Abstract

Vestigial sideband filtering can be used for chromatic dispersion measurements. An optical delay line filter providing upper sideband (USB), lower sideband (LSB), and passband was designed for that application. The straightforward utilization is to measure the time delay between the USB and the LSB. A more practical approach is to estimate the chromatic dispersion (CD) by multiplying the USB and LSB signals in an electronic mixer and filtering out the DC component of the resulting signal. Due to the correlation between the USB and the LSB this signal is a measure for the delay between the sidebands induced by the CD. This approach was successfully demonstrated by experiments at a data rate of 10 Gbit/s. Furthermore, the properties of the optical filter influence (e.g., filter extinction) were assessed by numerical simulations.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Charaplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, "Phase modulation to amplitude modulation conversion of CW laser light in optical fibers," Electron. Lett. 12, 409‒411 (1986).
    [CrossRef]
  2. G. Ishikawa and O. Hiroki, "Demonstration of automatic dispersion equalization in 40 Gbit/s OTDM transmission," European Conf. on Optical Communication, 1998, Madrid, Spain, paper We, Session 3 (I).
  3. V. Ribeiro, L. Costa, A. Teixeira, R. Nogueira, and M. Lima, "Chromatic-dispersion-monitoring scheme using a Mach–Zehnder interferometer and Q-factor calculation," J. Opt. Commun. Netw. 2, 10‒19 (2010).
    [CrossRef]
  4. S. Wielandy, M. Fishteyn, and B. Zhu, "Optical performance monitoring using nonlinear detection," J. Lightwave Technol. 22, 784‒793 (2004).
    [CrossRef]
  5. T. Inui, T. Komukai, M. Nakazawa, K. Suzuki, K. R. Tamura, K. Uchiyama, and T. Morioka, "Adaptive dispersion slope equalizer using a nonlinearly chirped fiber Bragg grating pair with a novel dispersion detection technique," IEEE Photon. Technol. Lett. 14, 549‒551 (2002).
    [CrossRef]
  6. S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, "Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fiber," Electron. Lett. 40, 690‒691 (2004).
    [CrossRef]
  7. T. E. Dimmick, G. Rossi, and D. J. Blumenthal, "Optical dispersion monitoring technique using double sideband subcarriers," IEEE Photon. Technol. Lett. 12, 900‒902 (2000).
    [CrossRef]
  8. Q. Yu, Z. Pan, L.-S. Yan, and A. E. Willner, "Chromatic dispersion monitoring technique using sideband optical filtering and clock phase-shift detection," J. Lightwave Technol. 20, 2267‒2271 (2002).
    [CrossRef]
  9. N. Neumann, T. Duthel, M. Haas, and C. G. Schäffer, "General design rules for the synthesis of dispersion and dispersion slope compensation FIR and IIR filters with reduced complexity," J. Lightwave Technol. 25, 3555‒3562 (2007).
    [CrossRef]

2010 (1)

2007 (1)

2004 (2)

S. Wielandy, M. Fishteyn, and B. Zhu, "Optical performance monitoring using nonlinear detection," J. Lightwave Technol. 22, 784‒793 (2004).
[CrossRef]

S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, "Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fiber," Electron. Lett. 40, 690‒691 (2004).
[CrossRef]

2002 (2)

T. Inui, T. Komukai, M. Nakazawa, K. Suzuki, K. R. Tamura, K. Uchiyama, and T. Morioka, "Adaptive dispersion slope equalizer using a nonlinearly chirped fiber Bragg grating pair with a novel dispersion detection technique," IEEE Photon. Technol. Lett. 14, 549‒551 (2002).
[CrossRef]

Q. Yu, Z. Pan, L.-S. Yan, and A. E. Willner, "Chromatic dispersion monitoring technique using sideband optical filtering and clock phase-shift detection," J. Lightwave Technol. 20, 2267‒2271 (2002).
[CrossRef]

2000 (1)

T. E. Dimmick, G. Rossi, and D. J. Blumenthal, "Optical dispersion monitoring technique using double sideband subcarriers," IEEE Photon. Technol. Lett. 12, 900‒902 (2000).
[CrossRef]

1986 (1)

A. R. Charaplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, "Phase modulation to amplitude modulation conversion of CW laser light in optical fibers," Electron. Lett. 12, 409‒411 (1986).
[CrossRef]

Alferness, R. C.

A. R. Charaplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, "Phase modulation to amplitude modulation conversion of CW laser light in optical fibers," Electron. Lett. 12, 409‒411 (1986).
[CrossRef]

Blumenthal, D. J.

T. E. Dimmick, G. Rossi, and D. J. Blumenthal, "Optical dispersion monitoring technique using double sideband subcarriers," IEEE Photon. Technol. Lett. 12, 900‒902 (2000).
[CrossRef]

Buhl, L. L.

A. R. Charaplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, "Phase modulation to amplitude modulation conversion of CW laser light in optical fibers," Electron. Lett. 12, 409‒411 (1986).
[CrossRef]

Charaplyvy, A. R.

A. R. Charaplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, "Phase modulation to amplitude modulation conversion of CW laser light in optical fibers," Electron. Lett. 12, 409‒411 (1986).
[CrossRef]

Costa, L.

Dimmick, T. E.

T. E. Dimmick, G. Rossi, and D. J. Blumenthal, "Optical dispersion monitoring technique using double sideband subcarriers," IEEE Photon. Technol. Lett. 12, 900‒902 (2000).
[CrossRef]

Duthel, T.

Fishteyn, M.

S. Wielandy, M. Fishteyn, and B. Zhu, "Optical performance monitoring using nonlinear detection," J. Lightwave Technol. 22, 784‒793 (2004).
[CrossRef]

S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, "Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fiber," Electron. Lett. 40, 690‒691 (2004).
[CrossRef]

Haas, M.

Hiroki, O.

G. Ishikawa and O. Hiroki, "Demonstration of automatic dispersion equalization in 40 Gbit/s OTDM transmission," European Conf. on Optical Communication, 1998, Madrid, Spain, paper We, Session 3 (I).

Inui, T.

T. Inui, T. Komukai, M. Nakazawa, K. Suzuki, K. R. Tamura, K. Uchiyama, and T. Morioka, "Adaptive dispersion slope equalizer using a nonlinearly chirped fiber Bragg grating pair with a novel dispersion detection technique," IEEE Photon. Technol. Lett. 14, 549‒551 (2002).
[CrossRef]

Ishikawa, G.

G. Ishikawa and O. Hiroki, "Demonstration of automatic dispersion equalization in 40 Gbit/s OTDM transmission," European Conf. on Optical Communication, 1998, Madrid, Spain, paper We, Session 3 (I).

Komukai, T.

T. Inui, T. Komukai, M. Nakazawa, K. Suzuki, K. R. Tamura, K. Uchiyama, and T. Morioka, "Adaptive dispersion slope equalizer using a nonlinearly chirped fiber Bragg grating pair with a novel dispersion detection technique," IEEE Photon. Technol. Lett. 14, 549‒551 (2002).
[CrossRef]

Lehmann, G.

S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, "Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fiber," Electron. Lett. 40, 690‒691 (2004).
[CrossRef]

Lima, M.

Morioka, T.

T. Inui, T. Komukai, M. Nakazawa, K. Suzuki, K. R. Tamura, K. Uchiyama, and T. Morioka, "Adaptive dispersion slope equalizer using a nonlinearly chirped fiber Bragg grating pair with a novel dispersion detection technique," IEEE Photon. Technol. Lett. 14, 549‒551 (2002).
[CrossRef]

Nakazawa, M.

T. Inui, T. Komukai, M. Nakazawa, K. Suzuki, K. R. Tamura, K. Uchiyama, and T. Morioka, "Adaptive dispersion slope equalizer using a nonlinearly chirped fiber Bragg grating pair with a novel dispersion detection technique," IEEE Photon. Technol. Lett. 14, 549‒551 (2002).
[CrossRef]

Neumann, N.

Nogueira, R.

Pan, Z.

Reyes, P.

S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, "Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fiber," Electron. Lett. 40, 690‒691 (2004).
[CrossRef]

Ribeiro, V.

Rohde, H.

S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, "Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fiber," Electron. Lett. 40, 690‒691 (2004).
[CrossRef]

Rossi, G.

T. E. Dimmick, G. Rossi, and D. J. Blumenthal, "Optical dispersion monitoring technique using double sideband subcarriers," IEEE Photon. Technol. Lett. 12, 900‒902 (2000).
[CrossRef]

Schäffer, C. G.

Schairer, W.

S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, "Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fiber," Electron. Lett. 40, 690‒691 (2004).
[CrossRef]

Suzuki, K.

T. Inui, T. Komukai, M. Nakazawa, K. Suzuki, K. R. Tamura, K. Uchiyama, and T. Morioka, "Adaptive dispersion slope equalizer using a nonlinearly chirped fiber Bragg grating pair with a novel dispersion detection technique," IEEE Photon. Technol. Lett. 14, 549‒551 (2002).
[CrossRef]

Tamura, K. R.

T. Inui, T. Komukai, M. Nakazawa, K. Suzuki, K. R. Tamura, K. Uchiyama, and T. Morioka, "Adaptive dispersion slope equalizer using a nonlinearly chirped fiber Bragg grating pair with a novel dispersion detection technique," IEEE Photon. Technol. Lett. 14, 549‒551 (2002).
[CrossRef]

Teixeira, A.

Tkach, R. W.

A. R. Charaplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, "Phase modulation to amplitude modulation conversion of CW laser light in optical fibers," Electron. Lett. 12, 409‒411 (1986).
[CrossRef]

Uchiyama, K.

T. Inui, T. Komukai, M. Nakazawa, K. Suzuki, K. R. Tamura, K. Uchiyama, and T. Morioka, "Adaptive dispersion slope equalizer using a nonlinearly chirped fiber Bragg grating pair with a novel dispersion detection technique," IEEE Photon. Technol. Lett. 14, 549‒551 (2002).
[CrossRef]

Westbrook, P. S.

S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, "Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fiber," Electron. Lett. 40, 690‒691 (2004).
[CrossRef]

Wielandy, S.

S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, "Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fiber," Electron. Lett. 40, 690‒691 (2004).
[CrossRef]

S. Wielandy, M. Fishteyn, and B. Zhu, "Optical performance monitoring using nonlinear detection," J. Lightwave Technol. 22, 784‒793 (2004).
[CrossRef]

Willner, A. E.

Yan, L.-S.

Yu, Q.

Zhu, B.

Electron. Lett. (2)

A. R. Charaplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, "Phase modulation to amplitude modulation conversion of CW laser light in optical fibers," Electron. Lett. 12, 409‒411 (1986).
[CrossRef]

S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, "Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fiber," Electron. Lett. 40, 690‒691 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. E. Dimmick, G. Rossi, and D. J. Blumenthal, "Optical dispersion monitoring technique using double sideband subcarriers," IEEE Photon. Technol. Lett. 12, 900‒902 (2000).
[CrossRef]

T. Inui, T. Komukai, M. Nakazawa, K. Suzuki, K. R. Tamura, K. Uchiyama, and T. Morioka, "Adaptive dispersion slope equalizer using a nonlinearly chirped fiber Bragg grating pair with a novel dispersion detection technique," IEEE Photon. Technol. Lett. 14, 549‒551 (2002).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

Other (1)

G. Ishikawa and O. Hiroki, "Demonstration of automatic dispersion equalization in 40 Gbit/s OTDM transmission," European Conf. on Optical Communication, 1998, Madrid, Spain, paper We, Session 3 (I).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(Color online) Setup of the optical delay line filter.

Fig. 2
Fig. 2

Measured transfer functions of the passband, LSB, and USB filter output ports.

Fig. 3
Fig. 3

Proof-of-concept measurement setup.

Fig. 4
Fig. 4

(Color online) Eye diagrams of the LSB, USB, and passband signals in the presence of 80 ps/nm dispersion.

Fig. 5
Fig. 5

Estimated dispersion versus fiber dispersion for a 10 Gbit/s NRZ signal LSB and USB measurement.

Fig. 6
Fig. 6

(Color online) Experimental setup.

Fig. 7
Fig. 7

(Color online) Influence of the filter transfer function on the normalized mixer output voltage (filter input power: 2 dBm).

Fig. 8
Fig. 8

(Color online) Influence of and nonlinearities on the mixer output voltage (filter state: 36°, filter input power: 2 dBm).

Fig. 9
Fig. 9

(Color online) Monitor port 1 and monitor port 2 transfer functions for different values of the minimal transmission t min .

Fig. 10
Fig. 10

(Color online) Normalized mixer output voltage for different values of the minimal transmission t min .

Fig. 11
Fig. 11

(Color online) Spectra at the filter’s three output ports.

Fig. 12
Fig. 12

Measured mixer output voltage for two different measurement configurations.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

S 3 × 3 = 0 0 0 κ κ κ 0 0 0 κ κ κ 0 0 0 κ κ κ κ κ κ 0 0 0 κ κ κ 0 0 0 κ κ κ 0 0 0 .
1 = κ 2 + 2 κ 2
0 = κ 2 + κ κ + κ κ
Δ σ = arg ( κ ) arg ( κ ) = π arccos 1 κ 2 8 κ 2
κ = 1 κ 2 2 e j Δ σ
H F ( z ) = C ( 1 + b 1 z 1 + z 2 )
= C 1 z 0 z 1 1 z 0 z
H F ( z ) = κ κ e j φ 1 1 + κ κ κ κ e j d φ 1 z 1 + z 2 .
H L S B ( z ) = κ κ e j φ 1 1 + e j d φ 1 z 1 + κ κ z 2 ,
H U S B ( z ) = κ κ e j φ 1 κ κ + e j d φ 1 z 1 + z 2 .
d φ 1 = 3 2 π arccos 1 κ 2 8 κ 2 5 2 π arccos 1 κ 2 8 κ 2 .
w = 2 ( π Ω 3 dB )
D = Δ t λ 0 1 1 1 + Δ f λ 0 c ,
Δ t = φ 2 π t Bit .
Ω 3 dB = arccos ρ 2 2 cos ( ψ ) + cos ( ψ ) 2 + 4 ρ 4 cos ( ψ ) 2 + 4 cos ( ψ ) 2 + 12 ρ 2 2 + 8 ρ cos ( ψ ) + 8 ρ 3 cos ( ψ ) 2 ρ 4 4 ρ .
V mix , i = a i 2 ω i 2 π 0 2 π ω i sin ( ω i t ) sin ( ω i ( t + Δ t ) ) d t = a i 2 cos ( ω i Δ t ) 2 .
V mix = V mix,uncorrected P opt , A P opt , B .
V mix , norm = V mix V mix , max .
H F , t ( Ω ) = t min + ( 1 t min ) H F ( Ω ) .