Abstract

In this paper, a power and bandwidth efficient pulsed modulation technique for optical wireless (OW) communication is proposed. The scheme is called optical spatial modulation (OSM). In OSM, multiple transmit units exist where only one transmitter is active at any given time instance. The spatially separated transmit units are considered as spatial constellation points. Each unique sequence of incoming data bits is mapped to one of the spatial constellation points, i.e., activating one of the transmit units. This is the fundamental concept of the spatial modulation (SM) technique. In OW communication systems, the active transmitter radiates a certain intensity level at a particular time instance. At the receiver side, the optimal SM detector is used to estimate the active transmitter index. An overall increase in the data rate by the base 2 logarithm of the number of transmit units is achieved. The optical MIMO (multiple-input multiple-output) channel and the channel impulse response are obtained via Monte Carlo simulations by applying ray tracing techniques. It will be shown in this paper that the optical MIMO channel is highly correlated if transmitter and receiver locations are not optimized, which results in a significant power penalty. The power efficiency can be improved by increasing the number of receive units to enhance receive diversity and/or by using soft and hard channel coding techniques. Conversely, it is shown that aligning transmit and receive units creates nearly uncorrelated channel paths and results in substantial enhancements in system performance even as compared to the diversity or coding gain. The resultant aligned scheme is shown to be very efficient in terms of power and bandwidth as compared to on–off keying, pulse position modulation, and pulse amplitude modulation. In this paper also, the upper bound bit error ratios of coded and uncoded OSM are analyzed. The analytical results are validated via Monte Carlo simulations and the results demonstrate a close match.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE 85(2), 265‒298 (1997).
    [Crossref]
  2. R. J. Green, H. Joshi, M. D. Higgins, and M. S. Leeson, "Recent developments in indoor optical wireless," IET Commun. 2(1), 3‒10 (2008).
    [Crossref]
  3. BROADCOM Corporation, "802.11n: Next-Generation Wireless LAN Technology," White paper, Tech. Rep., 2006, http://www.broadcom.com/collateral/wp/802_11n-WP100-R.pdf.
  4. L. Zeng, D. O’Brien, H. Minh, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, "High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting," IEEE J. Sel. Areas Commun. 27(9), 1654‒1662 (2009).
    [Crossref]
  5. P. Djahani and J. M. Kahn, "Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers," IEEE Trans. Commun. 48(12), 2077‒2088 (2000).
    [Crossref]
  6. D. Takase and T. Ohtsuki, "Optical wireless MIMO communications (OMIMO)," Proc. IEEE Global Telecommunications Conf. GLOBECOM ’04, Vol. 2, 2004, Texas, USA, pp. 928‒932.
  7. E. J. Lee and V. W. S. Chan, "Part 1: Optical communication over the clear turbulent atmospheric channel using diversity," IEEE J. Sel. Areas Commun. 22(9), 1896‒1906 (2004).
    [Crossref]
  8. S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, "Optical repetition MIMO transmission with multipulse PPM," IEEE J. Sel. Areas Commun. 23(9), 1901‒1910 (2005).
    [Crossref]
  9. S. M. Navidpour, M. Uysal, and M. Kavehrad, "BER performance of free-space optical transmission with spatial diversity," IEEE Trans. Wireless Commun. 6(8), 2813‒2819 (2007).
    [Crossref]
  10. M. K. Simon and V. A. Vilnrotter, "Alamouti-type spacetime coding for free-space optical communication with direct detection," IEEE Trans. Wireless Commun. 4(1), 35‒39 (2005).
    [Crossref]
  11. M. Safari and M. Uysal, "Do we really need OSTBCs for free-space optical communication with direct detection?," IEEE Trans. Wireless Commun. 7(11), 4445‒4448 (2008).
    [Crossref]
  12. R. Mesleh, H. Haas, S. Sinanović, C. W. Ahn, and S. Yun, "Spatial modulation," IEEE Trans. Veh. Technol. 57(4), 2228‒2241 (2008).
    [Crossref]
  13. J. Jeganathan, A. Ghrayeb, and L. Szczecinski, "Spatial modulation: optimal detection and performance analysis," IEEE Commun. Lett. 12(8), 545‒547 (2008).
    [Crossref]
  14. J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11(3), 367‒379 (1993).
    [Crossref]
  15. A. Viterbi, "Convolutional codes and their performance in communication systems," IEEE Trans. Commun. 19(5), 751‒772 (1971).
    [Crossref]
  16. S. U. Hwang, S. Jeon, S. Lee, and J. Seo, "Soft-output ML detector for spatial modulation OFDM systems," IEICE Electron. Express 6(19), 1426‒1431 (2009).
    [Crossref]
  17. J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, "Space shift keying modulation for MIMO channels," IEEE Trans. Wireless Commun. 8(7), 3692‒3703 (2009).
    [Crossref]
  18. M. Di Renzo, R. Mesleh, H. Haas, and P. M. Grant, "Upper bounds for the analysis of Trellis coded spatial modulation over correlated fading channels," IEEE 71st Vehicular Technology Conf. (VTC’10), 2010.
  19. J. G. Proakis, Digital Communications, 4th ed., McGraw-Hill Series in Electrical and Computer Engineering, S. W. Director, ed., McGraw-Hill Higher Education, 2000.
  20. R. Mesleh, R. Mehmood, H. Elgala, and H. Haas, "Indoor MIMO optical wireless communication using spatial modulation," IEEE Int. Conf. on Communications (ICC’10), 2010, Cape Town, South Africa, pp. 1‒5.
  21. L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, "Improvement of date rate by using equalization in an indoor visible light communication system," 4th IEEE Int. Conf. on Circuits and Systems for Communications (ICCSC 2008), 2008, Shanghai, China, pp. 678‒682.
  22. "Multiplexing and channel coding (FDD)," ETSI TS 125 212 V8.5.0, 2009, Sophia Antipolis Valbonne, France.

2009 (3)

L. Zeng, D. O’Brien, H. Minh, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, "High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting," IEEE J. Sel. Areas Commun. 27(9), 1654‒1662 (2009).
[Crossref]

S. U. Hwang, S. Jeon, S. Lee, and J. Seo, "Soft-output ML detector for spatial modulation OFDM systems," IEICE Electron. Express 6(19), 1426‒1431 (2009).
[Crossref]

J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, "Space shift keying modulation for MIMO channels," IEEE Trans. Wireless Commun. 8(7), 3692‒3703 (2009).
[Crossref]

2008 (4)

M. Safari and M. Uysal, "Do we really need OSTBCs for free-space optical communication with direct detection?," IEEE Trans. Wireless Commun. 7(11), 4445‒4448 (2008).
[Crossref]

R. Mesleh, H. Haas, S. Sinanović, C. W. Ahn, and S. Yun, "Spatial modulation," IEEE Trans. Veh. Technol. 57(4), 2228‒2241 (2008).
[Crossref]

J. Jeganathan, A. Ghrayeb, and L. Szczecinski, "Spatial modulation: optimal detection and performance analysis," IEEE Commun. Lett. 12(8), 545‒547 (2008).
[Crossref]

R. J. Green, H. Joshi, M. D. Higgins, and M. S. Leeson, "Recent developments in indoor optical wireless," IET Commun. 2(1), 3‒10 (2008).
[Crossref]

2007 (1)

S. M. Navidpour, M. Uysal, and M. Kavehrad, "BER performance of free-space optical transmission with spatial diversity," IEEE Trans. Wireless Commun. 6(8), 2813‒2819 (2007).
[Crossref]

2005 (2)

M. K. Simon and V. A. Vilnrotter, "Alamouti-type spacetime coding for free-space optical communication with direct detection," IEEE Trans. Wireless Commun. 4(1), 35‒39 (2005).
[Crossref]

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, "Optical repetition MIMO transmission with multipulse PPM," IEEE J. Sel. Areas Commun. 23(9), 1901‒1910 (2005).
[Crossref]

2004 (1)

E. J. Lee and V. W. S. Chan, "Part 1: Optical communication over the clear turbulent atmospheric channel using diversity," IEEE J. Sel. Areas Commun. 22(9), 1896‒1906 (2004).
[Crossref]

2000 (1)

P. Djahani and J. M. Kahn, "Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers," IEEE Trans. Commun. 48(12), 2077‒2088 (2000).
[Crossref]

1997 (1)

J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE 85(2), 265‒298 (1997).
[Crossref]

1993 (1)

J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11(3), 367‒379 (1993).
[Crossref]

1971 (1)

A. Viterbi, "Convolutional codes and their performance in communication systems," IEEE Trans. Commun. 19(5), 751‒772 (1971).
[Crossref]

Ahn, C. W.

R. Mesleh, H. Haas, S. Sinanović, C. W. Ahn, and S. Yun, "Spatial modulation," IEEE Trans. Veh. Technol. 57(4), 2228‒2241 (2008).
[Crossref]

Baedke, M.

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, "Optical repetition MIMO transmission with multipulse PPM," IEEE J. Sel. Areas Commun. 23(9), 1901‒1910 (2005).
[Crossref]

Barry, J.

J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11(3), 367‒379 (1993).
[Crossref]

Barry, J. R.

J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE 85(2), 265‒298 (1997).
[Crossref]

Brandt-Pearce, M.

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, "Optical repetition MIMO transmission with multipulse PPM," IEEE J. Sel. Areas Commun. 23(9), 1901‒1910 (2005).
[Crossref]

Cao, Q.

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, "Optical repetition MIMO transmission with multipulse PPM," IEEE J. Sel. Areas Commun. 23(9), 1901‒1910 (2005).
[Crossref]

Ceron, A.

J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, "Space shift keying modulation for MIMO channels," IEEE Trans. Wireless Commun. 8(7), 3692‒3703 (2009).
[Crossref]

Chan, V. W. S.

E. J. Lee and V. W. S. Chan, "Part 1: Optical communication over the clear turbulent atmospheric channel using diversity," IEEE J. Sel. Areas Commun. 22(9), 1896‒1906 (2004).
[Crossref]

Di Renzo, M.

M. Di Renzo, R. Mesleh, H. Haas, and P. M. Grant, "Upper bounds for the analysis of Trellis coded spatial modulation over correlated fading channels," IEEE 71st Vehicular Technology Conf. (VTC’10), 2010.

Djahani, P.

P. Djahani and J. M. Kahn, "Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers," IEEE Trans. Commun. 48(12), 2077‒2088 (2000).
[Crossref]

Elgala, H.

R. Mesleh, R. Mehmood, H. Elgala, and H. Haas, "Indoor MIMO optical wireless communication using spatial modulation," IEEE Int. Conf. on Communications (ICC’10), 2010, Cape Town, South Africa, pp. 1‒5.

Faulkner, G.

L. Zeng, D. O’Brien, H. Minh, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, "High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting," IEEE J. Sel. Areas Commun. 27(9), 1654‒1662 (2009).
[Crossref]

Ghrayeb, A.

J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, "Space shift keying modulation for MIMO channels," IEEE Trans. Wireless Commun. 8(7), 3692‒3703 (2009).
[Crossref]

J. Jeganathan, A. Ghrayeb, and L. Szczecinski, "Spatial modulation: optimal detection and performance analysis," IEEE Commun. Lett. 12(8), 545‒547 (2008).
[Crossref]

Grant, P. M.

M. Di Renzo, R. Mesleh, H. Haas, and P. M. Grant, "Upper bounds for the analysis of Trellis coded spatial modulation over correlated fading channels," IEEE 71st Vehicular Technology Conf. (VTC’10), 2010.

Green, R. J.

R. J. Green, H. Joshi, M. D. Higgins, and M. S. Leeson, "Recent developments in indoor optical wireless," IET Commun. 2(1), 3‒10 (2008).
[Crossref]

Haas, H.

R. Mesleh, H. Haas, S. Sinanović, C. W. Ahn, and S. Yun, "Spatial modulation," IEEE Trans. Veh. Technol. 57(4), 2228‒2241 (2008).
[Crossref]

R. Mesleh, R. Mehmood, H. Elgala, and H. Haas, "Indoor MIMO optical wireless communication using spatial modulation," IEEE Int. Conf. on Communications (ICC’10), 2010, Cape Town, South Africa, pp. 1‒5.

M. Di Renzo, R. Mesleh, H. Haas, and P. M. Grant, "Upper bounds for the analysis of Trellis coded spatial modulation over correlated fading channels," IEEE 71st Vehicular Technology Conf. (VTC’10), 2010.

Higgins, M. D.

R. J. Green, H. Joshi, M. D. Higgins, and M. S. Leeson, "Recent developments in indoor optical wireless," IET Commun. 2(1), 3‒10 (2008).
[Crossref]

Hwang, S. U.

S. U. Hwang, S. Jeon, S. Lee, and J. Seo, "Soft-output ML detector for spatial modulation OFDM systems," IEICE Electron. Express 6(19), 1426‒1431 (2009).
[Crossref]

Jeganathan, J.

J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, "Space shift keying modulation for MIMO channels," IEEE Trans. Wireless Commun. 8(7), 3692‒3703 (2009).
[Crossref]

J. Jeganathan, A. Ghrayeb, and L. Szczecinski, "Spatial modulation: optimal detection and performance analysis," IEEE Commun. Lett. 12(8), 545‒547 (2008).
[Crossref]

Jeon, S.

S. U. Hwang, S. Jeon, S. Lee, and J. Seo, "Soft-output ML detector for spatial modulation OFDM systems," IEICE Electron. Express 6(19), 1426‒1431 (2009).
[Crossref]

Joshi, H.

R. J. Green, H. Joshi, M. D. Higgins, and M. S. Leeson, "Recent developments in indoor optical wireless," IET Commun. 2(1), 3‒10 (2008).
[Crossref]

Jung, D.

L. Zeng, D. O’Brien, H. Minh, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, "High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting," IEEE J. Sel. Areas Commun. 27(9), 1654‒1662 (2009).
[Crossref]

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, "Improvement of date rate by using equalization in an indoor visible light communication system," 4th IEEE Int. Conf. on Circuits and Systems for Communications (ICCSC 2008), 2008, Shanghai, China, pp. 678‒682.

Kahn, J.

J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11(3), 367‒379 (1993).
[Crossref]

Kahn, J. M.

P. Djahani and J. M. Kahn, "Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers," IEEE Trans. Commun. 48(12), 2077‒2088 (2000).
[Crossref]

J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE 85(2), 265‒298 (1997).
[Crossref]

Kavehrad, M.

S. M. Navidpour, M. Uysal, and M. Kavehrad, "BER performance of free-space optical transmission with spatial diversity," IEEE Trans. Wireless Commun. 6(8), 2813‒2819 (2007).
[Crossref]

Krause, W.

J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11(3), 367‒379 (1993).
[Crossref]

Lee, E.

J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11(3), 367‒379 (1993).
[Crossref]

Lee, E. J.

E. J. Lee and V. W. S. Chan, "Part 1: Optical communication over the clear turbulent atmospheric channel using diversity," IEEE J. Sel. Areas Commun. 22(9), 1896‒1906 (2004).
[Crossref]

Lee, K.

L. Zeng, D. O’Brien, H. Minh, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, "High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting," IEEE J. Sel. Areas Commun. 27(9), 1654‒1662 (2009).
[Crossref]

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, "Improvement of date rate by using equalization in an indoor visible light communication system," 4th IEEE Int. Conf. on Circuits and Systems for Communications (ICCSC 2008), 2008, Shanghai, China, pp. 678‒682.

Lee, S.

S. U. Hwang, S. Jeon, S. Lee, and J. Seo, "Soft-output ML detector for spatial modulation OFDM systems," IEICE Electron. Express 6(19), 1426‒1431 (2009).
[Crossref]

Leeson, M. S.

R. J. Green, H. Joshi, M. D. Higgins, and M. S. Leeson, "Recent developments in indoor optical wireless," IET Commun. 2(1), 3‒10 (2008).
[Crossref]

Le-Minh, H.

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, "Improvement of date rate by using equalization in an indoor visible light communication system," 4th IEEE Int. Conf. on Circuits and Systems for Communications (ICCSC 2008), 2008, Shanghai, China, pp. 678‒682.

Mehmood, R.

R. Mesleh, R. Mehmood, H. Elgala, and H. Haas, "Indoor MIMO optical wireless communication using spatial modulation," IEEE Int. Conf. on Communications (ICC’10), 2010, Cape Town, South Africa, pp. 1‒5.

Mesleh, R.

R. Mesleh, H. Haas, S. Sinanović, C. W. Ahn, and S. Yun, "Spatial modulation," IEEE Trans. Veh. Technol. 57(4), 2228‒2241 (2008).
[Crossref]

R. Mesleh, R. Mehmood, H. Elgala, and H. Haas, "Indoor MIMO optical wireless communication using spatial modulation," IEEE Int. Conf. on Communications (ICC’10), 2010, Cape Town, South Africa, pp. 1‒5.

M. Di Renzo, R. Mesleh, H. Haas, and P. M. Grant, "Upper bounds for the analysis of Trellis coded spatial modulation over correlated fading channels," IEEE 71st Vehicular Technology Conf. (VTC’10), 2010.

Messerschmitt, D.

J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11(3), 367‒379 (1993).
[Crossref]

Minh, H.

L. Zeng, D. O’Brien, H. Minh, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, "High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting," IEEE J. Sel. Areas Commun. 27(9), 1654‒1662 (2009).
[Crossref]

Navidpour, S. M.

S. M. Navidpour, M. Uysal, and M. Kavehrad, "BER performance of free-space optical transmission with spatial diversity," IEEE Trans. Wireless Commun. 6(8), 2813‒2819 (2007).
[Crossref]

O’Brien, D.

L. Zeng, D. O’Brien, H. Minh, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, "High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting," IEEE J. Sel. Areas Commun. 27(9), 1654‒1662 (2009).
[Crossref]

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, "Improvement of date rate by using equalization in an indoor visible light communication system," 4th IEEE Int. Conf. on Circuits and Systems for Communications (ICCSC 2008), 2008, Shanghai, China, pp. 678‒682.

Oh, Y.

L. Zeng, D. O’Brien, H. Minh, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, "High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting," IEEE J. Sel. Areas Commun. 27(9), 1654‒1662 (2009).
[Crossref]

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, "Improvement of date rate by using equalization in an indoor visible light communication system," 4th IEEE Int. Conf. on Circuits and Systems for Communications (ICCSC 2008), 2008, Shanghai, China, pp. 678‒682.

Ohtsuki, T.

D. Takase and T. Ohtsuki, "Optical wireless MIMO communications (OMIMO)," Proc. IEEE Global Telecommunications Conf. GLOBECOM ’04, Vol. 2, 2004, Texas, USA, pp. 928‒932.

Proakis, J. G.

J. G. Proakis, Digital Communications, 4th ed., McGraw-Hill Series in Electrical and Computer Engineering, S. W. Director, ed., McGraw-Hill Higher Education, 2000.

Safari, M.

M. Safari and M. Uysal, "Do we really need OSTBCs for free-space optical communication with direct detection?," IEEE Trans. Wireless Commun. 7(11), 4445‒4448 (2008).
[Crossref]

Seo, J.

S. U. Hwang, S. Jeon, S. Lee, and J. Seo, "Soft-output ML detector for spatial modulation OFDM systems," IEICE Electron. Express 6(19), 1426‒1431 (2009).
[Crossref]

Simon, M. K.

M. K. Simon and V. A. Vilnrotter, "Alamouti-type spacetime coding for free-space optical communication with direct detection," IEEE Trans. Wireless Commun. 4(1), 35‒39 (2005).
[Crossref]

Sinanovic, S.

R. Mesleh, H. Haas, S. Sinanović, C. W. Ahn, and S. Yun, "Spatial modulation," IEEE Trans. Veh. Technol. 57(4), 2228‒2241 (2008).
[Crossref]

Szczecinski, L.

J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, "Space shift keying modulation for MIMO channels," IEEE Trans. Wireless Commun. 8(7), 3692‒3703 (2009).
[Crossref]

J. Jeganathan, A. Ghrayeb, and L. Szczecinski, "Spatial modulation: optimal detection and performance analysis," IEEE Commun. Lett. 12(8), 545‒547 (2008).
[Crossref]

Takase, D.

D. Takase and T. Ohtsuki, "Optical wireless MIMO communications (OMIMO)," Proc. IEEE Global Telecommunications Conf. GLOBECOM ’04, Vol. 2, 2004, Texas, USA, pp. 928‒932.

Uysal, M.

M. Safari and M. Uysal, "Do we really need OSTBCs for free-space optical communication with direct detection?," IEEE Trans. Wireless Commun. 7(11), 4445‒4448 (2008).
[Crossref]

S. M. Navidpour, M. Uysal, and M. Kavehrad, "BER performance of free-space optical transmission with spatial diversity," IEEE Trans. Wireless Commun. 6(8), 2813‒2819 (2007).
[Crossref]

Vilnrotter, V. A.

M. K. Simon and V. A. Vilnrotter, "Alamouti-type spacetime coding for free-space optical communication with direct detection," IEEE Trans. Wireless Commun. 4(1), 35‒39 (2005).
[Crossref]

Viterbi, A.

A. Viterbi, "Convolutional codes and their performance in communication systems," IEEE Trans. Commun. 19(5), 751‒772 (1971).
[Crossref]

Wilson, S. G.

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, "Optical repetition MIMO transmission with multipulse PPM," IEEE J. Sel. Areas Commun. 23(9), 1901‒1910 (2005).
[Crossref]

Won, E. T.

L. Zeng, D. O’Brien, H. Minh, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, "High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting," IEEE J. Sel. Areas Commun. 27(9), 1654‒1662 (2009).
[Crossref]

Yun, S.

R. Mesleh, H. Haas, S. Sinanović, C. W. Ahn, and S. Yun, "Spatial modulation," IEEE Trans. Veh. Technol. 57(4), 2228‒2241 (2008).
[Crossref]

Zeng, L.

L. Zeng, D. O’Brien, H. Minh, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, "High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting," IEEE J. Sel. Areas Commun. 27(9), 1654‒1662 (2009).
[Crossref]

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, "Improvement of date rate by using equalization in an indoor visible light communication system," 4th IEEE Int. Conf. on Circuits and Systems for Communications (ICCSC 2008), 2008, Shanghai, China, pp. 678‒682.

IEEE Commun. Lett. (1)

J. Jeganathan, A. Ghrayeb, and L. Szczecinski, "Spatial modulation: optimal detection and performance analysis," IEEE Commun. Lett. 12(8), 545‒547 (2008).
[Crossref]

IEEE J. Sel. Areas Commun. (4)

J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11(3), 367‒379 (1993).
[Crossref]

L. Zeng, D. O’Brien, H. Minh, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, "High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting," IEEE J. Sel. Areas Commun. 27(9), 1654‒1662 (2009).
[Crossref]

E. J. Lee and V. W. S. Chan, "Part 1: Optical communication over the clear turbulent atmospheric channel using diversity," IEEE J. Sel. Areas Commun. 22(9), 1896‒1906 (2004).
[Crossref]

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, "Optical repetition MIMO transmission with multipulse PPM," IEEE J. Sel. Areas Commun. 23(9), 1901‒1910 (2005).
[Crossref]

IEEE Trans. Commun. (2)

P. Djahani and J. M. Kahn, "Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers," IEEE Trans. Commun. 48(12), 2077‒2088 (2000).
[Crossref]

A. Viterbi, "Convolutional codes and their performance in communication systems," IEEE Trans. Commun. 19(5), 751‒772 (1971).
[Crossref]

IEEE Trans. Veh. Technol. (1)

R. Mesleh, H. Haas, S. Sinanović, C. W. Ahn, and S. Yun, "Spatial modulation," IEEE Trans. Veh. Technol. 57(4), 2228‒2241 (2008).
[Crossref]

IEEE Trans. Wireless Commun. (4)

J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, "Space shift keying modulation for MIMO channels," IEEE Trans. Wireless Commun. 8(7), 3692‒3703 (2009).
[Crossref]

S. M. Navidpour, M. Uysal, and M. Kavehrad, "BER performance of free-space optical transmission with spatial diversity," IEEE Trans. Wireless Commun. 6(8), 2813‒2819 (2007).
[Crossref]

M. K. Simon and V. A. Vilnrotter, "Alamouti-type spacetime coding for free-space optical communication with direct detection," IEEE Trans. Wireless Commun. 4(1), 35‒39 (2005).
[Crossref]

M. Safari and M. Uysal, "Do we really need OSTBCs for free-space optical communication with direct detection?," IEEE Trans. Wireless Commun. 7(11), 4445‒4448 (2008).
[Crossref]

IEICE Electron. Express (1)

S. U. Hwang, S. Jeon, S. Lee, and J. Seo, "Soft-output ML detector for spatial modulation OFDM systems," IEICE Electron. Express 6(19), 1426‒1431 (2009).
[Crossref]

IET Commun. (1)

R. J. Green, H. Joshi, M. D. Higgins, and M. S. Leeson, "Recent developments in indoor optical wireless," IET Commun. 2(1), 3‒10 (2008).
[Crossref]

Proc. IEEE (1)

J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE 85(2), 265‒298 (1997).
[Crossref]

Other (7)

BROADCOM Corporation, "802.11n: Next-Generation Wireless LAN Technology," White paper, Tech. Rep., 2006, http://www.broadcom.com/collateral/wp/802_11n-WP100-R.pdf.

D. Takase and T. Ohtsuki, "Optical wireless MIMO communications (OMIMO)," Proc. IEEE Global Telecommunications Conf. GLOBECOM ’04, Vol. 2, 2004, Texas, USA, pp. 928‒932.

M. Di Renzo, R. Mesleh, H. Haas, and P. M. Grant, "Upper bounds for the analysis of Trellis coded spatial modulation over correlated fading channels," IEEE 71st Vehicular Technology Conf. (VTC’10), 2010.

J. G. Proakis, Digital Communications, 4th ed., McGraw-Hill Series in Electrical and Computer Engineering, S. W. Director, ed., McGraw-Hill Higher Education, 2000.

R. Mesleh, R. Mehmood, H. Elgala, and H. Haas, "Indoor MIMO optical wireless communication using spatial modulation," IEEE Int. Conf. on Communications (ICC’10), 2010, Cape Town, South Africa, pp. 1‒5.

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, "Improvement of date rate by using equalization in an indoor visible light communication system," 4th IEEE Int. Conf. on Circuits and Systems for Communications (ICCSC 2008), 2008, Shanghai, China, pp. 678‒682.

"Multiplexing and channel coding (FDD)," ETSI TS 125 212 V8.5.0, 2009, Sophia Antipolis Valbonne, France.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(Color online) OSM communication system model. The LED mapper maps input bits to LED indices. Each sequence of log 2 ( N t ) input bits corresponds to a certain LED index.

Fig. 2
Fig. 2

(Color online) Simulation of the optical channel inside the room in Fig. 3. The channel impulse and magnitude responses are shown in the figure. The channel impulse response is simulated for all transmit units and for different z and ϕ 1 2 angles. The one depicted here is for TX2 with z = 6  m and ϕ 1 2 = 60 ° . The receiver FOV is 90°. A 3 dB channel bandwidth of 30 MHz and a channel delay spread of about 17 ns can be fairly assumed.

Fig. 3
Fig. 3

(Color online) 4 × 4optical MIMO model in a room. The transmitters are located at the corners of the ceilings of the room and the receivers are located on a table in the office with a height of 1 m. The room dimensions in meters are 4 × 4 × 8 m3 .

Fig. 4
Fig. 4

(Color online) The convolutional channel encoder considered in this paper. A rate 1/2convolutional encoder with octal representation (5, 7), constraint length of 3, and a free distance of d free = 5 is taken from [15, Fig. 1]. The figure shows also the state diagram and the transfer function of the augmented state diagram of the encoder.

Fig. 5
Fig. 5

(Color online) Transmit and receive unit alignment scenario. Each transmit–receive pair is directed toward each other.

Fig. 6
Fig. 6

(Color online) Uncoded OSM performance analysis for N t = 4 and N r = 1 systems. In the left subfigure, ϕ 1 2 values of 35°, 40°, and 60°are considered at z = 6 m . In the right subfigure, transmit units are considered at heights z = 5 , 6.5, and 8 m for ϕ 1 2 = 30 ° .

Fig. 7
Fig. 7

(Color online) Uncoded OSM performance analysis for N t = 4 and N r = 4 systems. In the left subfigure, ϕ 1 2 values of 35°, 40°, and 60°are considered at z = 6 m . In the right subfigure, transmit units are considered at heights z = 5 , 6.5, and 8 m for ϕ 1 2 = 30 ° .

Fig. 8
Fig. 8

(Color online) Uncoded OSM performance analysis for N t = 4 and N r = 8 systems. In the left subfigure, ϕ 1 2 values of 35°, 40°, and 60°are considered at z = 6 m . In the right subfigure, transmit units are considered at heights z = 5 , 6.5, and 8 m for ϕ 1 2 = 30 ° .

Fig. 9
Fig. 9

(Color online) Simulated SNR values for a receiver array placed horizontally in the room at a height of 1 m from the ground. The transmit units are located at z = 6 m and the value of ϕ 1 2 is set to 35°.

Fig. 10
Fig. 10

(Color online) Simulated SNR values for a receiver array placed horizontally in the room at a height of 1 m from the ground. The transmit units are located at z = 6 m and the value of ϕ 1 2 is set to 60°.

Fig. 11
Fig. 11

(Color online) Hard coded OSM performance analysis for N t = 4 and N r = 4 systems. In the left subfigure, ϕ 1 2 values of 35°, 40°, 50°, and 60°are considered at z = 6  m. In the right subfigure, transmit units are considered at heights z = 5 , 6.5, and 8 m for ϕ 1 2 = 30 ° .

Fig. 12
Fig. 12

(Color online) Soft coded OSM performance analysis for N t = 4 and N r = 4 systems. In the left subfigure, ϕ 1 2 values of 30°, 40°, 50°, and 60°are considered at z = 6  m. In the right subfigure, transmit units are considered at heights z = 5 , 6.5, and 8 m for ϕ 1 2 = 30 ° .

Fig. 13
Fig. 13

(Color online) Uncoded OSM performance analysis for N t = 4 and N r = 4 . The receive units are located in the middle of the room. Each receiver is directed towards one of the transmitting units.

Fig. 14
Fig. 14

(Color online) Performance comparison of aligned OSM, OOK, 4-PPM, and 4-PAM. All systems have the same average electrical SNR corresponding to the same average output optical power. The achieved data rate for each system assuming a bandwidth of 30 MHz is also reported.

Tables (1)

Tables Icon

Table I OSM, OOK, PPM, and PAM Performance Comparison

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

s ( t ) = 0 0 s 0 0 0 s 0 0 0 t = 1 s t = 2 0 t = 3 ,
y ( t ) = ρ H ( t ) s ( t ) + n ( t ) ,
H t = h 11 t h 12 t h 1 N t t h 21 t h 22 t h 2 N t t h N r 1 t h N r 2 t h N r N t t ,
̃ = arg max p y y s ̄ , H ̄ = arg min ρ h s 2 2 y T h s ,
p y y s ̄ , H ̄ = π N t exp y ρ H ̄ s ̄ F 2
L ( ı ) = log P ı = 1 y P ı = 0 y = log ̃ L 1 ı p y y H ̄ P = ̃ ̃ L 0 ı p y y H ̄ P = ̃ = log ̃ L 1 ı exp y h ̃ s 2 σ 2 ̃ L 0 ı exp y h ̃ s 2 σ 2 ,
BER UB = 1 N t κ = 1 N t ν κ = 1 N t N κ , ν PEP κ ν ,
PEP κ ν h κ , h ν = Q ρ / 4 h κ h ν F 2 ,
BER BE R hc = k = d free + c k Z k ,
Z k = e = k + 1 / 2 k k k / e p e 1 p k e , k odd 1 2 k k / 2 p k / 2 1 p k / 2 + e = k / 2 + 1 k k k / e p e 1 p k e , k even ,
p = 1 log 2 ( N t ) κ = 1 N t ν κ = 1 N t N κ , ν Q ρ 4 h k h ν 2 ,
d T D , N d N N = 1 = k = d free + c k D k .
BER BE R sc = N t 1 d T D , N d N N = 1 , D = exp κ = 1 N t ν κ = 1 N t ρ 8 h κ h ν 2 = N t 1 k = d free + c k exp κ = 1 N t ν κ = 1 N t ρ 8 h κ h ν 2 .
T D , N = N D 5 1 2 N D = k = 5 + 2 k 5 N k 4 D k .