Abstract

In transparent optical networks, signals propagate over all-optical lightpaths. The absence of regenerating devices that act in the electrical domain renders end-to-end monitoring difficult. Quality of transmission (QoT) metrics quantify the degradation in quality that a signal experiences as it traverses a lightpath. Hardware monitors that can directly measure QoT are expensive, which motivates the development of monitoring schemes that require fewer monitors but can still generate accurate QoT estimates. In this paper we describe a monitoring scheme that estimates the QoT of multiple lightpaths in a network. Our focus is on estimating bit-error-rates (BERs), but the methodology is also applicable for other metrics. One of the primary innovations in this monitoring framework is the establishment of “active lightpaths”—lightpaths that carry no useful data but are instead used as measurement probes. We describe a method for choosing where to establish the active lightpaths in order to maximize the information gain. We demonstrate with simulations the possibility to trade off the amount of costly hardware monitoring equipment with cheaper, temporary active lightpaths, while still achieving accurate monitoring.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Mas, I. Tomkos, and O. K. Tonguz, "Failure location algorithm for transparent optical networks," IEEE J. Sel. Areas Commun. 23, 1508‒1519 (2005).
    [CrossRef]
  2. D. C. Kilper, A. Ferguson, B. O. Sullivan, and S. K. Korotky, "Impact of topology and traffic on physical layer monitoring in transparent networks," Proc. OSA/IEEE Optical Fiber Comm. Conf., 2009, Optical Society of America, paper OWI3.
  3. N. Sambo, Y. Pointurier, F. Cugini, L. Valcarenghi, P. Castoldi, and I. Tomkos, "Lightpath establishment in distributed transparent dynamic optical networks using network kriging," Proc. European Conf. Optical Comm., 2009, paper 1.5.3.
  4. D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. E. Willner, "Optical performance monitoring," J. Lightwave Technol. 22, 294‒304 (2004).
    [CrossRef]
  5. Network Impairments in Transparent Networks and Definition of Monitoring Strategy, DICONET Deliverable D3.1, 2008, Available: http://www.diconet.eu/documents/DICONET_D.3.1_WP3_20080930_AIT_R.pdf.
  6. S.-T. Ho and L.-K. Chen, "Monitoring of linearly accumulated optical impairments in all-optical networks," J. Opt. Commun. Netw. 1, 125‒141 (2009).
    [CrossRef]
  7. D. B. Chua, E. D. Kolaczyk, and M. Crovella, "Network kriging," IEEE J. Sel. Areas Commun. 24, 2263‒2272 (2006).
    [CrossRef]
  8. H. Song, L. Qiu, and Y. Zhang, "NetQuest: a flexible framework for large-scale network measurement," IEEE/ACM Trans. Netw. 17, 106‒119 (2009).
    [CrossRef]
  9. Y. Chen, D. Bindel, and R. Katz, "Tomography-based overlay network monitoring," Proc. ACM SIGCOMM Internet Meas. Conf., 2003, ACM, pp. 216‒221.
  10. M. Coates, Y. Pointurier, and M. Rabbat, "Compressed network monitoring for IP and all-optical networks," Proc. ACM SIGCOMM Internet Meas. Conf., 2007, ACM, pp. 241‒252.
  11. Y. Pointurier, M. Coates, and M. Rabbat, "Active monitoring of all-optical networks," Proc. Int. Conf. on Transparent Optical Networks, 2008, pp. 169‒172.
  12. Y. Pointurier, M. Brandt-Pearce, T. Deng, and S. Subramaniam, "Fair QoS-aware adaptive Routing and Wavelength Assignment in all-optical networks," Proc. IEEE Int. Conf. Comms., 2006, IEEE, pp. 2433‒2438.
  13. J. D. Downie and D. J. Tebben, "Performance monitoring of optical networks with synchronous and asynchronous sampling," Proc. OSA/IEEE Optical Fiber Comm. Conf., 2001, Optical Society of America, paper WDD50.
  14. F. Cugini, N. Sambo, N. Andriolli, A. Giorgetti, L. Valcarenghi, P. Castoldi, E. Le Rouzic, and J. Poirrier, "Enhancing GMPLS signaling protocol for encompassing quality of transmission (QoT) in all-optical networks," J. Lightwave Technol. 26, 3318‒3328 (2008).
    [CrossRef]
  15. G. P. Agrawal, Fiber-Optic Communications Systems, 3rd ed., John Wiley & Sons, Inc., 2002.
  16. M. Saunders, PDCO: Primal–Dual Interior Method for Convex Objectives, Available: http://www.stanford.edu/group/SOL/software/pdco.html

2009 (2)

H. Song, L. Qiu, and Y. Zhang, "NetQuest: a flexible framework for large-scale network measurement," IEEE/ACM Trans. Netw. 17, 106‒119 (2009).
[CrossRef]

S.-T. Ho and L.-K. Chen, "Monitoring of linearly accumulated optical impairments in all-optical networks," J. Opt. Commun. Netw. 1, 125‒141 (2009).
[CrossRef]

2008 (1)

2006 (1)

D. B. Chua, E. D. Kolaczyk, and M. Crovella, "Network kriging," IEEE J. Sel. Areas Commun. 24, 2263‒2272 (2006).
[CrossRef]

2005 (1)

C. Mas, I. Tomkos, and O. K. Tonguz, "Failure location algorithm for transparent optical networks," IEEE J. Sel. Areas Commun. 23, 1508‒1519 (2005).
[CrossRef]

2004 (1)

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communications Systems, 3rd ed., John Wiley & Sons, Inc., 2002.

Andriolli, N.

Bach, R.

Bindel, D.

Y. Chen, D. Bindel, and R. Katz, "Tomography-based overlay network monitoring," Proc. ACM SIGCOMM Internet Meas. Conf., 2003, ACM, pp. 216‒221.

Blumenthal, D. J.

Brandt-Pearce, M.

Y. Pointurier, M. Brandt-Pearce, T. Deng, and S. Subramaniam, "Fair QoS-aware adaptive Routing and Wavelength Assignment in all-optical networks," Proc. IEEE Int. Conf. Comms., 2006, IEEE, pp. 2433‒2438.

Castoldi, P.

F. Cugini, N. Sambo, N. Andriolli, A. Giorgetti, L. Valcarenghi, P. Castoldi, E. Le Rouzic, and J. Poirrier, "Enhancing GMPLS signaling protocol for encompassing quality of transmission (QoT) in all-optical networks," J. Lightwave Technol. 26, 3318‒3328 (2008).
[CrossRef]

N. Sambo, Y. Pointurier, F. Cugini, L. Valcarenghi, P. Castoldi, and I. Tomkos, "Lightpath establishment in distributed transparent dynamic optical networks using network kriging," Proc. European Conf. Optical Comm., 2009, paper 1.5.3.

Chen, L.-K.

Chen, Y.

Y. Chen, D. Bindel, and R. Katz, "Tomography-based overlay network monitoring," Proc. ACM SIGCOMM Internet Meas. Conf., 2003, ACM, pp. 216‒221.

Chua, D. B.

D. B. Chua, E. D. Kolaczyk, and M. Crovella, "Network kriging," IEEE J. Sel. Areas Commun. 24, 2263‒2272 (2006).
[CrossRef]

Coates, M.

Y. Pointurier, M. Coates, and M. Rabbat, "Active monitoring of all-optical networks," Proc. Int. Conf. on Transparent Optical Networks, 2008, pp. 169‒172.

M. Coates, Y. Pointurier, and M. Rabbat, "Compressed network monitoring for IP and all-optical networks," Proc. ACM SIGCOMM Internet Meas. Conf., 2007, ACM, pp. 241‒252.

Crovella, M.

D. B. Chua, E. D. Kolaczyk, and M. Crovella, "Network kriging," IEEE J. Sel. Areas Commun. 24, 2263‒2272 (2006).
[CrossRef]

Cugini, F.

F. Cugini, N. Sambo, N. Andriolli, A. Giorgetti, L. Valcarenghi, P. Castoldi, E. Le Rouzic, and J. Poirrier, "Enhancing GMPLS signaling protocol for encompassing quality of transmission (QoT) in all-optical networks," J. Lightwave Technol. 26, 3318‒3328 (2008).
[CrossRef]

N. Sambo, Y. Pointurier, F. Cugini, L. Valcarenghi, P. Castoldi, and I. Tomkos, "Lightpath establishment in distributed transparent dynamic optical networks using network kriging," Proc. European Conf. Optical Comm., 2009, paper 1.5.3.

Deng, T.

Y. Pointurier, M. Brandt-Pearce, T. Deng, and S. Subramaniam, "Fair QoS-aware adaptive Routing and Wavelength Assignment in all-optical networks," Proc. IEEE Int. Conf. Comms., 2006, IEEE, pp. 2433‒2438.

Downie, J. D.

J. D. Downie and D. J. Tebben, "Performance monitoring of optical networks with synchronous and asynchronous sampling," Proc. OSA/IEEE Optical Fiber Comm. Conf., 2001, Optical Society of America, paper WDD50.

Einstein, D.

Ferguson, A.

D. C. Kilper, A. Ferguson, B. O. Sullivan, and S. K. Korotky, "Impact of topology and traffic on physical layer monitoring in transparent networks," Proc. OSA/IEEE Optical Fiber Comm. Conf., 2009, Optical Society of America, paper OWI3.

Giorgetti, A.

Ho, S.-T.

Katz, R.

Y. Chen, D. Bindel, and R. Katz, "Tomography-based overlay network monitoring," Proc. ACM SIGCOMM Internet Meas. Conf., 2003, ACM, pp. 216‒221.

Kilper, D. C.

D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. E. Willner, "Optical performance monitoring," J. Lightwave Technol. 22, 294‒304 (2004).
[CrossRef]

D. C. Kilper, A. Ferguson, B. O. Sullivan, and S. K. Korotky, "Impact of topology and traffic on physical layer monitoring in transparent networks," Proc. OSA/IEEE Optical Fiber Comm. Conf., 2009, Optical Society of America, paper OWI3.

Kolaczyk, E. D.

D. B. Chua, E. D. Kolaczyk, and M. Crovella, "Network kriging," IEEE J. Sel. Areas Commun. 24, 2263‒2272 (2006).
[CrossRef]

Korotky, S. K.

D. C. Kilper, A. Ferguson, B. O. Sullivan, and S. K. Korotky, "Impact of topology and traffic on physical layer monitoring in transparent networks," Proc. OSA/IEEE Optical Fiber Comm. Conf., 2009, Optical Society of America, paper OWI3.

Landolsi, T.

Le Rouzic, E.

Mas, C.

C. Mas, I. Tomkos, and O. K. Tonguz, "Failure location algorithm for transparent optical networks," IEEE J. Sel. Areas Commun. 23, 1508‒1519 (2005).
[CrossRef]

Ostar, L.

Pointurier, Y.

Y. Pointurier, M. Brandt-Pearce, T. Deng, and S. Subramaniam, "Fair QoS-aware adaptive Routing and Wavelength Assignment in all-optical networks," Proc. IEEE Int. Conf. Comms., 2006, IEEE, pp. 2433‒2438.

N. Sambo, Y. Pointurier, F. Cugini, L. Valcarenghi, P. Castoldi, and I. Tomkos, "Lightpath establishment in distributed transparent dynamic optical networks using network kriging," Proc. European Conf. Optical Comm., 2009, paper 1.5.3.

M. Coates, Y. Pointurier, and M. Rabbat, "Compressed network monitoring for IP and all-optical networks," Proc. ACM SIGCOMM Internet Meas. Conf., 2007, ACM, pp. 241‒252.

Y. Pointurier, M. Coates, and M. Rabbat, "Active monitoring of all-optical networks," Proc. Int. Conf. on Transparent Optical Networks, 2008, pp. 169‒172.

Poirrier, J.

Preiss, M.

Qiu, L.

H. Song, L. Qiu, and Y. Zhang, "NetQuest: a flexible framework for large-scale network measurement," IEEE/ACM Trans. Netw. 17, 106‒119 (2009).
[CrossRef]

Rabbat, M.

M. Coates, Y. Pointurier, and M. Rabbat, "Compressed network monitoring for IP and all-optical networks," Proc. ACM SIGCOMM Internet Meas. Conf., 2007, ACM, pp. 241‒252.

Y. Pointurier, M. Coates, and M. Rabbat, "Active monitoring of all-optical networks," Proc. Int. Conf. on Transparent Optical Networks, 2008, pp. 169‒172.

Sambo, N.

F. Cugini, N. Sambo, N. Andriolli, A. Giorgetti, L. Valcarenghi, P. Castoldi, E. Le Rouzic, and J. Poirrier, "Enhancing GMPLS signaling protocol for encompassing quality of transmission (QoT) in all-optical networks," J. Lightwave Technol. 26, 3318‒3328 (2008).
[CrossRef]

N. Sambo, Y. Pointurier, F. Cugini, L. Valcarenghi, P. Castoldi, and I. Tomkos, "Lightpath establishment in distributed transparent dynamic optical networks using network kriging," Proc. European Conf. Optical Comm., 2009, paper 1.5.3.

Song, H.

H. Song, L. Qiu, and Y. Zhang, "NetQuest: a flexible framework for large-scale network measurement," IEEE/ACM Trans. Netw. 17, 106‒119 (2009).
[CrossRef]

Subramaniam, S.

Y. Pointurier, M. Brandt-Pearce, T. Deng, and S. Subramaniam, "Fair QoS-aware adaptive Routing and Wavelength Assignment in all-optical networks," Proc. IEEE Int. Conf. Comms., 2006, IEEE, pp. 2433‒2438.

Sullivan, B. O.

D. C. Kilper, A. Ferguson, B. O. Sullivan, and S. K. Korotky, "Impact of topology and traffic on physical layer monitoring in transparent networks," Proc. OSA/IEEE Optical Fiber Comm. Conf., 2009, Optical Society of America, paper OWI3.

Tebben, D. J.

J. D. Downie and D. J. Tebben, "Performance monitoring of optical networks with synchronous and asynchronous sampling," Proc. OSA/IEEE Optical Fiber Comm. Conf., 2001, Optical Society of America, paper WDD50.

Tomkos, I.

C. Mas, I. Tomkos, and O. K. Tonguz, "Failure location algorithm for transparent optical networks," IEEE J. Sel. Areas Commun. 23, 1508‒1519 (2005).
[CrossRef]

N. Sambo, Y. Pointurier, F. Cugini, L. Valcarenghi, P. Castoldi, and I. Tomkos, "Lightpath establishment in distributed transparent dynamic optical networks using network kriging," Proc. European Conf. Optical Comm., 2009, paper 1.5.3.

Tonguz, O. K.

C. Mas, I. Tomkos, and O. K. Tonguz, "Failure location algorithm for transparent optical networks," IEEE J. Sel. Areas Commun. 23, 1508‒1519 (2005).
[CrossRef]

Valcarenghi, L.

F. Cugini, N. Sambo, N. Andriolli, A. Giorgetti, L. Valcarenghi, P. Castoldi, E. Le Rouzic, and J. Poirrier, "Enhancing GMPLS signaling protocol for encompassing quality of transmission (QoT) in all-optical networks," J. Lightwave Technol. 26, 3318‒3328 (2008).
[CrossRef]

N. Sambo, Y. Pointurier, F. Cugini, L. Valcarenghi, P. Castoldi, and I. Tomkos, "Lightpath establishment in distributed transparent dynamic optical networks using network kriging," Proc. European Conf. Optical Comm., 2009, paper 1.5.3.

Willner, A. E.

Zhang, Y.

H. Song, L. Qiu, and Y. Zhang, "NetQuest: a flexible framework for large-scale network measurement," IEEE/ACM Trans. Netw. 17, 106‒119 (2009).
[CrossRef]

IEEE J. Sel. Areas Commun. (2)

D. B. Chua, E. D. Kolaczyk, and M. Crovella, "Network kriging," IEEE J. Sel. Areas Commun. 24, 2263‒2272 (2006).
[CrossRef]

C. Mas, I. Tomkos, and O. K. Tonguz, "Failure location algorithm for transparent optical networks," IEEE J. Sel. Areas Commun. 23, 1508‒1519 (2005).
[CrossRef]

IEEE/ACM Trans. Netw. (1)

H. Song, L. Qiu, and Y. Zhang, "NetQuest: a flexible framework for large-scale network measurement," IEEE/ACM Trans. Netw. 17, 106‒119 (2009).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (1)

Other (10)

Y. Chen, D. Bindel, and R. Katz, "Tomography-based overlay network monitoring," Proc. ACM SIGCOMM Internet Meas. Conf., 2003, ACM, pp. 216‒221.

M. Coates, Y. Pointurier, and M. Rabbat, "Compressed network monitoring for IP and all-optical networks," Proc. ACM SIGCOMM Internet Meas. Conf., 2007, ACM, pp. 241‒252.

Y. Pointurier, M. Coates, and M. Rabbat, "Active monitoring of all-optical networks," Proc. Int. Conf. on Transparent Optical Networks, 2008, pp. 169‒172.

Y. Pointurier, M. Brandt-Pearce, T. Deng, and S. Subramaniam, "Fair QoS-aware adaptive Routing and Wavelength Assignment in all-optical networks," Proc. IEEE Int. Conf. Comms., 2006, IEEE, pp. 2433‒2438.

J. D. Downie and D. J. Tebben, "Performance monitoring of optical networks with synchronous and asynchronous sampling," Proc. OSA/IEEE Optical Fiber Comm. Conf., 2001, Optical Society of America, paper WDD50.

D. C. Kilper, A. Ferguson, B. O. Sullivan, and S. K. Korotky, "Impact of topology and traffic on physical layer monitoring in transparent networks," Proc. OSA/IEEE Optical Fiber Comm. Conf., 2009, Optical Society of America, paper OWI3.

N. Sambo, Y. Pointurier, F. Cugini, L. Valcarenghi, P. Castoldi, and I. Tomkos, "Lightpath establishment in distributed transparent dynamic optical networks using network kriging," Proc. European Conf. Optical Comm., 2009, paper 1.5.3.

Network Impairments in Transparent Networks and Definition of Monitoring Strategy, DICONET Deliverable D3.1, 2008, Available: http://www.diconet.eu/documents/DICONET_D.3.1_WP3_20080930_AIT_R.pdf.

G. P. Agrawal, Fiber-Optic Communications Systems, 3rd ed., John Wiley & Sons, Inc., 2002.

M. Saunders, PDCO: Primal–Dual Interior Method for Convex Objectives, Available: http://www.stanford.edu/group/SOL/software/pdco.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Linearity of the physical impairment metrics. The depicted metrics are generated using analytical models with the network parameters specified in Section IV. The metrics μ 0 , μ 1 , σ 0 , and σ 1 , i s i are generated via propagation simulation using the split-step Fourier method; the metric σ 1 , i s i is generated by ASE noise analytical modeling as described in [15]. The solid curves were obtained through linear regression.

Fig. 2
Fig. 2

(Color online) The network topology used throughout this work. The numbers on the links indicate the number of 70 km spans on each link; the topology we used here is roughly five times smaller than the actual NSF network to ensure end-to-end transparency, while retaining topological realism. The squares above link terminations indicate the placement of a monitor when the placement procedure outlined in Subsection III.C is used.

Fig. 3
Fig. 3

Relative mean-squared error performance of the kriging estimator and the 2 -norm minimization estimator for a fixed number of hardware monitors (ten) and a varying number of active lightpaths. The case of 0 active lightpaths corresponds to passive monitoring. The kriging estimator generates negative estimates; these are set to zero when calculating the estimation error.

Fig. 4
Fig. 4

(Color online) Relative mean square error for passive (0 active lightpaths) and active monitoring, for various numbers of hardware monitors and active lightpaths. When the estimated metrics are artificially linearized, the error floor for large n a disappears.

Fig. 5
Fig. 5

(Color online) Sample estimation results for a network configuration with five monitors; nine lightpaths are observed by the monitors, and the BER of 44 lightpaths must be estimated. Estimation results for log ( BER ) are given in the top panel for both passive ( n a = 0 ) and active ( n a = 20 ) monitoring, using the 2 -minimization procedure. Missing data points indicate that the estimator failed to return an estimate. In the bottom panel we show the RMSE for both passive and active monitoring.

Fig. 6
Fig. 6

Top panel: rank of G m T , G n T , G a T T (bold) and G m T , G a T T . The rank of G m T , G a T T increases steadily as the number of active lightpaths increases towards the number of links in the network n = 42 , indicating that our active lightpath selection algorithm is adding informative measurements. Bottom panel: the average energy of the unobserved lightpaths that resides in the monitored subspace (the row space of G m T , G a T T ) as a function of the number of active lightpaths.

Fig. 7
Fig. 7

Impact of the monitor placement algorithm on the estimation accuracy: the RMSE is decreased if the proposed monitor placement algorithm is used (squares) instead of uniform random monitor placement (circles). Results are presented for  n a = 0 (passive monitoring, top panel) and  n a = 25 active lightpaths (bottom panel). The standard deviation of the error for each configuration is less than 0.01.

Fig. 8
Fig. 8

Top panel: comparison between the proportion of lightpaths that are observed when the proposed monitor placement scheme is used (thin line) and when random placement is employed (thick line). The random placement line corresponds to the proportion of monitored links out of the total of 42. Bottom panel: the average fraction of energy of the unobserved lightpaths that lies in the monitored subspace, for both the proposed placement scheme and the random placement scheme.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

y ˆ n = G n G A T ( G A G A T ) + y A .
min x , r r 2 2 + x 2 2
subject to  G A x + D 2 r = y A , x 0 .