Abstract

Free space laser communication is a potentially attractive technology that can offer intrinsically high data rates and resistance to jamming, and facilitates low probability of interception and low probability of detection (LPI/LPD). However, practical links established in the atmosphere are adversely affected by signal attenuation and dynamic turbulence, which can create spatial and temporal variations in the refractive index. The resulting distortions lead to reduced signal power and increased bit error rate (BER), even over short ranges. To overcome possible signal degradation under adverse conditions, laser communication systems must increase power and reduce the communication bit rate. Under dynamic link attenuation both of these parameters can be tuned to optimize performance. In this paper, we present and compare three methods for optimizing optical link efficiency. The work is based on experiments conducted with a commercially available system, and its scaled-down laboratory prototype. The proposed methods demonstrate different degrees of optimization capabilities under practical operating conditions, but, in general, they maintain the highest possible bit rate at the minimum power consumption, while obtaining an acceptable BER.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Barsimantov, “Adaptive optimization of a free-space laser communication system under dynamic link attenuation,” M.S. thesis, Binghamton University, Binghamton, NY, 2009.
  2. D. A. Rockwell and G. S. Mecherle, Optical Wireless: Low-cost, Broadband, Optical Access, 2003, Richmond, BC, Canada, fSONA Systems Corp., www.fsona.com.
  3. Defining a Common Standard for Evaluating and Comparing Free-Space Optical Products, 2003, Richmond, BC, Canada, fSONA Systems Corp., www.fsona.com.
  4. W. K. Pratt, Laser Communication Systems, John Wiley & Sons, Inc., Los Angeles, CA, 1968, pp. 87‒158.
  5. P. Lopresti, H. Refai, and J. Sluss, "Adaptive power and divergence to improve airborne networking and communication," Proc. 24th Digital Avionics System Conf., 2005, Washington, DC, p. 1B1-1-1B1-6.
  6. V. Kukshya and H. Izadpanah, "High-speed optical wireless connectivity—design challenges & performance evaluation," Proc. SPIE 4872, 343‒353 (2002).
  7. S. Arnon and N. S. Kopeika, "Adaptive bandwidth for satellite optical communication," IEE Proc.—Optoelectron. 145(2), 109‒115 (1998).
    [PubMed]
  8. S. Arnon and N. S. Kopeika, "Adaptive optical transmitter and receiver for space communication through tin clouds," Appl. Opt. 36(9), 1987‒1993 (1997).
    [CrossRef] [PubMed]
  9. D. G. Aviv, Laser Space Communications, Artech House, Norwood, MA, 2006, pp. 15‒43.
  10. S. G. Lambert and W. L. Casey, Laser Communication in Space, Artech House, Boston, MA, 1995, pp. 94‒106.
  11. B. J. Klein and J. J. Degnan, "Optical antenna gain. 1. Transmitting antennas," Appl. Opt. 13(9), 2134‒2141 (1974).
    [CrossRef] [PubMed]
  12. User’s Guide—M and S Series STC Software, fSONA Systems Corp., Richmond, BC, Canada, 2003, www.fsona.com
  13. D. A. Rockwell, Optical Gain and Lasers Presentation, 2003, Richmond, BC, Canada, fSONA Systems Corp., www.fsona.com.
  14. R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed., Wiley Interscience, 1995, pp. 130‒135.
  15. G. P. Agrawal, Fiber-optic Communication Systems, 3rd ed., Wiley Interscience, 2002, pp. 162‒168.
  16. Kperf/Jperf User Docs, Caida, 2003, www.caida.org
  17. Wireshark User’s Guide, 2004, www.wireshark.org
  18. EK2000 – APC LASER DIODE DRIVER KIT – Operation Notes, THORLABS Inc., Newton, NJ, 1999
  19. Electro-Optical Systems S-010-QD—Data Sheet, Electro-Optical Systems Inc., 2004, www.eosystems.com
  20. J. T. Spooner, M. Maggiore, R. Ordonez, and K. M. Passino, Stable Adaptive Control and Estimation for Nonlinear Systems, John Wiley & Sons, Inc., New York, 2002, pp. 84‒102.

2002 (1)

V. Kukshya and H. Izadpanah, "High-speed optical wireless connectivity—design challenges & performance evaluation," Proc. SPIE 4872, 343‒353 (2002).

1998 (1)

S. Arnon and N. S. Kopeika, "Adaptive bandwidth for satellite optical communication," IEE Proc.—Optoelectron. 145(2), 109‒115 (1998).
[PubMed]

1997 (1)

1974 (1)

Agrawal, G. P.

G. P. Agrawal, Fiber-optic Communication Systems, 3rd ed., Wiley Interscience, 2002, pp. 162‒168.

Arnon, S.

S. Arnon and N. S. Kopeika, "Adaptive bandwidth for satellite optical communication," IEE Proc.—Optoelectron. 145(2), 109‒115 (1998).
[PubMed]

S. Arnon and N. S. Kopeika, "Adaptive optical transmitter and receiver for space communication through tin clouds," Appl. Opt. 36(9), 1987‒1993 (1997).
[CrossRef] [PubMed]

Aviv, D. G.

D. G. Aviv, Laser Space Communications, Artech House, Norwood, MA, 2006, pp. 15‒43.

Barsimantov, O.

O. Barsimantov, “Adaptive optimization of a free-space laser communication system under dynamic link attenuation,” M.S. thesis, Binghamton University, Binghamton, NY, 2009.

Casey, W. L.

S. G. Lambert and W. L. Casey, Laser Communication in Space, Artech House, Boston, MA, 1995, pp. 94‒106.

Degnan, J. J.

Gagliardi, R. M.

R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed., Wiley Interscience, 1995, pp. 130‒135.

Izadpanah, H.

V. Kukshya and H. Izadpanah, "High-speed optical wireless connectivity—design challenges & performance evaluation," Proc. SPIE 4872, 343‒353 (2002).

Karp, S.

R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed., Wiley Interscience, 1995, pp. 130‒135.

Klein, B. J.

Kopeika, N. S.

S. Arnon and N. S. Kopeika, "Adaptive bandwidth for satellite optical communication," IEE Proc.—Optoelectron. 145(2), 109‒115 (1998).
[PubMed]

S. Arnon and N. S. Kopeika, "Adaptive optical transmitter and receiver for space communication through tin clouds," Appl. Opt. 36(9), 1987‒1993 (1997).
[CrossRef] [PubMed]

Kukshya, V.

V. Kukshya and H. Izadpanah, "High-speed optical wireless connectivity—design challenges & performance evaluation," Proc. SPIE 4872, 343‒353 (2002).

Lambert, S. G.

S. G. Lambert and W. L. Casey, Laser Communication in Space, Artech House, Boston, MA, 1995, pp. 94‒106.

Lopresti, P.

P. Lopresti, H. Refai, and J. Sluss, "Adaptive power and divergence to improve airborne networking and communication," Proc. 24th Digital Avionics System Conf., 2005, Washington, DC, p. 1B1-1-1B1-6.

Maggiore, M.

J. T. Spooner, M. Maggiore, R. Ordonez, and K. M. Passino, Stable Adaptive Control and Estimation for Nonlinear Systems, John Wiley & Sons, Inc., New York, 2002, pp. 84‒102.

Mecherle, G. S.

D. A. Rockwell and G. S. Mecherle, Optical Wireless: Low-cost, Broadband, Optical Access, 2003, Richmond, BC, Canada, fSONA Systems Corp., www.fsona.com.

Ordonez, R.

J. T. Spooner, M. Maggiore, R. Ordonez, and K. M. Passino, Stable Adaptive Control and Estimation for Nonlinear Systems, John Wiley & Sons, Inc., New York, 2002, pp. 84‒102.

Passino, K. M.

J. T. Spooner, M. Maggiore, R. Ordonez, and K. M. Passino, Stable Adaptive Control and Estimation for Nonlinear Systems, John Wiley & Sons, Inc., New York, 2002, pp. 84‒102.

Pratt, W. K.

W. K. Pratt, Laser Communication Systems, John Wiley & Sons, Inc., Los Angeles, CA, 1968, pp. 87‒158.

Refai, H.

P. Lopresti, H. Refai, and J. Sluss, "Adaptive power and divergence to improve airborne networking and communication," Proc. 24th Digital Avionics System Conf., 2005, Washington, DC, p. 1B1-1-1B1-6.

Rockwell, D. A.

D. A. Rockwell and G. S. Mecherle, Optical Wireless: Low-cost, Broadband, Optical Access, 2003, Richmond, BC, Canada, fSONA Systems Corp., www.fsona.com.

D. A. Rockwell, Optical Gain and Lasers Presentation, 2003, Richmond, BC, Canada, fSONA Systems Corp., www.fsona.com.

Sluss, J.

P. Lopresti, H. Refai, and J. Sluss, "Adaptive power and divergence to improve airborne networking and communication," Proc. 24th Digital Avionics System Conf., 2005, Washington, DC, p. 1B1-1-1B1-6.

Spooner, J. T.

J. T. Spooner, M. Maggiore, R. Ordonez, and K. M. Passino, Stable Adaptive Control and Estimation for Nonlinear Systems, John Wiley & Sons, Inc., New York, 2002, pp. 84‒102.

Appl. Opt. (2)

IEE Proc.—Optoelectron. (1)

S. Arnon and N. S. Kopeika, "Adaptive bandwidth for satellite optical communication," IEE Proc.—Optoelectron. 145(2), 109‒115 (1998).
[PubMed]

Proc. SPIE (1)

V. Kukshya and H. Izadpanah, "High-speed optical wireless connectivity—design challenges & performance evaluation," Proc. SPIE 4872, 343‒353 (2002).

Other (16)

D. G. Aviv, Laser Space Communications, Artech House, Norwood, MA, 2006, pp. 15‒43.

S. G. Lambert and W. L. Casey, Laser Communication in Space, Artech House, Boston, MA, 1995, pp. 94‒106.

O. Barsimantov, “Adaptive optimization of a free-space laser communication system under dynamic link attenuation,” M.S. thesis, Binghamton University, Binghamton, NY, 2009.

D. A. Rockwell and G. S. Mecherle, Optical Wireless: Low-cost, Broadband, Optical Access, 2003, Richmond, BC, Canada, fSONA Systems Corp., www.fsona.com.

Defining a Common Standard for Evaluating and Comparing Free-Space Optical Products, 2003, Richmond, BC, Canada, fSONA Systems Corp., www.fsona.com.

W. K. Pratt, Laser Communication Systems, John Wiley & Sons, Inc., Los Angeles, CA, 1968, pp. 87‒158.

P. Lopresti, H. Refai, and J. Sluss, "Adaptive power and divergence to improve airborne networking and communication," Proc. 24th Digital Avionics System Conf., 2005, Washington, DC, p. 1B1-1-1B1-6.

User’s Guide—M and S Series STC Software, fSONA Systems Corp., Richmond, BC, Canada, 2003, www.fsona.com

D. A. Rockwell, Optical Gain and Lasers Presentation, 2003, Richmond, BC, Canada, fSONA Systems Corp., www.fsona.com.

R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed., Wiley Interscience, 1995, pp. 130‒135.

G. P. Agrawal, Fiber-optic Communication Systems, 3rd ed., Wiley Interscience, 2002, pp. 162‒168.

Kperf/Jperf User Docs, Caida, 2003, www.caida.org

Wireshark User’s Guide, 2004, www.wireshark.org

EK2000 – APC LASER DIODE DRIVER KIT – Operation Notes, THORLABS Inc., Newton, NJ, 1999

Electro-Optical Systems S-010-QD—Data Sheet, Electro-Optical Systems Inc., 2004, www.eosystems.com

J. T. Spooner, M. Maggiore, R. Ordonez, and K. M. Passino, Stable Adaptive Control and Estimation for Nonlinear Systems, John Wiley & Sons, Inc., New York, 2002, pp. 84‒102.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Received power corresponding to the transmitter diameter.

Fig. 2
Fig. 2

BER plot for P t = 2 . 23 mW .

Fig. 3
Fig. 3

Interface with the fSONA system.

Fig. 4
Fig. 4

Laboratory free space optics prototype.

Fig. 5
Fig. 5

Q-factor as a function of normalized bit rate and transmitted power (differential voltage).

Fig. 6
Fig. 6

Lab prototype compared with the fSONA theoretical system behavior.

Fig. 7
Fig. 7

Gradient minimization optimization results.

Fig. 8
Fig. 8

Logarithm step minimization results.

Fig. 9
Fig. 9

Division step minimization results.

Tables (2)

Tables Icon

Table I Link Budget Parameters

Tables Icon

Table II Bypass Mode Performance

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

P r = P t G t L t L R G r L r L m i s c ,
G t = G r = 4 π A λ 2 .
G t ( θ off ) 4 π A λ 2 e 8 θ off θ div 2 ,
SNR = i p 1 2 i p 0 2 σ 1 2 + σ 0 2 ,
Q = i p 1 i p 0 σ 1 + σ 0 .
BER = 1 2 erfc Q 2 .
X = P B ,
J = log 10 7 Q .
Δ V = ( Q 7 ) 0 . 02 ; Q > 7 ( 7 Q ) 0 . 02 ; Q 7 .
Δ B = B 2 3 ; B > 250 Hz B 3 2 ; B 250 Hz .
Δ J = J P J B .
X i + 1 = X i K Δ J ,
K = K B K P .
K B Δ J B = B Δ J B ; Δ J B > 1 J B B B + B ; Δ J B 1 .
Δ B = 5000 log 10 7 Q + 9 .
Δ V = log 10 1 + ( Q 18 ) 3600 .
Δ V = log 10 ( 8 Q ) 280 .
Δ B = 5000 log 10 Q 7 + 9 .