, "Routing and wavelength assignment for transparent optical networks with QoT estimation inaccuracies," Proc. IEEE/OSA Optical Fiber Communication Conf. (OFC), Mar. 2010, San Diego, CA, USA, pp. 1‒3.

Tzanakaki, A.

I. Tomkos, D. Vogiatzis, C. Mas, I. Zacharopoulos, A. Tzanakaki, and E. Varvarigos, "Performance engineering of metropolitan area optical networks through impairment constraint routing," IEEE Commun. Mag. 42, (8), S40‒S47 (2004).
[CrossRef]

Valcarenghi, L.

R. Martinez, C. Pinart, F. Cugini, N. Andriolli, L. Valcarenghi, P. Castoldi, L. Wosinska, J. Comellas, and G. Junyent, "Challenges and requirements for introducing impairment-awareness into the management and control planes of ASON/GMPLS WDM networks," IEEE Commun. Mag. 44, (12), 76‒85 (2006).
[CrossRef]

Varvarigos, E.

I. Tomkos, D. Vogiatzis, C. Mas, I. Zacharopoulos, A. Tzanakaki, and E. Varvarigos, "Performance engineering of metropolitan area optical networks through impairment constraint routing," IEEE Commun. Mag. 42, (8), S40‒S47 (2004).
[CrossRef]

Vogiatzis, D.

I. Tomkos, D. Vogiatzis, C. Mas, I. Zacharopoulos, A. Tzanakaki, and E. Varvarigos, "Performance engineering of metropolitan area optical networks through impairment constraint routing," IEEE Commun. Mag. 42, (8), S40‒S47 (2004).
[CrossRef]

Waldman, H.

G. Pavani, L. Zuliani, H. Waldman, and M. Magalhaes, "Distributed approaches for impairment-aware routing and wavelength assignment algorithms in GMPLS networks," Comput. Netw. 52, (10), 1905‒1915 (2008).
[CrossRef]

H. Waldman, D. R. Campelo, and J. Raul C Almeida, "A new analytical approach for the estimation of blocking probabilities in wavelength-routing networks," SPIE 5285, 324‒335 (2003).

Wosinska, L.

R. Martinez, C. Pinart, F. Cugini, N. Andriolli, L. Valcarenghi, P. Castoldi, L. Wosinska, J. Comellas, and G. Junyent, "Challenges and requirements for introducing impairment-awareness into the management and control planes of ASON/GMPLS WDM networks," IEEE Commun. Mag. 44, (12), 76‒85 (2006).
[CrossRef]

Xin, C.

C. Xin, C. Qiao, and S. Dixit, "Analysis of single-hop traffic grooming in mesh WDM optical networks," Proc. SPIE 5285, 91‒101 (2003).

Xu, J.

T. Deng, S. Subramaniam, and J. Xu, "Crosstalk-aware wavelength assignment in dynamic wavelength-routed optical networks," Proc. Broadnets, Oct. 2004, San Jose, CA, USA, pp. 140‒149.

Zacharopoulos, I.

I. Tomkos, D. Vogiatzis, C. Mas, I. Zacharopoulos, A. Tzanakaki, and E. Varvarigos, "Performance engineering of metropolitan area optical networks through impairment constraint routing," IEEE Commun. Mag. 42, (8), S40‒S47 (2004).
[CrossRef]

Zhu, Y.

Y. Zhu, G. Rouskas, and H. Perros, "A path decomposition approach for computing blocking probabilities in wavelength-routing networks," IEEE/ACM Trans. Netw. 8, 747‒762 (2000).
[CrossRef]

Zuliani, L.

G. Pavani, L. Zuliani, H. Waldman, and M. Magalhaes, "Distributed approaches for impairment-aware routing and wavelength assignment algorithms in GMPLS networks," Comput. Netw. 52, (10), 1905‒1915 (2008).
[CrossRef]

Comput. Netw. (3)

G. Pavani, L. Zuliani, H. Waldman, and M. Magalhaes, "Distributed approaches for impairment-aware routing and wavelength assignment algorithms in GMPLS networks," Comput. Netw. 52, (10), 1905‒1915 (2008).
[CrossRef]

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Pareta, and I. Tomkos, "A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks," Comput. Netw. 53, (7), 926‒944 (2009).
[CrossRef]

A. Alyatama, "Wavelength decomposition approach for computing blocking probabilities in WDM optical networks without wavelength conversions," Comput. Netw. 49, 727‒742 (2005).
[CrossRef]

IEEE Commun. Lett. (1)

J. He, M. Brandt-Pearce, and S. Subramaniam, "Optimal RWA for static traffic in transmission-impaired wavelength-routed networks," IEEE Commun. Lett. 12, 694‒695 (2008).
[CrossRef]

IEEE Commun. Mag. (3)

X. Ma and G.-S. Kuo, "Optical switching technology comparison: optical MEMS vs. other technologies," IEEE Commun. Mag. 41, (11), S16‒S23 (2003).
[CrossRef]

R. Martinez, C. Pinart, F. Cugini, N. Andriolli, L. Valcarenghi, P. Castoldi, L. Wosinska, J. Comellas, and G. Junyent, "Challenges and requirements for introducing impairment-awareness into the management and control planes of ASON/GMPLS WDM networks," IEEE Commun. Mag. 44, (12), 76‒85 (2006).
[CrossRef]

I. Tomkos, D. Vogiatzis, C. Mas, I. Zacharopoulos, A. Tzanakaki, and E. Varvarigos, "Performance engineering of metropolitan area optical networks through impairment constraint routing," IEEE Commun. Mag. 42, (8), S40‒S47 (2004).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

H. Harai, M. Murata, and H. Miyahara, "Performance analysis of wavelength assignment policies in all-optical networks with limited-range wavelength conversion," IEEE J. Sel. Areas Commun. 16, 1051‒1060 (1998).
[CrossRef]

IEEE/ACM Trans. Netw. (3)

C.-T. Lea and A. Alyatama, "Bandwidth quantization and states reduction in the broadband ISDN," IEEE/ACM Trans. Netw. 3, (3), 352‒360 (1995).
[CrossRef]

Y. Zhu, G. Rouskas, and H. Perros, "A path decomposition approach for computing blocking probabilities in wavelength-routing networks," IEEE/ACM Trans. Netw. 8, 747‒762 (2000).
[CrossRef]

A. Sridharan and K. Sivarajan, "Blocking in all-optical networks," IEEE/ACM Trans. Netw. 12, 384‒397 (2004).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

J. Opt. Netw. (1)

Proc. SPIE (1)

C. Xin, C. Qiao, and S. Dixit, "Analysis of single-hop traffic grooming in mesh WDM optical networks," Proc. SPIE 5285, 91‒101 (2003).

SPIE (1)

H. Waldman, D. R. Campelo, and J. Raul C Almeida, "A new analytical approach for the estimation of blocking probabilities in wavelength-routing networks," SPIE 5285, 324‒335 (2003).

Other (11)

B. Mukherjee, Y. Huang, and J. Heritage, "Impairment-aware routing in wavelength-routed optical networks," IEEE LEOS 2004, Vol. 1, 7–11 Nov. 2004, pp. 428‒429.

L. Eldada, "Optical add/drop multiplexing architecture for metro area networks," SPIE Newsroom, Jan.Jan. 2008

G. Agrawal, Fiber-Optic Communication Systems, 3rd ed., Wiley, New York, NY, USA, 2002.

S. Azodolmolky, Y. Pointurier, M. Angelou, J. Solé Pareta, and I. Tomkos, "Routing and wavelength assignment for transparent optical networks with QoT estimation inaccuracies," Proc. IEEE/OSA Optical Fiber Communication Conf. (OFC), Mar. 2010, San Diego, CA, USA, pp. 1‒3.

A. Birman and A. Kershenbaum, "Routing and wavelength assignment methods in single-hop all-optical networks with blocking," Proc. INFOCOM, Vol. 2, Apr. 1995, Boston, MA, USA, pp. 431‒438.

T. Deng, S. Subramaniam, and J. Xu, "Crosstalk-aware wavelength assignment in dynamic wavelength-routed optical networks," Proc. Broadnets, Oct. 2004, San Jose, CA, USA, pp. 140‒149.

J. He, M. Brandt-Pearce, Y. Pointurier, and S. Subramaniam, "Adaptive wavelength assignment using wavelength spectrum separation for distributed optical networks," Proc. IEEE Int. Conf. on Communications (ICC), June 2007, Glasgow, UK, pp. 2406‒2411.

A. Girard, Routing and Dimensioning in Circuit-Switched Networks, Addison-Wesley, 1990.

Juniper networks router-integrated OTN, [Online]. Available: http://www.juniper.net/us/en/local/pdf/datasheets/1000263-en.pdf

C. R. Menyuk and A. Galtarossa, Polarization Mode Dispersion, Springer, 2005.

F. P. Kelly, Reversibility and Stochastic Networks, Wiley, New York, NY, USA, 1979.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Flowchart of QoT algorithm incorporating both wavelength blocking and QoT blocking.

Fig. 2
Fig. 2

Layered network model for wavelength-routed optical networks.

Fig. 3
Fig. 3

A generic lightpath structure with n + 1 nodes and n links. DC is a dispersion compensator. A G is an in-line optical amplifier. Reconfigurable optical add–drop multiplexers based on wavelength selective switching (WSS) are represented as “ROADM”s.

Fig. 4
Fig. 4

An all-optical switching node composed of demultiplexers and multiplexers. A WRS is a wavelength-routed switch. Optical add–drop multiplexers (OADMs) are omitted here.

Fig. 5
Fig. 5

Flow of analysis of layer w in the layered network model for QoT-aware and QoT-guaranteed WA algorithms.

Fig. 6
Fig. 6

Topology of a four-node tandem network.

Fig. 7
Fig. 7

Possible QoT blocking events of the 2-hop path y 2 on wavelength w = 1 for the four-node tandem network in Fig. 6. Note that no QoT blocking event is associated with y 4 .

Fig. 8
Fig. 8

Topology of the seven-node ring network used for analysis and simulation. Each link is 75 km long.

Fig. 9
Fig. 9

Topology of a downsized version of the NSF network with 14 nodes and 21 bidirectional links, using link lengths 1 / 10 of their original size. The numbers on the links represent the number of spans along the link. Each span is around 75 km long.

Fig. 10
Fig. 10

FF WA BP computed using the accurate analysis and simulation for the four-node tandem network, W = 5 . The data rate is 10 Gb/s, uncoded.

Fig. 11
Fig. 11

FFwO WA BP computed using the accurate analysis and simulation for the four-node tandem network, W = 5 . The data rate is 10 Gb/s, uncoded.

Fig. 12
Fig. 12

FF WA BP computed using the approximate method and simulation for the four-node tandem network, W = 5 . The data rate is 10 Gb/s, uncoded.

Fig. 13
Fig. 13

FFwO WA BP computed using the approximate method and simulation for the four-node tandem network, W = 5 . The data rate is 10 Gb/s, uncoded.

Fig. 14
Fig. 14

FF WA BP computed using the approximate method and simulation for the seven-node ring network, W = 5 . The data rate is 10 Gb/s, uncoded. In this and all subsequent plots, the bottom curves (FF without QoT) are based on the model in [17].

Fig. 15
Fig. 15

FFwO WA BP computed using the approximate method and simulation for the seven-node ring network, W = 5 . The data rate is 10 Gb/s, uncoded.

Fig. 16
Fig. 16

FF WA BP computed using the approximate method and simulation for the scaled NSF network, W = 6 . The data rate is 10 Gb/s, uncoded.

Fig. 17
Fig. 17

FFwO WA BP computed using the approximate method and simulation for the scaled NSF network, W = 6 . The data rate is 10 Gb/s, uncoded.

Fig. 18
Fig. 18

FF WA BP computed using the approximate method and simulation for the scaled NSF network, W = 16 . The data rate is 40 Gb/s, coded.

Fig. 19
Fig. 19

FFwO WA BP computed using the approximate method and simulation for the scaled NSF network, W = 16 . The data rate is 40 Gb/s, coded.

Tables (2)

Tables Icon

Table I Parameter Settings

Tables Icon

Table II Routing Table Including N max for Fig. 6

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

B E R 0 . 5 erfc ( Q / 2 ) ,
Q = μ ( 1 ) μ ( 0 ) σ ( 1 ) + σ ( 0 ) ,
σ 2 ( k ) = σ X T 2 ( k ) + σ A S E 2 ( k ) + σ t h 2 + σ s h 2 ( k ) , k { 0 , 1 } ,
( β 0 , 1 w ( t ) , β 0 , 2 w ( t ) , , β n 1 , n w ( t ) ) ,
β i , j w + β l , m w 1 , r ( i , j ) r ( l , m ) 0 .
π w ( β 0 , 1 w , β 0 , 2 w , , β n 1 , n w ) = 1 G r ( 0 , n ) w ( a 0 , 1 w ) β 0 , 1 w ( a 0 , 2 w ) β 0 , 2 w ( a n 1 , n w ) β n 1 , n w ,
G r ( 0 , n ) w = G r ( 0 , n 1 ) w + i = 0 n 1 G r ( 0 , i ) w a i , n w ,
a i , j w = ( s , d ) : r ( i , j ) r ( s , d ) A s , d w  assigned uniquely to  ( i , j ) A s , d w ( 1 P s , d w ) 1 P i , j w ,
P 0 , n w = 1 π w ( 0 , 0 , , 0 ) = 1 1 G r ( 0 , n ) w .
A ̄ y w + 1 = A y w P y w .
V ̄ y w + 1 = A ̄ y w + 1 1 A ̄ y w + 1 + Φ y Ω ̄ y w + 1 + 1 + A ̄ y w + 1 Φ y ,
Φ y E r ( Φ y , Ω ̄ y w + 1 ) = A ̄ y w + 1 .
E r ( x , y ) = x y e x Γ ( y + 1 ) [ 1 Γ ( x , y + 1 ) ] ,
Z ̄ y w + 1 = V ̄ y w + 1 / A ̄ y w + 1 .
A y w + 1 P y w + 1 A ̄ y w + 1 E r A ̄ y w + 1 Z ̄ y w + 1 , Ω y w + 1 Z ̄ y w + 1 ,
P y w + 1 = E r ( A y w + 1 , Ω y w + 1 ) ,
P y = A y W P y W Φ y = A ̄ y W + 1 Φ y .
P = y Y A ̄ y W + 1 y Y Φ y .
( I ¯ w 1 + I ¯ w + 1 ) X ¯ y T > N max ( y ) ,
y Y w + 1 s . t . ( I ¯ w ( y ) + I ¯ w + 2 ) X ¯ y T > N max ( y )
y Y w 1 s . t . ( I ¯ w ( y ) + I ¯ w 2 ) X ¯ y T > N max ( y ) .
P r ( ξ 1 1 [ y 2 ] ) = ( 1 P y 2 w + 1 ) π w + 1 ( 0 , 1 , 0 , 0 , 0 , 0 ) × ( 1 P y 2 w + 2 ) π w + 2 ( 0 , 1 , 0 , 0 , 0 , 0 ) .
P r ( ξ i w [ y ] ) = j = 2 1 1 1 P r ( r ( y )  idle in  w + j ) × j = 2 2 y : ξ i w [ y ] ( w + j , y ) = 1 ( 1 P y w + j ) π w + j ξ i w [ y ] ( w + j )
P r ( r ( y )  idle in  w + j ) = 1 G r ( y ) w + j .
P y w = i = 1 K P r ( ξ i w [ y ] ) .
A ̄ y w = A y w ( 1 P y w )
A ̄ y w + 1 = A y w P y w + A ˆ y w P y w ,
A y w = A y P y w ( 1 P y w ) ,
A ̄ y w + 1 = A y w P y w P y w + A ˆ y w P y w .
P y = A ̄ y W + 1 + w = 1 W A y w Φ y .
P = y Y Φ y P y y Y Φ y .