Abstract

In this paper, we present a performance model of optical burst switching (OBS) that can explain the degradation of OBS throughput performance when the control packet processing time increases. We then use the proposed performance model to investigate three feasible methods to improve OBS performance without significantly increasing the implementation complexity: addition of simple fiber delay lines (FDLs), random extra offset time, and window-based channel scheduling (WBS). Additional FDLs can eliminate the negative impact caused by the variation of the offset time between control packets and data bursts. The random extra offset time approach does not require any additional hardware and computational capability in the nodes. If higher computational capability is available, WBS in general can provide better throughput improvement than that of random extra offset time when FDLs are used in the nodes to compensate the processing time. Simulation results show that a combination of the proposed methods can significantly improve OBS performance.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Qiao and M. Yoo, "Optical burst switching (OBS)—a new paradigm for an optical Internet," J. High Speed Netw. 8, 69‒84 (1999).
  2. J. S. Tuner, "Terabit burst switching," J. High Speed Netw. 8, 3‒16 (1999).
  3. J. Y. Wei and R. I. McFarland Jr., "Just-in-time signaling for WDM optical burst switching networks," J. Lightwave Technol. 18, 2019‒2037 (2000).
    [CrossRef]
  4. Y. Xiong, M. Vandenhoute, and H. C. Cankaya, "Control architecture in optical burst-switched WDM networks," IEEE J. Sel. Areas Commun. 18, 1838‒1851 (2000).
    [CrossRef]
  5. C. Y. Li, G. M. Li, P. K. A. Wai, and V. O. K. Li, "Optical burst switching with large switching overhead," IEEE J. Lightwave Technol. 25, 451‒462 (2007).
    [CrossRef]
  6. I. Widjaja, "Performance analysis of burst admission-control protocols," IEE Proc. Commun. 142, 7‒14 (1995).
    [CrossRef]
  7. B. C. Kim, Y. Z. Cho, and D. Montgomery, "An efficient optical burst switching technique for multi-hop networks," IEICE Trans. Commun. E87-B, 1737‒1740 (2004).
  8. J. Li, C. Qiao, J. Xu, and D. Xu, "Maximizing throughput for optical burst switching networks," IEEE/ACM Trans. Netw. 15, 1163‒1176 (2007).
    [CrossRef]
  9. X. Lu and B. L. Mark, "Performance modeling of optical-burst switching with fiber delay lines," IEEE Trans. Commun. 52, 2175‒2183 (2004).
    [CrossRef]
  10. V. M. Vokkarane and J. P. Jue, "Prioritized burst segmentation and composite burst-assembly techniques for QoS support in optical burst-switched networks," IEEE J. Sel. Areas Commun. 21, 1198‒1209 (2003).
    [CrossRef]
  11. M. Duser and P. Bayvel, "Analysis of a dynamically wavelength-routed optical burst switched network architecture," J. Lightwave Technol. 20, 574‒585 (2002).
    [CrossRef]
  12. J. Pedro, P. Monteiro, and J. Pires, "Traffic engineering in the wavelength domain for optical burst switched networks," J. Lightwave Technol. 27, 3075‒3091 (2009).
    [CrossRef]
  13. N. F. Maxemchuk, "Routing in Manhattan Street network," IEEE Trans. Commun. 35, 503‒512 (1987).
    [CrossRef]
  14. F. Vázquez-Abad, J. White, L. Andrew, and R. Tucker, "Does header length affect performance in optical burst switched networks?," J. Opt. Netw. 3, 342‒353 (2004).
    [CrossRef]
  15. N. Barakat and E. H. Sargent, "Analytical modeling of offset-induced priority in multiclass OBS networks," IEEE Trans. Commun. 53, 1343‒1352 (2005).
    [CrossRef]
  16. H. M. H. Shalaby, "A simplified performance analysis of optical burst-switched networks," J. Lightwave Technol. 25, 986‒995 (2007).
    [CrossRef]
  17. J. A. Hernandez, J. Aracil, L. Pedro, and P. Reviriego, "Analysis of blocking probability of data bursts with continuous-time variable offsets in single-wavelength OBS switches," J. Lightwave Technol. 26, 1559‒1568 (2008).
    [CrossRef]
  18. S. Verma, H. Chaskar, and R. Ravikanth, "Optical burst switching: a viable solution for terabit IP backbone," IEEE Network 14, 48‒53 (2000).
  19. C. Y. Li, G. M. Li, P. K. A. Wai, and V. O. K. Li, "Novel resource reservation schemes for optical burst switching," Proc. IEEE Int. Conf. Communications, 2005, pp. 1651‒1655.
  20. H. Li, H. Neo, and T. L. J. Ian, "Performance of the implementation of a pipeline buffering system in optical burst switching networks," Proc. Global Communications Conf., 2003, pp. 2503‒2507.

2009

2008

2007

C. Y. Li, G. M. Li, P. K. A. Wai, and V. O. K. Li, "Optical burst switching with large switching overhead," IEEE J. Lightwave Technol. 25, 451‒462 (2007).
[CrossRef]

H. M. H. Shalaby, "A simplified performance analysis of optical burst-switched networks," J. Lightwave Technol. 25, 986‒995 (2007).
[CrossRef]

J. Li, C. Qiao, J. Xu, and D. Xu, "Maximizing throughput for optical burst switching networks," IEEE/ACM Trans. Netw. 15, 1163‒1176 (2007).
[CrossRef]

2005

N. Barakat and E. H. Sargent, "Analytical modeling of offset-induced priority in multiclass OBS networks," IEEE Trans. Commun. 53, 1343‒1352 (2005).
[CrossRef]

2004

B. C. Kim, Y. Z. Cho, and D. Montgomery, "An efficient optical burst switching technique for multi-hop networks," IEICE Trans. Commun. E87-B, 1737‒1740 (2004).

F. Vázquez-Abad, J. White, L. Andrew, and R. Tucker, "Does header length affect performance in optical burst switched networks?," J. Opt. Netw. 3, 342‒353 (2004).
[CrossRef]

X. Lu and B. L. Mark, "Performance modeling of optical-burst switching with fiber delay lines," IEEE Trans. Commun. 52, 2175‒2183 (2004).
[CrossRef]

2003

V. M. Vokkarane and J. P. Jue, "Prioritized burst segmentation and composite burst-assembly techniques for QoS support in optical burst-switched networks," IEEE J. Sel. Areas Commun. 21, 1198‒1209 (2003).
[CrossRef]

2002

2000

J. Y. Wei and R. I. McFarland Jr., "Just-in-time signaling for WDM optical burst switching networks," J. Lightwave Technol. 18, 2019‒2037 (2000).
[CrossRef]

Y. Xiong, M. Vandenhoute, and H. C. Cankaya, "Control architecture in optical burst-switched WDM networks," IEEE J. Sel. Areas Commun. 18, 1838‒1851 (2000).
[CrossRef]

S. Verma, H. Chaskar, and R. Ravikanth, "Optical burst switching: a viable solution for terabit IP backbone," IEEE Network 14, 48‒53 (2000).

1999

C. Qiao and M. Yoo, "Optical burst switching (OBS)—a new paradigm for an optical Internet," J. High Speed Netw. 8, 69‒84 (1999).

J. S. Tuner, "Terabit burst switching," J. High Speed Netw. 8, 3‒16 (1999).

1995

I. Widjaja, "Performance analysis of burst admission-control protocols," IEE Proc. Commun. 142, 7‒14 (1995).
[CrossRef]

1987

N. F. Maxemchuk, "Routing in Manhattan Street network," IEEE Trans. Commun. 35, 503‒512 (1987).
[CrossRef]

Andrew, L.

Aracil, J.

Barakat, N.

N. Barakat and E. H. Sargent, "Analytical modeling of offset-induced priority in multiclass OBS networks," IEEE Trans. Commun. 53, 1343‒1352 (2005).
[CrossRef]

Bayvel, P.

Cankaya, H. C.

Y. Xiong, M. Vandenhoute, and H. C. Cankaya, "Control architecture in optical burst-switched WDM networks," IEEE J. Sel. Areas Commun. 18, 1838‒1851 (2000).
[CrossRef]

Chaskar, H.

S. Verma, H. Chaskar, and R. Ravikanth, "Optical burst switching: a viable solution for terabit IP backbone," IEEE Network 14, 48‒53 (2000).

Cho, Y. Z.

B. C. Kim, Y. Z. Cho, and D. Montgomery, "An efficient optical burst switching technique for multi-hop networks," IEICE Trans. Commun. E87-B, 1737‒1740 (2004).

Duser, M.

Hernandez, J. A.

Ian, T. L. J.

H. Li, H. Neo, and T. L. J. Ian, "Performance of the implementation of a pipeline buffering system in optical burst switching networks," Proc. Global Communications Conf., 2003, pp. 2503‒2507.

Jue, J. P.

V. M. Vokkarane and J. P. Jue, "Prioritized burst segmentation and composite burst-assembly techniques for QoS support in optical burst-switched networks," IEEE J. Sel. Areas Commun. 21, 1198‒1209 (2003).
[CrossRef]

Kim, B. C.

B. C. Kim, Y. Z. Cho, and D. Montgomery, "An efficient optical burst switching technique for multi-hop networks," IEICE Trans. Commun. E87-B, 1737‒1740 (2004).

Li, C. Y.

C. Y. Li, G. M. Li, P. K. A. Wai, and V. O. K. Li, "Optical burst switching with large switching overhead," IEEE J. Lightwave Technol. 25, 451‒462 (2007).
[CrossRef]

C. Y. Li, G. M. Li, P. K. A. Wai, and V. O. K. Li, "Novel resource reservation schemes for optical burst switching," Proc. IEEE Int. Conf. Communications, 2005, pp. 1651‒1655.

Li, G. M.

C. Y. Li, G. M. Li, P. K. A. Wai, and V. O. K. Li, "Optical burst switching with large switching overhead," IEEE J. Lightwave Technol. 25, 451‒462 (2007).
[CrossRef]

C. Y. Li, G. M. Li, P. K. A. Wai, and V. O. K. Li, "Novel resource reservation schemes for optical burst switching," Proc. IEEE Int. Conf. Communications, 2005, pp. 1651‒1655.

Li, H.

H. Li, H. Neo, and T. L. J. Ian, "Performance of the implementation of a pipeline buffering system in optical burst switching networks," Proc. Global Communications Conf., 2003, pp. 2503‒2507.

Li, J.

J. Li, C. Qiao, J. Xu, and D. Xu, "Maximizing throughput for optical burst switching networks," IEEE/ACM Trans. Netw. 15, 1163‒1176 (2007).
[CrossRef]

Li, V. O. K.

C. Y. Li, G. M. Li, P. K. A. Wai, and V. O. K. Li, "Optical burst switching with large switching overhead," IEEE J. Lightwave Technol. 25, 451‒462 (2007).
[CrossRef]

C. Y. Li, G. M. Li, P. K. A. Wai, and V. O. K. Li, "Novel resource reservation schemes for optical burst switching," Proc. IEEE Int. Conf. Communications, 2005, pp. 1651‒1655.

Lu, X.

X. Lu and B. L. Mark, "Performance modeling of optical-burst switching with fiber delay lines," IEEE Trans. Commun. 52, 2175‒2183 (2004).
[CrossRef]

Mark, B. L.

X. Lu and B. L. Mark, "Performance modeling of optical-burst switching with fiber delay lines," IEEE Trans. Commun. 52, 2175‒2183 (2004).
[CrossRef]

Maxemchuk, N. F.

N. F. Maxemchuk, "Routing in Manhattan Street network," IEEE Trans. Commun. 35, 503‒512 (1987).
[CrossRef]

McFarland, R. I.

Monteiro, P.

Montgomery, D.

B. C. Kim, Y. Z. Cho, and D. Montgomery, "An efficient optical burst switching technique for multi-hop networks," IEICE Trans. Commun. E87-B, 1737‒1740 (2004).

Neo, H.

H. Li, H. Neo, and T. L. J. Ian, "Performance of the implementation of a pipeline buffering system in optical burst switching networks," Proc. Global Communications Conf., 2003, pp. 2503‒2507.

Pedro, J.

Pedro, L.

Pires, J.

Qiao, C.

J. Li, C. Qiao, J. Xu, and D. Xu, "Maximizing throughput for optical burst switching networks," IEEE/ACM Trans. Netw. 15, 1163‒1176 (2007).
[CrossRef]

C. Qiao and M. Yoo, "Optical burst switching (OBS)—a new paradigm for an optical Internet," J. High Speed Netw. 8, 69‒84 (1999).

Ravikanth, R.

S. Verma, H. Chaskar, and R. Ravikanth, "Optical burst switching: a viable solution for terabit IP backbone," IEEE Network 14, 48‒53 (2000).

Reviriego, P.

Sargent, E. H.

N. Barakat and E. H. Sargent, "Analytical modeling of offset-induced priority in multiclass OBS networks," IEEE Trans. Commun. 53, 1343‒1352 (2005).
[CrossRef]

Shalaby, H. M. H.

Tucker, R.

Tuner, J. S.

J. S. Tuner, "Terabit burst switching," J. High Speed Netw. 8, 3‒16 (1999).

Vandenhoute, M.

Y. Xiong, M. Vandenhoute, and H. C. Cankaya, "Control architecture in optical burst-switched WDM networks," IEEE J. Sel. Areas Commun. 18, 1838‒1851 (2000).
[CrossRef]

Vázquez-Abad, F.

Verma, S.

S. Verma, H. Chaskar, and R. Ravikanth, "Optical burst switching: a viable solution for terabit IP backbone," IEEE Network 14, 48‒53 (2000).

Vokkarane, V. M.

V. M. Vokkarane and J. P. Jue, "Prioritized burst segmentation and composite burst-assembly techniques for QoS support in optical burst-switched networks," IEEE J. Sel. Areas Commun. 21, 1198‒1209 (2003).
[CrossRef]

Wai, P. K. A.

C. Y. Li, G. M. Li, P. K. A. Wai, and V. O. K. Li, "Optical burst switching with large switching overhead," IEEE J. Lightwave Technol. 25, 451‒462 (2007).
[CrossRef]

C. Y. Li, G. M. Li, P. K. A. Wai, and V. O. K. Li, "Novel resource reservation schemes for optical burst switching," Proc. IEEE Int. Conf. Communications, 2005, pp. 1651‒1655.

Wei, J. Y.

White, J.

Widjaja, I.

I. Widjaja, "Performance analysis of burst admission-control protocols," IEE Proc. Commun. 142, 7‒14 (1995).
[CrossRef]

Xiong, Y.

Y. Xiong, M. Vandenhoute, and H. C. Cankaya, "Control architecture in optical burst-switched WDM networks," IEEE J. Sel. Areas Commun. 18, 1838‒1851 (2000).
[CrossRef]

Xu, D.

J. Li, C. Qiao, J. Xu, and D. Xu, "Maximizing throughput for optical burst switching networks," IEEE/ACM Trans. Netw. 15, 1163‒1176 (2007).
[CrossRef]

Xu, J.

J. Li, C. Qiao, J. Xu, and D. Xu, "Maximizing throughput for optical burst switching networks," IEEE/ACM Trans. Netw. 15, 1163‒1176 (2007).
[CrossRef]

Yoo, M.

C. Qiao and M. Yoo, "Optical burst switching (OBS)—a new paradigm for an optical Internet," J. High Speed Netw. 8, 69‒84 (1999).

IEE Proc. Commun.

I. Widjaja, "Performance analysis of burst admission-control protocols," IEE Proc. Commun. 142, 7‒14 (1995).
[CrossRef]

IEEE J. Lightwave Technol.

C. Y. Li, G. M. Li, P. K. A. Wai, and V. O. K. Li, "Optical burst switching with large switching overhead," IEEE J. Lightwave Technol. 25, 451‒462 (2007).
[CrossRef]

IEEE J. Sel. Areas Commun.

Y. Xiong, M. Vandenhoute, and H. C. Cankaya, "Control architecture in optical burst-switched WDM networks," IEEE J. Sel. Areas Commun. 18, 1838‒1851 (2000).
[CrossRef]

V. M. Vokkarane and J. P. Jue, "Prioritized burst segmentation and composite burst-assembly techniques for QoS support in optical burst-switched networks," IEEE J. Sel. Areas Commun. 21, 1198‒1209 (2003).
[CrossRef]

IEEE Network

S. Verma, H. Chaskar, and R. Ravikanth, "Optical burst switching: a viable solution for terabit IP backbone," IEEE Network 14, 48‒53 (2000).

IEEE Trans. Commun.

N. Barakat and E. H. Sargent, "Analytical modeling of offset-induced priority in multiclass OBS networks," IEEE Trans. Commun. 53, 1343‒1352 (2005).
[CrossRef]

N. F. Maxemchuk, "Routing in Manhattan Street network," IEEE Trans. Commun. 35, 503‒512 (1987).
[CrossRef]

X. Lu and B. L. Mark, "Performance modeling of optical-burst switching with fiber delay lines," IEEE Trans. Commun. 52, 2175‒2183 (2004).
[CrossRef]

IEEE/ACM Trans. Netw.

J. Li, C. Qiao, J. Xu, and D. Xu, "Maximizing throughput for optical burst switching networks," IEEE/ACM Trans. Netw. 15, 1163‒1176 (2007).
[CrossRef]

IEICE Trans. Commun.

B. C. Kim, Y. Z. Cho, and D. Montgomery, "An efficient optical burst switching technique for multi-hop networks," IEICE Trans. Commun. E87-B, 1737‒1740 (2004).

J. High Speed Netw.

C. Qiao and M. Yoo, "Optical burst switching (OBS)—a new paradigm for an optical Internet," J. High Speed Netw. 8, 69‒84 (1999).

J. S. Tuner, "Terabit burst switching," J. High Speed Netw. 8, 3‒16 (1999).

J. Lightwave Technol.

J. Opt. Netw.

Other

C. Y. Li, G. M. Li, P. K. A. Wai, and V. O. K. Li, "Novel resource reservation schemes for optical burst switching," Proc. IEEE Int. Conf. Communications, 2005, pp. 1651‒1655.

H. Li, H. Neo, and T. L. J. Ian, "Performance of the implementation of a pipeline buffering system in optical burst switching networks," Proc. Global Communications Conf., 2003, pp. 2503‒2507.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (24)

Fig. 1
Fig. 1

(Color online) The loading–throughput curves of different OBS schemes in an 8 × 8 MSN [13] with T c p = 0 . 1 (discarded-traffic-clear approach is used).

Fig. 2
Fig. 2

(Color online) The throughtput–delay curves of different OBS schemes of an 8 × 8 MSN with T c p = 0 . 1 (discarded-traffic-retransmit approach is used).

Fig. 3
Fig. 3

(Color online) The JET OBS throughput–delay performance of an NSFNet topology network with different control overheads.

Fig. 4
Fig. 4

(Color online) The Horizon OBS throughput–delay performance of an NSFNet with different control overheads.

Fig. 5
Fig. 5

(Color online) The JIT OBS throughput–delay performance of an NSFNet with different control overheads.

Fig. 6
Fig. 6

(Color online) The NSFNet (1991) network topology. The original map of the network is available from the Internet (ftp://ftp.uu.net/inet/maps/nsfnet/).

Fig. 7
Fig. 7

(Color online) Two control packets CP 1 and CP x and their corresponding data bursts DB 1 and DB x .

Fig. 8
Fig. 8

(Color online) The length of the blocking time interval T B for CP 1 to block CP x , DB 2 versus ( H x H 1 ) for different T c p using T c p = H × T c p + T s w .

Fig. 9
Fig. 9

(Color online) H b of an eight channel 8 × 8 MSN with JET OBS using different control overhead T c p when the normalized loading is one.

Fig. 10
Fig. 10

(Color online) An OBS node with simple FDLs installed at each input port for control packet processing time compensation.

Fig. 11
Fig. 11

(Color online) A network with one k-hop path and k one-hop paths.

Fig. 12
Fig. 12

(Color online) The average loss rates of data bursts with different hop count and random reservation probability. The channel reservation successful probability at a node is 0.5.

Fig. 13
Fig. 13

(Color online) Arrival of control packets CP 1 to CP 4 and their corresponding data bursts DB 1 to DB 4 .

Fig. 14
Fig. 14

(Color online) The maximum throughput of different OBS systems on an NSFnet with T c p = 1 and using FDL compensation for different FDL delay time T FDL .

Fig. 15
Fig. 15

(Color online) The maximum throughput of different OBS systems on an 8 × 8 MSN with T c p = 1 and using FDL compensation for different FDL delay time T FDL .

Fig. 16
Fig. 16

(Color online) The throughput–delay performance of JET OBS on an NSFNet with T c p = 0 . 1 and using random extra offset time T e x of different Z.

Fig. 17
Fig. 17

(Color online) The throughput–delay performance of JET OBS on an NSFNet with T c p = 1 . 0 and using random extra offset time T e x of different Z.

Fig. 18
Fig. 18

(Color online) The maximum throughput of different OBS systems on an NSFNet with T c p = 0 and using random extra offset time T e x of different Z.

Fig. 19
Fig. 19

(Color online) The maximum throughput of different OBS systems on an 8 × 8 MSN with T c p = 0 and using random extra offset time T e x of different Z.

Fig. 20
Fig. 20

(Color online) The maximum throughput of different OBS systems on an 8 × 8 MSN with T c p = 0 and window time T w d .

Fig. 21
Fig. 21

(Color online) The maximum throughput of different OBS systems on an 8 × 8 MSN with T c p = 0 and window time T w d .

Fig. 22
Fig. 22

(Color online) The throughput–delay performance of WBS OBS on an NSFNet with T c p = 1 . 0 and using FDL compensation of different FDL delay T FDL .

Fig. 23
Fig. 23

(Color online) The throughput–delay performance of WBS OBS on an NSFNet with T c p = 1 . 0 and without FDL processing time compensation.

Fig. 24
Fig. 24

(Color online) The throughput–delay performance of WBS OBS on an NSFNet with T c p = 5 . 0 and without FDL processing time compensation.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

T off = H × T c p + T s w ,
(i) : t x + T f x L 1 < t 1 + T f 1 ,
(ii) : t x + T f x + L x > t 1 + T f 1 .
t x + ( T f x T f 1 ) L 1 < t 1 < t x + ( T f x T f 1 ) .
t x + ( T f x T f 1 ) < t 1 < t x + ( T f x T f 1 ) + L x .
T B ( JET ) = L 1 min ( max ( T f x T f 1 , 0 ) , L 1 ) + min ( max ( T f 1 T f x , 0 ) , L x ) ,
T B ( Horizon ) = L 1 min ( max ( T f x T f 1 , 0 ) , L 1 ) + max ( T f 1 T f x , 0 ) ,
T B ( JIT ) = T f 1 + L 1 ,
T B ( JET ) = L min ( max ( ( H x H 1 ) × T c p , 0 ) , L ) + min ( max ( ( H 1 H x ) × T c p , 0 ) , L ) ,
T f x T f 1 = ( H x H 1 ) T c p + T diff ,
( H x H 1 ) T c p < T diff < L 1 ( H x H 1 ) T c p .
f diff ( y ) = f ex ( y + x ) f ex ( x ) d x ,
f diff ( y ) = ( Z y ) / Z 2 , for  Z < y < Z ,
B 0 = 1 [ ( s s e x ) k + ( s + s e x ) k ] / 2 ,
B j = [ ( s s e x ) j + ( s + s e x ) j ] / 2 , for  1 j k .
w x + k S w k k R w k .