Abstract

We propose and experimentally demonstrate a transparent optical-code-division multiplexing (OCDM) overlay public dense wavelength-division multiplexing (DWDM) network architecture enabled by a passive spectral notch filter for extracting and detecting a secure OCDM signal, which employs a time domain spectral phase encoding/decoding scheme that can simultaneously generate differential-phase-shift-keying (DPSK) data and optical code patterns using only a single phase modulator. The time domain encoded OCDM signal has been scrambled bit-by-bit by a prime hopping pattern and concealed in the public DWDM channels to significantly improve the OCDM channel security. The effect of optical code patterns, the channel number, and bandwidth of the spectral notch filters on the system performance has been theoretically simulated and experimentally validated. In the experiment, error-free transmission of a 2.5-Gb/s time domain spectral phase encoded DPSK–OCDM signal with three 8-chip, 20-Gchip/s optical codes and a scrambled code pattern in the transparent OCDM overlay two-channel 10-Gb/s DWDM network has been successfully demonstrated.

© 2011 OSA

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription