Abstract

In a passive optical network with a hybrid wavelength division multiplexing time division multiple-access scheme, implementing reconfigurable wavelength assignment is complex; hence the need to determine the conditions for which the capacity improvements justify requiring reconfigurability over adopting a more inexpensive fixed wavelength assignment. Fixed and reconfigurable approaches to wavelength assignment are modeled and evaluated under nonstationary traffic conditions. The performance improvement is obtained in terms of bit rate gain relative to the nominal bandwidth and depends on the number of wavelength channels as well as the magnitude of the load offered by the optical network units. In addition, frame delay and frame loss in relation to the bit rate performance are obtained for Pareto and exponentially distributed traffic. Simulations show that when introducing reconfigurability, typical peak bit rate gains with respect to the fixed case are 17%, and maxima of 175% are potentially possible when traffic demands are particularly uneven.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-L. Hsueh, M. S. Rogge, S. Yamamoto, and L. G. Kazovsky, "A highly flexible and efficient passive optical network employing dynamic wavelength allocation," J. Lightwave Technol. 23(1), 277‒286 (2005).
    [CrossRef]
  2. M. Maier, M. Herzog, and M. Reisslein, "STARGATE: the next evolutionary step toward unleashing the potential of WDM EPONs," IEEE Commun. Mag. 45(5), 50‒56 (2007).
    [CrossRef]
  3. P. J. Urban, B. Huiszoon, R. Roy, M. M. de Laat, F. M. Huijskens, E. J. Klein, G. D. Khoe, A. M. J. Koonen, and H. de Waardt, "High-bit-rate dynamically reconfigurable WDM–TDM access network," J. Opt. Commun. Netw. 1(2), A143‒A151 (2009).
    [CrossRef]
  4. R. Glatty, P. Guignard, and P. Chanclou, "Fair resource distribution within the flexible WDMA/TDMA optical access network based on GPON infrastructure," J. Opt. Commun. Netw. 1(2), 17‒24 (2009).
    [CrossRef]
  5. R. Roy, G. Manhoudt, and W. van Etten, "Optical-router-based dynamically reconfigurable photonic access network," J. Opt. Netw. 8(1), 51‒76 (2009).
    [CrossRef]
  6. T. Koonen, K. Steenbergen, F. Janssen, and J. Wellen, "Flexibly reconfigurable fiber–wireless network using wavelength routing techniques: the ACTS project AC349 PRISMA," Photonic Network Commun. 3(3), 297‒306 (2001).
    [CrossRef]
  7. J. Homa and K. Bala, "ROADM architectures and their enabling WSS technology," IEEE Commun. Mag. 46(7), 150‒154 (2008).
    [CrossRef]
  8. T. A. Strasser and J. Taylor, "ROADMS unlock the edge of the network," IEEE Commun. Mag. 46(7), 146‒149 (2008).
    [CrossRef]
  9. W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, "On the self-similar nature of Ethernet traffic (extended version)," IEEE/ACM Trans. Netw. 2(1), 1‒15 (1993).
    [CrossRef]
  10. G. Kramer, B. Mukherjee, and G. Pesavento, "Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network," Photonic Network Commun. 4(1), 89‒107 (2002).
    [CrossRef]
  11. B. Skubic, J. Chen, J. Ahmed, L. Wosinka, and B. Mukherjee, "A comparison of dynamic bandwidth allocation for EPON, GPON, and next-generation TDM PON," IEEE Commun. Mag. 47(3), 40‒48 (2009).
    [CrossRef]
  12. G. I. Papadimitriou and A. S. Pomportsis, "Self-adaptive TDMA protocols for WDM star networks: a learning-automata-based approach," IEEE Photon. Technol. Lett. 11(10), 1322‒1324 (1999).
    [CrossRef]
  13. C. Linardakis, H. C. Leligou, A. Stavdas, and J. D. Angelopoulos, "Using explicit reservations to arbitrate access to a metropolitan system of slotted interconnected rings combining TDMA and WDMA," J. Lightwave Technol. 23(4), 1576‒1585 (2005).
    [CrossRef]
  14. K. Kanonakis and T. Tomkos, "Improving the efficiency of online upstream scheduling and wavelength assignment in hybrid WDM/TDMA EPON networks," IEEE J. Sel. Areas Commun. 28(6), 838‒848 (2010).
    [CrossRef]
  15. M. McGarry, M. Maier, and M. Reisslein, “An evolutionary WDM upgrade for EPONs.” Arizona State University, Tech. Report, 2005. Available: http://mre.faculty.asu.edu/EPONupgrade.pdf.
  16. M. McGarry, M. Maier, and M. Reisslein, "WDM Ethernet passive optical networks (EPONs)," IEEE Commun. Mag. 44(2), 15‒22 (2006).
    [CrossRef]
  17. A. R. Dhaini, C. M. Assi, M. Maier, and A. Shami, "Dynamic wavelength and bandwidth allocation in hybrid TDM/WDM EPON networks," J. Lightwave Technol. 25(1), 277‒286 (2007).
    [CrossRef]
  18. A. R. Dhaini, C. M. Assi, and A. Shami, "Dynamic bandwidth allocation schemes in hybrid TDM/WDM passive optical networks," 3rd IEEE CCNC, Vol. 1, 2006, pp. 30‒34.
  19. X. Ma and G. S. Kuo, "Optical switching technology comparison: optical MEMS vs. other technologies," IEEE Commun. Mag. 41(11), S16‒S23 (2003).
    [CrossRef]
  20. L. Kleinrock, Queueing Systems, Wiley-Interscience, 1975, Vol. 1, Chap. 2.
  21. Möbius Manual, University of Illinois at Urbana-Champaign, 2009. Available: www.mobius.illinois.edu/manual/MobiusManual.pdf

2010

K. Kanonakis and T. Tomkos, "Improving the efficiency of online upstream scheduling and wavelength assignment in hybrid WDM/TDMA EPON networks," IEEE J. Sel. Areas Commun. 28(6), 838‒848 (2010).
[CrossRef]

2009

2008

J. Homa and K. Bala, "ROADM architectures and their enabling WSS technology," IEEE Commun. Mag. 46(7), 150‒154 (2008).
[CrossRef]

T. A. Strasser and J. Taylor, "ROADMS unlock the edge of the network," IEEE Commun. Mag. 46(7), 146‒149 (2008).
[CrossRef]

2007

M. Maier, M. Herzog, and M. Reisslein, "STARGATE: the next evolutionary step toward unleashing the potential of WDM EPONs," IEEE Commun. Mag. 45(5), 50‒56 (2007).
[CrossRef]

A. R. Dhaini, C. M. Assi, M. Maier, and A. Shami, "Dynamic wavelength and bandwidth allocation in hybrid TDM/WDM EPON networks," J. Lightwave Technol. 25(1), 277‒286 (2007).
[CrossRef]

2006

M. McGarry, M. Maier, and M. Reisslein, "WDM Ethernet passive optical networks (EPONs)," IEEE Commun. Mag. 44(2), 15‒22 (2006).
[CrossRef]

2005

2003

X. Ma and G. S. Kuo, "Optical switching technology comparison: optical MEMS vs. other technologies," IEEE Commun. Mag. 41(11), S16‒S23 (2003).
[CrossRef]

2002

G. Kramer, B. Mukherjee, and G. Pesavento, "Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network," Photonic Network Commun. 4(1), 89‒107 (2002).
[CrossRef]

2001

T. Koonen, K. Steenbergen, F. Janssen, and J. Wellen, "Flexibly reconfigurable fiber–wireless network using wavelength routing techniques: the ACTS project AC349 PRISMA," Photonic Network Commun. 3(3), 297‒306 (2001).
[CrossRef]

1999

G. I. Papadimitriou and A. S. Pomportsis, "Self-adaptive TDMA protocols for WDM star networks: a learning-automata-based approach," IEEE Photon. Technol. Lett. 11(10), 1322‒1324 (1999).
[CrossRef]

1993

W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, "On the self-similar nature of Ethernet traffic (extended version)," IEEE/ACM Trans. Netw. 2(1), 1‒15 (1993).
[CrossRef]

Ahmed, J.

B. Skubic, J. Chen, J. Ahmed, L. Wosinka, and B. Mukherjee, "A comparison of dynamic bandwidth allocation for EPON, GPON, and next-generation TDM PON," IEEE Commun. Mag. 47(3), 40‒48 (2009).
[CrossRef]

Angelopoulos, J. D.

Assi, C. M.

A. R. Dhaini, C. M. Assi, M. Maier, and A. Shami, "Dynamic wavelength and bandwidth allocation in hybrid TDM/WDM EPON networks," J. Lightwave Technol. 25(1), 277‒286 (2007).
[CrossRef]

A. R. Dhaini, C. M. Assi, and A. Shami, "Dynamic bandwidth allocation schemes in hybrid TDM/WDM passive optical networks," 3rd IEEE CCNC, Vol. 1, 2006, pp. 30‒34.

Bala, K.

J. Homa and K. Bala, "ROADM architectures and their enabling WSS technology," IEEE Commun. Mag. 46(7), 150‒154 (2008).
[CrossRef]

Chanclou, P.

Chen, J.

B. Skubic, J. Chen, J. Ahmed, L. Wosinka, and B. Mukherjee, "A comparison of dynamic bandwidth allocation for EPON, GPON, and next-generation TDM PON," IEEE Commun. Mag. 47(3), 40‒48 (2009).
[CrossRef]

de Laat, M. M.

de Waardt, H.

Dhaini, A. R.

A. R. Dhaini, C. M. Assi, M. Maier, and A. Shami, "Dynamic wavelength and bandwidth allocation in hybrid TDM/WDM EPON networks," J. Lightwave Technol. 25(1), 277‒286 (2007).
[CrossRef]

A. R. Dhaini, C. M. Assi, and A. Shami, "Dynamic bandwidth allocation schemes in hybrid TDM/WDM passive optical networks," 3rd IEEE CCNC, Vol. 1, 2006, pp. 30‒34.

Glatty, R.

Guignard, P.

Herzog, M.

M. Maier, M. Herzog, and M. Reisslein, "STARGATE: the next evolutionary step toward unleashing the potential of WDM EPONs," IEEE Commun. Mag. 45(5), 50‒56 (2007).
[CrossRef]

Homa, J.

J. Homa and K. Bala, "ROADM architectures and their enabling WSS technology," IEEE Commun. Mag. 46(7), 150‒154 (2008).
[CrossRef]

Hsueh, Y.-L.

Huijskens, F. M.

Huiszoon, B.

Janssen, F.

T. Koonen, K. Steenbergen, F. Janssen, and J. Wellen, "Flexibly reconfigurable fiber–wireless network using wavelength routing techniques: the ACTS project AC349 PRISMA," Photonic Network Commun. 3(3), 297‒306 (2001).
[CrossRef]

Kanonakis, K.

K. Kanonakis and T. Tomkos, "Improving the efficiency of online upstream scheduling and wavelength assignment in hybrid WDM/TDMA EPON networks," IEEE J. Sel. Areas Commun. 28(6), 838‒848 (2010).
[CrossRef]

Kazovsky, L. G.

Khoe, G. D.

Klein, E. J.

Kleinrock, L.

L. Kleinrock, Queueing Systems, Wiley-Interscience, 1975, Vol. 1, Chap. 2.

Koonen, A. M. J.

Koonen, T.

T. Koonen, K. Steenbergen, F. Janssen, and J. Wellen, "Flexibly reconfigurable fiber–wireless network using wavelength routing techniques: the ACTS project AC349 PRISMA," Photonic Network Commun. 3(3), 297‒306 (2001).
[CrossRef]

Kramer, G.

G. Kramer, B. Mukherjee, and G. Pesavento, "Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network," Photonic Network Commun. 4(1), 89‒107 (2002).
[CrossRef]

Kuo, G. S.

X. Ma and G. S. Kuo, "Optical switching technology comparison: optical MEMS vs. other technologies," IEEE Commun. Mag. 41(11), S16‒S23 (2003).
[CrossRef]

Leland, W. E.

W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, "On the self-similar nature of Ethernet traffic (extended version)," IEEE/ACM Trans. Netw. 2(1), 1‒15 (1993).
[CrossRef]

Leligou, H. C.

Linardakis, C.

Ma, X.

X. Ma and G. S. Kuo, "Optical switching technology comparison: optical MEMS vs. other technologies," IEEE Commun. Mag. 41(11), S16‒S23 (2003).
[CrossRef]

Maier, M.

M. Maier, M. Herzog, and M. Reisslein, "STARGATE: the next evolutionary step toward unleashing the potential of WDM EPONs," IEEE Commun. Mag. 45(5), 50‒56 (2007).
[CrossRef]

A. R. Dhaini, C. M. Assi, M. Maier, and A. Shami, "Dynamic wavelength and bandwidth allocation in hybrid TDM/WDM EPON networks," J. Lightwave Technol. 25(1), 277‒286 (2007).
[CrossRef]

M. McGarry, M. Maier, and M. Reisslein, "WDM Ethernet passive optical networks (EPONs)," IEEE Commun. Mag. 44(2), 15‒22 (2006).
[CrossRef]

M. McGarry, M. Maier, and M. Reisslein, “An evolutionary WDM upgrade for EPONs.” Arizona State University, Tech. Report, 2005. Available: http://mre.faculty.asu.edu/EPONupgrade.pdf.

Manhoudt, G.

McGarry, M.

M. McGarry, M. Maier, and M. Reisslein, "WDM Ethernet passive optical networks (EPONs)," IEEE Commun. Mag. 44(2), 15‒22 (2006).
[CrossRef]

M. McGarry, M. Maier, and M. Reisslein, “An evolutionary WDM upgrade for EPONs.” Arizona State University, Tech. Report, 2005. Available: http://mre.faculty.asu.edu/EPONupgrade.pdf.

Mukherjee, B.

B. Skubic, J. Chen, J. Ahmed, L. Wosinka, and B. Mukherjee, "A comparison of dynamic bandwidth allocation for EPON, GPON, and next-generation TDM PON," IEEE Commun. Mag. 47(3), 40‒48 (2009).
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, "Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network," Photonic Network Commun. 4(1), 89‒107 (2002).
[CrossRef]

Papadimitriou, G. I.

G. I. Papadimitriou and A. S. Pomportsis, "Self-adaptive TDMA protocols for WDM star networks: a learning-automata-based approach," IEEE Photon. Technol. Lett. 11(10), 1322‒1324 (1999).
[CrossRef]

Pesavento, G.

G. Kramer, B. Mukherjee, and G. Pesavento, "Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network," Photonic Network Commun. 4(1), 89‒107 (2002).
[CrossRef]

Pomportsis, A. S.

G. I. Papadimitriou and A. S. Pomportsis, "Self-adaptive TDMA protocols for WDM star networks: a learning-automata-based approach," IEEE Photon. Technol. Lett. 11(10), 1322‒1324 (1999).
[CrossRef]

Reisslein, M.

M. Maier, M. Herzog, and M. Reisslein, "STARGATE: the next evolutionary step toward unleashing the potential of WDM EPONs," IEEE Commun. Mag. 45(5), 50‒56 (2007).
[CrossRef]

M. McGarry, M. Maier, and M. Reisslein, "WDM Ethernet passive optical networks (EPONs)," IEEE Commun. Mag. 44(2), 15‒22 (2006).
[CrossRef]

M. McGarry, M. Maier, and M. Reisslein, “An evolutionary WDM upgrade for EPONs.” Arizona State University, Tech. Report, 2005. Available: http://mre.faculty.asu.edu/EPONupgrade.pdf.

Rogge, M. S.

Roy, R.

Shami, A.

A. R. Dhaini, C. M. Assi, M. Maier, and A. Shami, "Dynamic wavelength and bandwidth allocation in hybrid TDM/WDM EPON networks," J. Lightwave Technol. 25(1), 277‒286 (2007).
[CrossRef]

A. R. Dhaini, C. M. Assi, and A. Shami, "Dynamic bandwidth allocation schemes in hybrid TDM/WDM passive optical networks," 3rd IEEE CCNC, Vol. 1, 2006, pp. 30‒34.

Skubic, B.

B. Skubic, J. Chen, J. Ahmed, L. Wosinka, and B. Mukherjee, "A comparison of dynamic bandwidth allocation for EPON, GPON, and next-generation TDM PON," IEEE Commun. Mag. 47(3), 40‒48 (2009).
[CrossRef]

Stavdas, A.

Steenbergen, K.

T. Koonen, K. Steenbergen, F. Janssen, and J. Wellen, "Flexibly reconfigurable fiber–wireless network using wavelength routing techniques: the ACTS project AC349 PRISMA," Photonic Network Commun. 3(3), 297‒306 (2001).
[CrossRef]

Strasser, T. A.

T. A. Strasser and J. Taylor, "ROADMS unlock the edge of the network," IEEE Commun. Mag. 46(7), 146‒149 (2008).
[CrossRef]

Taqqu, M. S.

W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, "On the self-similar nature of Ethernet traffic (extended version)," IEEE/ACM Trans. Netw. 2(1), 1‒15 (1993).
[CrossRef]

Taylor, J.

T. A. Strasser and J. Taylor, "ROADMS unlock the edge of the network," IEEE Commun. Mag. 46(7), 146‒149 (2008).
[CrossRef]

Tomkos, T.

K. Kanonakis and T. Tomkos, "Improving the efficiency of online upstream scheduling and wavelength assignment in hybrid WDM/TDMA EPON networks," IEEE J. Sel. Areas Commun. 28(6), 838‒848 (2010).
[CrossRef]

Urban, P. J.

van Etten, W.

Wellen, J.

T. Koonen, K. Steenbergen, F. Janssen, and J. Wellen, "Flexibly reconfigurable fiber–wireless network using wavelength routing techniques: the ACTS project AC349 PRISMA," Photonic Network Commun. 3(3), 297‒306 (2001).
[CrossRef]

Willinger, W.

W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, "On the self-similar nature of Ethernet traffic (extended version)," IEEE/ACM Trans. Netw. 2(1), 1‒15 (1993).
[CrossRef]

Wilson, D. V.

W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, "On the self-similar nature of Ethernet traffic (extended version)," IEEE/ACM Trans. Netw. 2(1), 1‒15 (1993).
[CrossRef]

Wosinka, L.

B. Skubic, J. Chen, J. Ahmed, L. Wosinka, and B. Mukherjee, "A comparison of dynamic bandwidth allocation for EPON, GPON, and next-generation TDM PON," IEEE Commun. Mag. 47(3), 40‒48 (2009).
[CrossRef]

Yamamoto, S.

IEEE Commun. Mag.

J. Homa and K. Bala, "ROADM architectures and their enabling WSS technology," IEEE Commun. Mag. 46(7), 150‒154 (2008).
[CrossRef]

T. A. Strasser and J. Taylor, "ROADMS unlock the edge of the network," IEEE Commun. Mag. 46(7), 146‒149 (2008).
[CrossRef]

B. Skubic, J. Chen, J. Ahmed, L. Wosinka, and B. Mukherjee, "A comparison of dynamic bandwidth allocation for EPON, GPON, and next-generation TDM PON," IEEE Commun. Mag. 47(3), 40‒48 (2009).
[CrossRef]

M. Maier, M. Herzog, and M. Reisslein, "STARGATE: the next evolutionary step toward unleashing the potential of WDM EPONs," IEEE Commun. Mag. 45(5), 50‒56 (2007).
[CrossRef]

M. McGarry, M. Maier, and M. Reisslein, "WDM Ethernet passive optical networks (EPONs)," IEEE Commun. Mag. 44(2), 15‒22 (2006).
[CrossRef]

X. Ma and G. S. Kuo, "Optical switching technology comparison: optical MEMS vs. other technologies," IEEE Commun. Mag. 41(11), S16‒S23 (2003).
[CrossRef]

IEEE J. Sel. Areas Commun.

K. Kanonakis and T. Tomkos, "Improving the efficiency of online upstream scheduling and wavelength assignment in hybrid WDM/TDMA EPON networks," IEEE J. Sel. Areas Commun. 28(6), 838‒848 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

G. I. Papadimitriou and A. S. Pomportsis, "Self-adaptive TDMA protocols for WDM star networks: a learning-automata-based approach," IEEE Photon. Technol. Lett. 11(10), 1322‒1324 (1999).
[CrossRef]

IEEE/ACM Trans. Netw.

W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, "On the self-similar nature of Ethernet traffic (extended version)," IEEE/ACM Trans. Netw. 2(1), 1‒15 (1993).
[CrossRef]

J. Lightwave Technol.

J. Opt. Commun. Netw.

J. Opt. Netw.

Photonic Network Commun.

G. Kramer, B. Mukherjee, and G. Pesavento, "Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network," Photonic Network Commun. 4(1), 89‒107 (2002).
[CrossRef]

T. Koonen, K. Steenbergen, F. Janssen, and J. Wellen, "Flexibly reconfigurable fiber–wireless network using wavelength routing techniques: the ACTS project AC349 PRISMA," Photonic Network Commun. 3(3), 297‒306 (2001).
[CrossRef]

Other

M. McGarry, M. Maier, and M. Reisslein, “An evolutionary WDM upgrade for EPONs.” Arizona State University, Tech. Report, 2005. Available: http://mre.faculty.asu.edu/EPONupgrade.pdf.

L. Kleinrock, Queueing Systems, Wiley-Interscience, 1975, Vol. 1, Chap. 2.

Möbius Manual, University of Illinois at Urbana-Champaign, 2009. Available: www.mobius.illinois.edu/manual/MobiusManual.pdf

A. R. Dhaini, C. M. Assi, and A. Shami, "Dynamic bandwidth allocation schemes in hybrid TDM/WDM passive optical networks," 3rd IEEE CCNC, Vol. 1, 2006, pp. 30‒34.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The WDM–TDMA optical access network scenario.

Fig. 2
Fig. 2

The uplink model.

Fig. 3
Fig. 3

The traffic generation model in the access network.

Fig. 4
Fig. 4

(Color online) Average relative bit rates per user obtained for different numbers of wavelength channel pairs with respect to the fraction of out-of-profile users. FWA and DRWA are compared in three cases, which differ in the nature of out-of-profile users. Typical bit rates are included as a reference for EPON and GPON standards. Legend: [] “arbitrary user” (see the text), [] in-profile user, [] out-of-profile user. Row-wise: (a) case 1, (b) case 2, (c) case 3.

Fig. 5
Fig. 5

(Color online) Average relative bit rate gains obtained for different numbers of wavelength channel pairs compared to having a single wavelength channel. FWA and DRWA are compared for case 2.

Fig. 6
Fig. 6

(Color online) Average relative bit rate gains expressed as percentage obtained with DRWA compared to FWA for different numbers of wavelength channels. Cases 1 and 2 are compared.

Fig. 7
Fig. 7

(Color online) Average relative bit rates obtained with FWA and DRWA when the fraction of out-of-profile users equals f = 0 . 5 with respect to the number of wavelength channels. Cases 1 and 3 are compared. Typical bit rates are included as a reference for EPON and GPON standards.

Fig. 8
Fig. 8

(Color online) Average and maximum relative bit rate gains obtained with DRWA compared to those with FWA. The results correspond to case 3 for M = { 4 , 8 } wavelength channel pairs.

Fig. 9
Fig. 9

(Color online) Mean frame delay (a) and mean frame loss (b) with respect to the relative bit rate per ONU for Pareto and exponentially distributed durations of the ON/OFF periods. A fixed grant discipline implementation of IPACT [14] is adapted for GPON, while limited and gated disciplines are assumed for EPON.

Tables (1)

Tables Icon

Table I Population Cases According to ONU Profiles