Abstract

In this paper, we introduce two novel methods (beam power adaptation and diversity imaging) to the design of optical wireless systems to improve link performance. The aim is to reduce the effect of intersymbol interference and to enhance the signal-to-noise ratio (SNR), thus enabling the system to achieve mobility while operating at high bit rates. In good agreement with previous work, the results show that the imaging conventional diffuse system (CDS) with maximum ratio combining (MRC) offers 20 dB better SNR than the nonimaging CDS. The new adaptive line strip multibeam system (ALSMS) with a new imaging diversity receiver provides an SNR improvement of 39 dB over the imaging diversity CDS when both systems employ MRC and operate at 30Mbitss. This result illustrates the SNR improvement achieved through the use of our adaptive algorithm coupled with spot diffusing. The lower bit rate (30Mbitss) facilitates comparison with previous work. The results also indicate that the combination of transmit power adaptation and spot diffusing coupled with imaging diversity receivers can enable fully mobile 2.5Gbits optical wireless communication. Such a 2.5Gbits system (imaging MRC ALSMS) achieved an SNR improvement of 27dB over a lower data rate (30Mbitss) nonimaging CDS.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. R. Gfeller, U. H. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, Nov. 1979.
    [CrossRef]
  2. M. D. Audeh, J. M. Kahn, “Performance evaluation of baseband OOK for wireless indoor infrared LAN’s operating at 100 Mb∕s,” IEEE Trans. Commun., vol. 43, pp. 2085–2094, June 1995.
    [CrossRef]
  3. S. Jivkova, M. Kavehard, “Multispot diffusing configuration for wireless infrared access,” IEEE Trans. Commun., vol. 48, no. 6, pp. 970–978, June 2000.
    [CrossRef]
  4. J. R. Barry, J. M. Kahn, E. A. Lee, D. G. Messerschmitt, “High-speed nondirective optical communication for wireless networks,” IEEE Network, vol. 5, pp. 44–54, Nov. 1991.
    [CrossRef]
  5. J. B. Carruthers, J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun., vol. 48, no. 6, pp. 960–969, June 2000.
    [CrossRef]
  6. A. G. Al-Ghamdi, J. M. H. Elmirghani, “Optimization of a triangular PFDR antenna in a fully diffuse OW system influenced by background noise and multipath propagation,” IEEE Trans. Commun., vol. 51, no. 12, pp. 2103–2114, Dec. 2003.
    [CrossRef]
  7. A. G. Al-Ghamdi, J. M. H. Elmirghani, “Analysis of diffuse optical wireless channels employing spot-diffusing techniques, diversity receivers, and combining schemes,” IEEE Trans. Commun., vol. 52, no. 10, pp. 1622–1631, Oct. 2004.
    [CrossRef]
  8. A. G. Al-Ghamdi, J. M. H. Elmirghani, “Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion,” IEEE Trans. Commun., vol. 52, no. 1, pp. 37–45, Jan. 2004.
    [CrossRef]
  9. S. Jivkova, M. Kavehard, “Receiver designs and channel characterization for multi-spot high-bit-rate wireless infrared communications,” IEEE Trans. Commun., vol. 49, pp. 2145–2153, Dec. 2001.
    [CrossRef]
  10. S. Jivkova, M. Kavehrad, “Indoor wireless infrared local access, multi-spot diffusing with computer generated holographic beam-splitters,” in IEEE Int. Conf. on Communication, 1999, vol. 1, pp. 604–608.
  11. J. B. Carruthers, J. M. Kahn, “Angle diversity for non-directed wireless infrared communication,” in IEEE Int. Conf. on Communication, Atlanta, 1998, vol. 3, pp. 1665–1670.
  12. A. G. Al-Ghamdi, J. M. H. Elmirghani, “Characterization of mobile spot diffusing optical wireless systems with diversity receiver,” in IEEE Int. Conf. on Communication, 2004, pp. 133–138.
  13. A. K. Karmokar, V. K. Bhargava, “Performance of cross-layer optimal adaptive transmission techniques over diversity Nakagami-m fading channels,” IEEE Trans. Commun., vol. 57, pp. 3640–3652, Dec. 2009.
    [CrossRef]
  14. P. Viswanath, D. N. C. Tse, R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1277–1294, June 2002.
    [CrossRef]
  15. G. Yun, M. Kavehrad, “Spot diffusing and fly-eye receivers for indoor infrared wireless communications,” in Proc. 1992 IEEE Conf. on Selected Topics in Wireless Communication, Vancouver, BC, Canada, 1992, pp. 286–292.
  16. A. P. Tang, J. M. Kahn, K. P. Ho, “Wireless infrared communication links using multi-beam transmitters and imaging receivers,” in IEEE Int. Conf. on Communication, 1996, pp. 180–186.
  17. P. Djahani, J. Kahn, “Analysis of infrared wireless links employing multibeam transmitter and imaging diversity receivers,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2077–2088, Dec. 2000.
    [CrossRef]
  18. O. Takahashi, T. Touge, “Optical wireless network for office communication,” JARECT (Japan Electron. Rev. Electron. Comput. Telecommun.), vol. 20, pp. 217–228, 1985/1986.
  19. A. M. Street, P. N. Stavrinou, D. C. O’Brien, D. J. Edwards, “Indoor optical wireless systems—a review,” Opt. Quantum Electron., vol. 29, pp. 349–378, 1997.
    [CrossRef]
  20. D. J. T. Heatley, D. R. Wisely, I. Neild, P. Cochrane, “Optical wireless: the story so far,” IEEE Commun. Mag., vol. 36, pp. 72–74, 79–82, 1998.
    [CrossRef]
  21. J. Bellon, M. J. N. Sibley, D. R. Wisely, S. D. Greaves, “Hub architecture for infra-red wireless networks in office environments,” IEE Proc.: Optoelectron., vol. 146, pp. 78–82, 1999.
    [CrossRef]
  22. F. E. Alsaadi, J. M. H. Elmirghani, “Mobile MC-CDMA optical wireless system employing an adaptive multibeam transmitter and diversity receivers in a real indoor environment,” in IEEE Int. Conf. on Communication, 2008, pp. 5196–5203.
    [CrossRef]
  23. J. M. H. Elmirghani, H. T. Mouftah, “Technologies and architectures for scalable dynamic dense WDM networks,” IEEE Commun. Mag., vol. 38, no. 2, pp. 58–66, Feb. 2000.
    [CrossRef]
  24. A. J. C. Moreira, R. T. Valadas, A. M. De Oliveira Duarte, “Optical interference produced by artificial light,” Wireless Networks, vol. 3, pp. 131–140, May 1997.
    [CrossRef]
  25. S. Zahedi, J. A. Salehi, M. Nasiri-Kenari, “A photon counting approach to the performance analysis of indoors wireless infrared CDMA networks,” in Proc. of IEEE PIMRC’00, London, UK, 2000, vol. 2, pp. 928–932.
  26. H.-H. Chan, K. L. Sterckx, J. M. H. Elmirghani, R. A. Cryan, “Performance of optical wireless OOK and PPM systems under the constraints of ambient noise and multipath dispersion,” IEEE Commun. Mag., vol. 36, no. 2, pp. 83–87, Dec. 1998.
    [CrossRef]
  27. W. T. Welford, R. Winston, High Collection Nonimaging Optics. San Diego: Academic, 1989.
  28. F. E. Alsaadi, J. M. H. Elmirghani, “Adaptive mobile line strip multibeam MC-CDMA optical wireless system employing imaging detection in a real indoor environment,” IEEE J. Sel. Areas Commun., vol. 27, no. 9, pp. 1663–1675, Dec. 2009.
    [CrossRef]
  29. J. R. Barry, J. M. Krause, E. A. Lee, D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, pp. 367–379, Apr. 1993.
    [CrossRef]
  30. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications. New York: Wiley-Interscience, 1994.
  31. L. Branko, “Optical receivers for wide band data transmission systems,” IEEE Trans. Nucl. Sci., vol. 36, no. 1, pp. 787–793, Feb. 1989.
    [CrossRef]
  32. S. D. Personick, “Receiver design for digital fiber optical communication system, Part I and II,” Bell Syst. Tech. J., vol. 52, pp. 843–886, 1973.
    [CrossRef]

2009 (2)

A. K. Karmokar, V. K. Bhargava, “Performance of cross-layer optimal adaptive transmission techniques over diversity Nakagami-m fading channels,” IEEE Trans. Commun., vol. 57, pp. 3640–3652, Dec. 2009.
[CrossRef]

F. E. Alsaadi, J. M. H. Elmirghani, “Adaptive mobile line strip multibeam MC-CDMA optical wireless system employing imaging detection in a real indoor environment,” IEEE J. Sel. Areas Commun., vol. 27, no. 9, pp. 1663–1675, Dec. 2009.
[CrossRef]

2004 (2)

A. G. Al-Ghamdi, J. M. H. Elmirghani, “Analysis of diffuse optical wireless channels employing spot-diffusing techniques, diversity receivers, and combining schemes,” IEEE Trans. Commun., vol. 52, no. 10, pp. 1622–1631, Oct. 2004.
[CrossRef]

A. G. Al-Ghamdi, J. M. H. Elmirghani, “Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion,” IEEE Trans. Commun., vol. 52, no. 1, pp. 37–45, Jan. 2004.
[CrossRef]

2003 (1)

A. G. Al-Ghamdi, J. M. H. Elmirghani, “Optimization of a triangular PFDR antenna in a fully diffuse OW system influenced by background noise and multipath propagation,” IEEE Trans. Commun., vol. 51, no. 12, pp. 2103–2114, Dec. 2003.
[CrossRef]

2002 (1)

P. Viswanath, D. N. C. Tse, R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1277–1294, June 2002.
[CrossRef]

2001 (1)

S. Jivkova, M. Kavehard, “Receiver designs and channel characterization for multi-spot high-bit-rate wireless infrared communications,” IEEE Trans. Commun., vol. 49, pp. 2145–2153, Dec. 2001.
[CrossRef]

2000 (4)

J. B. Carruthers, J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun., vol. 48, no. 6, pp. 960–969, June 2000.
[CrossRef]

S. Jivkova, M. Kavehard, “Multispot diffusing configuration for wireless infrared access,” IEEE Trans. Commun., vol. 48, no. 6, pp. 970–978, June 2000.
[CrossRef]

P. Djahani, J. Kahn, “Analysis of infrared wireless links employing multibeam transmitter and imaging diversity receivers,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2077–2088, Dec. 2000.
[CrossRef]

J. M. H. Elmirghani, H. T. Mouftah, “Technologies and architectures for scalable dynamic dense WDM networks,” IEEE Commun. Mag., vol. 38, no. 2, pp. 58–66, Feb. 2000.
[CrossRef]

1999 (1)

J. Bellon, M. J. N. Sibley, D. R. Wisely, S. D. Greaves, “Hub architecture for infra-red wireless networks in office environments,” IEE Proc.: Optoelectron., vol. 146, pp. 78–82, 1999.
[CrossRef]

1998 (2)

D. J. T. Heatley, D. R. Wisely, I. Neild, P. Cochrane, “Optical wireless: the story so far,” IEEE Commun. Mag., vol. 36, pp. 72–74, 79–82, 1998.
[CrossRef]

H.-H. Chan, K. L. Sterckx, J. M. H. Elmirghani, R. A. Cryan, “Performance of optical wireless OOK and PPM systems under the constraints of ambient noise and multipath dispersion,” IEEE Commun. Mag., vol. 36, no. 2, pp. 83–87, Dec. 1998.
[CrossRef]

1997 (2)

A. J. C. Moreira, R. T. Valadas, A. M. De Oliveira Duarte, “Optical interference produced by artificial light,” Wireless Networks, vol. 3, pp. 131–140, May 1997.
[CrossRef]

A. M. Street, P. N. Stavrinou, D. C. O’Brien, D. J. Edwards, “Indoor optical wireless systems—a review,” Opt. Quantum Electron., vol. 29, pp. 349–378, 1997.
[CrossRef]

1995 (1)

M. D. Audeh, J. M. Kahn, “Performance evaluation of baseband OOK for wireless indoor infrared LAN’s operating at 100 Mb∕s,” IEEE Trans. Commun., vol. 43, pp. 2085–2094, June 1995.
[CrossRef]

1993 (1)

J. R. Barry, J. M. Krause, E. A. Lee, D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, pp. 367–379, Apr. 1993.
[CrossRef]

1991 (1)

J. R. Barry, J. M. Kahn, E. A. Lee, D. G. Messerschmitt, “High-speed nondirective optical communication for wireless networks,” IEEE Network, vol. 5, pp. 44–54, Nov. 1991.
[CrossRef]

1989 (1)

L. Branko, “Optical receivers for wide band data transmission systems,” IEEE Trans. Nucl. Sci., vol. 36, no. 1, pp. 787–793, Feb. 1989.
[CrossRef]

1979 (1)

F. R. Gfeller, U. H. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, Nov. 1979.
[CrossRef]

1973 (1)

S. D. Personick, “Receiver design for digital fiber optical communication system, Part I and II,” Bell Syst. Tech. J., vol. 52, pp. 843–886, 1973.
[CrossRef]

Al-Ghamdi, A. G.

A. G. Al-Ghamdi, J. M. H. Elmirghani, “Analysis of diffuse optical wireless channels employing spot-diffusing techniques, diversity receivers, and combining schemes,” IEEE Trans. Commun., vol. 52, no. 10, pp. 1622–1631, Oct. 2004.
[CrossRef]

A. G. Al-Ghamdi, J. M. H. Elmirghani, “Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion,” IEEE Trans. Commun., vol. 52, no. 1, pp. 37–45, Jan. 2004.
[CrossRef]

A. G. Al-Ghamdi, J. M. H. Elmirghani, “Optimization of a triangular PFDR antenna in a fully diffuse OW system influenced by background noise and multipath propagation,” IEEE Trans. Commun., vol. 51, no. 12, pp. 2103–2114, Dec. 2003.
[CrossRef]

A. G. Al-Ghamdi, J. M. H. Elmirghani, “Characterization of mobile spot diffusing optical wireless systems with diversity receiver,” in IEEE Int. Conf. on Communication, 2004, pp. 133–138.

Alsaadi, F. E.

F. E. Alsaadi, J. M. H. Elmirghani, “Adaptive mobile line strip multibeam MC-CDMA optical wireless system employing imaging detection in a real indoor environment,” IEEE J. Sel. Areas Commun., vol. 27, no. 9, pp. 1663–1675, Dec. 2009.
[CrossRef]

F. E. Alsaadi, J. M. H. Elmirghani, “Mobile MC-CDMA optical wireless system employing an adaptive multibeam transmitter and diversity receivers in a real indoor environment,” in IEEE Int. Conf. on Communication, 2008, pp. 5196–5203.
[CrossRef]

Audeh, M. D.

M. D. Audeh, J. M. Kahn, “Performance evaluation of baseband OOK for wireless indoor infrared LAN’s operating at 100 Mb∕s,” IEEE Trans. Commun., vol. 43, pp. 2085–2094, June 1995.
[CrossRef]

Bapst, U. H.

F. R. Gfeller, U. H. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, Nov. 1979.
[CrossRef]

Barry, J. R.

J. R. Barry, J. M. Krause, E. A. Lee, D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, pp. 367–379, Apr. 1993.
[CrossRef]

J. R. Barry, J. M. Kahn, E. A. Lee, D. G. Messerschmitt, “High-speed nondirective optical communication for wireless networks,” IEEE Network, vol. 5, pp. 44–54, Nov. 1991.
[CrossRef]

Bellon, J.

J. Bellon, M. J. N. Sibley, D. R. Wisely, S. D. Greaves, “Hub architecture for infra-red wireless networks in office environments,” IEE Proc.: Optoelectron., vol. 146, pp. 78–82, 1999.
[CrossRef]

Bhargava, V. K.

A. K. Karmokar, V. K. Bhargava, “Performance of cross-layer optimal adaptive transmission techniques over diversity Nakagami-m fading channels,” IEEE Trans. Commun., vol. 57, pp. 3640–3652, Dec. 2009.
[CrossRef]

Branko, L.

L. Branko, “Optical receivers for wide band data transmission systems,” IEEE Trans. Nucl. Sci., vol. 36, no. 1, pp. 787–793, Feb. 1989.
[CrossRef]

Carruthers, J. B.

J. B. Carruthers, J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun., vol. 48, no. 6, pp. 960–969, June 2000.
[CrossRef]

J. B. Carruthers, J. M. Kahn, “Angle diversity for non-directed wireless infrared communication,” in IEEE Int. Conf. on Communication, Atlanta, 1998, vol. 3, pp. 1665–1670.

Chan, H.-H.

H.-H. Chan, K. L. Sterckx, J. M. H. Elmirghani, R. A. Cryan, “Performance of optical wireless OOK and PPM systems under the constraints of ambient noise and multipath dispersion,” IEEE Commun. Mag., vol. 36, no. 2, pp. 83–87, Dec. 1998.
[CrossRef]

Cochrane, P.

D. J. T. Heatley, D. R. Wisely, I. Neild, P. Cochrane, “Optical wireless: the story so far,” IEEE Commun. Mag., vol. 36, pp. 72–74, 79–82, 1998.
[CrossRef]

Cryan, R. A.

H.-H. Chan, K. L. Sterckx, J. M. H. Elmirghani, R. A. Cryan, “Performance of optical wireless OOK and PPM systems under the constraints of ambient noise and multipath dispersion,” IEEE Commun. Mag., vol. 36, no. 2, pp. 83–87, Dec. 1998.
[CrossRef]

De Oliveira Duarte, A. M.

A. J. C. Moreira, R. T. Valadas, A. M. De Oliveira Duarte, “Optical interference produced by artificial light,” Wireless Networks, vol. 3, pp. 131–140, May 1997.
[CrossRef]

Desurvire, E.

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications. New York: Wiley-Interscience, 1994.

Djahani, P.

P. Djahani, J. Kahn, “Analysis of infrared wireless links employing multibeam transmitter and imaging diversity receivers,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2077–2088, Dec. 2000.
[CrossRef]

Edwards, D. J.

A. M. Street, P. N. Stavrinou, D. C. O’Brien, D. J. Edwards, “Indoor optical wireless systems—a review,” Opt. Quantum Electron., vol. 29, pp. 349–378, 1997.
[CrossRef]

Elmirghani, J. M. H.

F. E. Alsaadi, J. M. H. Elmirghani, “Adaptive mobile line strip multibeam MC-CDMA optical wireless system employing imaging detection in a real indoor environment,” IEEE J. Sel. Areas Commun., vol. 27, no. 9, pp. 1663–1675, Dec. 2009.
[CrossRef]

A. G. Al-Ghamdi, J. M. H. Elmirghani, “Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion,” IEEE Trans. Commun., vol. 52, no. 1, pp. 37–45, Jan. 2004.
[CrossRef]

A. G. Al-Ghamdi, J. M. H. Elmirghani, “Analysis of diffuse optical wireless channels employing spot-diffusing techniques, diversity receivers, and combining schemes,” IEEE Trans. Commun., vol. 52, no. 10, pp. 1622–1631, Oct. 2004.
[CrossRef]

A. G. Al-Ghamdi, J. M. H. Elmirghani, “Optimization of a triangular PFDR antenna in a fully diffuse OW system influenced by background noise and multipath propagation,” IEEE Trans. Commun., vol. 51, no. 12, pp. 2103–2114, Dec. 2003.
[CrossRef]

J. M. H. Elmirghani, H. T. Mouftah, “Technologies and architectures for scalable dynamic dense WDM networks,” IEEE Commun. Mag., vol. 38, no. 2, pp. 58–66, Feb. 2000.
[CrossRef]

H.-H. Chan, K. L. Sterckx, J. M. H. Elmirghani, R. A. Cryan, “Performance of optical wireless OOK and PPM systems under the constraints of ambient noise and multipath dispersion,” IEEE Commun. Mag., vol. 36, no. 2, pp. 83–87, Dec. 1998.
[CrossRef]

F. E. Alsaadi, J. M. H. Elmirghani, “Mobile MC-CDMA optical wireless system employing an adaptive multibeam transmitter and diversity receivers in a real indoor environment,” in IEEE Int. Conf. on Communication, 2008, pp. 5196–5203.
[CrossRef]

A. G. Al-Ghamdi, J. M. H. Elmirghani, “Characterization of mobile spot diffusing optical wireless systems with diversity receiver,” in IEEE Int. Conf. on Communication, 2004, pp. 133–138.

Gfeller, F. R.

F. R. Gfeller, U. H. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, Nov. 1979.
[CrossRef]

Greaves, S. D.

J. Bellon, M. J. N. Sibley, D. R. Wisely, S. D. Greaves, “Hub architecture for infra-red wireless networks in office environments,” IEE Proc.: Optoelectron., vol. 146, pp. 78–82, 1999.
[CrossRef]

Heatley, D. J. T.

D. J. T. Heatley, D. R. Wisely, I. Neild, P. Cochrane, “Optical wireless: the story so far,” IEEE Commun. Mag., vol. 36, pp. 72–74, 79–82, 1998.
[CrossRef]

Ho, K. P.

A. P. Tang, J. M. Kahn, K. P. Ho, “Wireless infrared communication links using multi-beam transmitters and imaging receivers,” in IEEE Int. Conf. on Communication, 1996, pp. 180–186.

Jivkova, S.

S. Jivkova, M. Kavehard, “Receiver designs and channel characterization for multi-spot high-bit-rate wireless infrared communications,” IEEE Trans. Commun., vol. 49, pp. 2145–2153, Dec. 2001.
[CrossRef]

S. Jivkova, M. Kavehard, “Multispot diffusing configuration for wireless infrared access,” IEEE Trans. Commun., vol. 48, no. 6, pp. 970–978, June 2000.
[CrossRef]

S. Jivkova, M. Kavehrad, “Indoor wireless infrared local access, multi-spot diffusing with computer generated holographic beam-splitters,” in IEEE Int. Conf. on Communication, 1999, vol. 1, pp. 604–608.

Kahn, J.

P. Djahani, J. Kahn, “Analysis of infrared wireless links employing multibeam transmitter and imaging diversity receivers,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2077–2088, Dec. 2000.
[CrossRef]

Kahn, J. M.

J. B. Carruthers, J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun., vol. 48, no. 6, pp. 960–969, June 2000.
[CrossRef]

M. D. Audeh, J. M. Kahn, “Performance evaluation of baseband OOK for wireless indoor infrared LAN’s operating at 100 Mb∕s,” IEEE Trans. Commun., vol. 43, pp. 2085–2094, June 1995.
[CrossRef]

J. R. Barry, J. M. Kahn, E. A. Lee, D. G. Messerschmitt, “High-speed nondirective optical communication for wireless networks,” IEEE Network, vol. 5, pp. 44–54, Nov. 1991.
[CrossRef]

J. B. Carruthers, J. M. Kahn, “Angle diversity for non-directed wireless infrared communication,” in IEEE Int. Conf. on Communication, Atlanta, 1998, vol. 3, pp. 1665–1670.

A. P. Tang, J. M. Kahn, K. P. Ho, “Wireless infrared communication links using multi-beam transmitters and imaging receivers,” in IEEE Int. Conf. on Communication, 1996, pp. 180–186.

Karmokar, A. K.

A. K. Karmokar, V. K. Bhargava, “Performance of cross-layer optimal adaptive transmission techniques over diversity Nakagami-m fading channels,” IEEE Trans. Commun., vol. 57, pp. 3640–3652, Dec. 2009.
[CrossRef]

Kavehard, M.

S. Jivkova, M. Kavehard, “Receiver designs and channel characterization for multi-spot high-bit-rate wireless infrared communications,” IEEE Trans. Commun., vol. 49, pp. 2145–2153, Dec. 2001.
[CrossRef]

S. Jivkova, M. Kavehard, “Multispot diffusing configuration for wireless infrared access,” IEEE Trans. Commun., vol. 48, no. 6, pp. 970–978, June 2000.
[CrossRef]

Kavehrad, M.

S. Jivkova, M. Kavehrad, “Indoor wireless infrared local access, multi-spot diffusing with computer generated holographic beam-splitters,” in IEEE Int. Conf. on Communication, 1999, vol. 1, pp. 604–608.

G. Yun, M. Kavehrad, “Spot diffusing and fly-eye receivers for indoor infrared wireless communications,” in Proc. 1992 IEEE Conf. on Selected Topics in Wireless Communication, Vancouver, BC, Canada, 1992, pp. 286–292.

Krause, J. M.

J. R. Barry, J. M. Krause, E. A. Lee, D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, pp. 367–379, Apr. 1993.
[CrossRef]

Laroia, R.

P. Viswanath, D. N. C. Tse, R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1277–1294, June 2002.
[CrossRef]

Lee, E. A.

J. R. Barry, J. M. Krause, E. A. Lee, D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, pp. 367–379, Apr. 1993.
[CrossRef]

J. R. Barry, J. M. Kahn, E. A. Lee, D. G. Messerschmitt, “High-speed nondirective optical communication for wireless networks,” IEEE Network, vol. 5, pp. 44–54, Nov. 1991.
[CrossRef]

Messerschmitt, D. G.

J. R. Barry, J. M. Krause, E. A. Lee, D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, pp. 367–379, Apr. 1993.
[CrossRef]

J. R. Barry, J. M. Kahn, E. A. Lee, D. G. Messerschmitt, “High-speed nondirective optical communication for wireless networks,” IEEE Network, vol. 5, pp. 44–54, Nov. 1991.
[CrossRef]

Moreira, A. J. C.

A. J. C. Moreira, R. T. Valadas, A. M. De Oliveira Duarte, “Optical interference produced by artificial light,” Wireless Networks, vol. 3, pp. 131–140, May 1997.
[CrossRef]

Mouftah, H. T.

J. M. H. Elmirghani, H. T. Mouftah, “Technologies and architectures for scalable dynamic dense WDM networks,” IEEE Commun. Mag., vol. 38, no. 2, pp. 58–66, Feb. 2000.
[CrossRef]

Nasiri-Kenari, M.

S. Zahedi, J. A. Salehi, M. Nasiri-Kenari, “A photon counting approach to the performance analysis of indoors wireless infrared CDMA networks,” in Proc. of IEEE PIMRC’00, London, UK, 2000, vol. 2, pp. 928–932.

Neild, I.

D. J. T. Heatley, D. R. Wisely, I. Neild, P. Cochrane, “Optical wireless: the story so far,” IEEE Commun. Mag., vol. 36, pp. 72–74, 79–82, 1998.
[CrossRef]

O’Brien, D. C.

A. M. Street, P. N. Stavrinou, D. C. O’Brien, D. J. Edwards, “Indoor optical wireless systems—a review,” Opt. Quantum Electron., vol. 29, pp. 349–378, 1997.
[CrossRef]

Personick, S. D.

S. D. Personick, “Receiver design for digital fiber optical communication system, Part I and II,” Bell Syst. Tech. J., vol. 52, pp. 843–886, 1973.
[CrossRef]

Salehi, J. A.

S. Zahedi, J. A. Salehi, M. Nasiri-Kenari, “A photon counting approach to the performance analysis of indoors wireless infrared CDMA networks,” in Proc. of IEEE PIMRC’00, London, UK, 2000, vol. 2, pp. 928–932.

Sibley, M. J. N.

J. Bellon, M. J. N. Sibley, D. R. Wisely, S. D. Greaves, “Hub architecture for infra-red wireless networks in office environments,” IEE Proc.: Optoelectron., vol. 146, pp. 78–82, 1999.
[CrossRef]

Stavrinou, P. N.

A. M. Street, P. N. Stavrinou, D. C. O’Brien, D. J. Edwards, “Indoor optical wireless systems—a review,” Opt. Quantum Electron., vol. 29, pp. 349–378, 1997.
[CrossRef]

Sterckx, K. L.

H.-H. Chan, K. L. Sterckx, J. M. H. Elmirghani, R. A. Cryan, “Performance of optical wireless OOK and PPM systems under the constraints of ambient noise and multipath dispersion,” IEEE Commun. Mag., vol. 36, no. 2, pp. 83–87, Dec. 1998.
[CrossRef]

Street, A. M.

A. M. Street, P. N. Stavrinou, D. C. O’Brien, D. J. Edwards, “Indoor optical wireless systems—a review,” Opt. Quantum Electron., vol. 29, pp. 349–378, 1997.
[CrossRef]

Takahashi, O.

O. Takahashi, T. Touge, “Optical wireless network for office communication,” JARECT (Japan Electron. Rev. Electron. Comput. Telecommun.), vol. 20, pp. 217–228, 1985/1986.

Tang, A. P.

A. P. Tang, J. M. Kahn, K. P. Ho, “Wireless infrared communication links using multi-beam transmitters and imaging receivers,” in IEEE Int. Conf. on Communication, 1996, pp. 180–186.

Touge, T.

O. Takahashi, T. Touge, “Optical wireless network for office communication,” JARECT (Japan Electron. Rev. Electron. Comput. Telecommun.), vol. 20, pp. 217–228, 1985/1986.

Tse, D. N. C.

P. Viswanath, D. N. C. Tse, R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1277–1294, June 2002.
[CrossRef]

Valadas, R. T.

A. J. C. Moreira, R. T. Valadas, A. M. De Oliveira Duarte, “Optical interference produced by artificial light,” Wireless Networks, vol. 3, pp. 131–140, May 1997.
[CrossRef]

Viswanath, P.

P. Viswanath, D. N. C. Tse, R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1277–1294, June 2002.
[CrossRef]

Welford, W. T.

W. T. Welford, R. Winston, High Collection Nonimaging Optics. San Diego: Academic, 1989.

Winston, R.

W. T. Welford, R. Winston, High Collection Nonimaging Optics. San Diego: Academic, 1989.

Wisely, D. R.

J. Bellon, M. J. N. Sibley, D. R. Wisely, S. D. Greaves, “Hub architecture for infra-red wireless networks in office environments,” IEE Proc.: Optoelectron., vol. 146, pp. 78–82, 1999.
[CrossRef]

D. J. T. Heatley, D. R. Wisely, I. Neild, P. Cochrane, “Optical wireless: the story so far,” IEEE Commun. Mag., vol. 36, pp. 72–74, 79–82, 1998.
[CrossRef]

Yun, G.

G. Yun, M. Kavehrad, “Spot diffusing and fly-eye receivers for indoor infrared wireless communications,” in Proc. 1992 IEEE Conf. on Selected Topics in Wireless Communication, Vancouver, BC, Canada, 1992, pp. 286–292.

Zahedi, S.

S. Zahedi, J. A. Salehi, M. Nasiri-Kenari, “A photon counting approach to the performance analysis of indoors wireless infrared CDMA networks,” in Proc. of IEEE PIMRC’00, London, UK, 2000, vol. 2, pp. 928–932.

Bell Syst. Tech. J. (1)

S. D. Personick, “Receiver design for digital fiber optical communication system, Part I and II,” Bell Syst. Tech. J., vol. 52, pp. 843–886, 1973.
[CrossRef]

IEE Proc.: Optoelectron. (1)

J. Bellon, M. J. N. Sibley, D. R. Wisely, S. D. Greaves, “Hub architecture for infra-red wireless networks in office environments,” IEE Proc.: Optoelectron., vol. 146, pp. 78–82, 1999.
[CrossRef]

IEEE Commun. Mag. (3)

D. J. T. Heatley, D. R. Wisely, I. Neild, P. Cochrane, “Optical wireless: the story so far,” IEEE Commun. Mag., vol. 36, pp. 72–74, 79–82, 1998.
[CrossRef]

J. M. H. Elmirghani, H. T. Mouftah, “Technologies and architectures for scalable dynamic dense WDM networks,” IEEE Commun. Mag., vol. 38, no. 2, pp. 58–66, Feb. 2000.
[CrossRef]

H.-H. Chan, K. L. Sterckx, J. M. H. Elmirghani, R. A. Cryan, “Performance of optical wireless OOK and PPM systems under the constraints of ambient noise and multipath dispersion,” IEEE Commun. Mag., vol. 36, no. 2, pp. 83–87, Dec. 1998.
[CrossRef]

IEEE J. Sel. Areas Commun. (2)

F. E. Alsaadi, J. M. H. Elmirghani, “Adaptive mobile line strip multibeam MC-CDMA optical wireless system employing imaging detection in a real indoor environment,” IEEE J. Sel. Areas Commun., vol. 27, no. 9, pp. 1663–1675, Dec. 2009.
[CrossRef]

J. R. Barry, J. M. Krause, E. A. Lee, D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, pp. 367–379, Apr. 1993.
[CrossRef]

IEEE Network (1)

J. R. Barry, J. M. Kahn, E. A. Lee, D. G. Messerschmitt, “High-speed nondirective optical communication for wireless networks,” IEEE Network, vol. 5, pp. 44–54, Nov. 1991.
[CrossRef]

IEEE Trans. Commun. (9)

J. B. Carruthers, J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun., vol. 48, no. 6, pp. 960–969, June 2000.
[CrossRef]

A. G. Al-Ghamdi, J. M. H. Elmirghani, “Optimization of a triangular PFDR antenna in a fully diffuse OW system influenced by background noise and multipath propagation,” IEEE Trans. Commun., vol. 51, no. 12, pp. 2103–2114, Dec. 2003.
[CrossRef]

A. G. Al-Ghamdi, J. M. H. Elmirghani, “Analysis of diffuse optical wireless channels employing spot-diffusing techniques, diversity receivers, and combining schemes,” IEEE Trans. Commun., vol. 52, no. 10, pp. 1622–1631, Oct. 2004.
[CrossRef]

A. G. Al-Ghamdi, J. M. H. Elmirghani, “Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion,” IEEE Trans. Commun., vol. 52, no. 1, pp. 37–45, Jan. 2004.
[CrossRef]

S. Jivkova, M. Kavehard, “Receiver designs and channel characterization for multi-spot high-bit-rate wireless infrared communications,” IEEE Trans. Commun., vol. 49, pp. 2145–2153, Dec. 2001.
[CrossRef]

A. K. Karmokar, V. K. Bhargava, “Performance of cross-layer optimal adaptive transmission techniques over diversity Nakagami-m fading channels,” IEEE Trans. Commun., vol. 57, pp. 3640–3652, Dec. 2009.
[CrossRef]

M. D. Audeh, J. M. Kahn, “Performance evaluation of baseband OOK for wireless indoor infrared LAN’s operating at 100 Mb∕s,” IEEE Trans. Commun., vol. 43, pp. 2085–2094, June 1995.
[CrossRef]

S. Jivkova, M. Kavehard, “Multispot diffusing configuration for wireless infrared access,” IEEE Trans. Commun., vol. 48, no. 6, pp. 970–978, June 2000.
[CrossRef]

P. Djahani, J. Kahn, “Analysis of infrared wireless links employing multibeam transmitter and imaging diversity receivers,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2077–2088, Dec. 2000.
[CrossRef]

IEEE Trans. Inf. Theory (1)

P. Viswanath, D. N. C. Tse, R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1277–1294, June 2002.
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

L. Branko, “Optical receivers for wide band data transmission systems,” IEEE Trans. Nucl. Sci., vol. 36, no. 1, pp. 787–793, Feb. 1989.
[CrossRef]

JARECT (Japan Electron. Rev. Electron. Comput. Telecommun.) (1)

O. Takahashi, T. Touge, “Optical wireless network for office communication,” JARECT (Japan Electron. Rev. Electron. Comput. Telecommun.), vol. 20, pp. 217–228, 1985/1986.

Opt. Quantum Electron. (1)

A. M. Street, P. N. Stavrinou, D. C. O’Brien, D. J. Edwards, “Indoor optical wireless systems—a review,” Opt. Quantum Electron., vol. 29, pp. 349–378, 1997.
[CrossRef]

Proc. IEEE (1)

F. R. Gfeller, U. H. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, Nov. 1979.
[CrossRef]

Wireless Networks (1)

A. J. C. Moreira, R. T. Valadas, A. M. De Oliveira Duarte, “Optical interference produced by artificial light,” Wireless Networks, vol. 3, pp. 131–140, May 1997.
[CrossRef]

Other (9)

S. Zahedi, J. A. Salehi, M. Nasiri-Kenari, “A photon counting approach to the performance analysis of indoors wireless infrared CDMA networks,” in Proc. of IEEE PIMRC’00, London, UK, 2000, vol. 2, pp. 928–932.

W. T. Welford, R. Winston, High Collection Nonimaging Optics. San Diego: Academic, 1989.

F. E. Alsaadi, J. M. H. Elmirghani, “Mobile MC-CDMA optical wireless system employing an adaptive multibeam transmitter and diversity receivers in a real indoor environment,” in IEEE Int. Conf. on Communication, 2008, pp. 5196–5203.
[CrossRef]

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications. New York: Wiley-Interscience, 1994.

G. Yun, M. Kavehrad, “Spot diffusing and fly-eye receivers for indoor infrared wireless communications,” in Proc. 1992 IEEE Conf. on Selected Topics in Wireless Communication, Vancouver, BC, Canada, 1992, pp. 286–292.

A. P. Tang, J. M. Kahn, K. P. Ho, “Wireless infrared communication links using multi-beam transmitters and imaging receivers,” in IEEE Int. Conf. on Communication, 1996, pp. 180–186.

S. Jivkova, M. Kavehrad, “Indoor wireless infrared local access, multi-spot diffusing with computer generated holographic beam-splitters,” in IEEE Int. Conf. on Communication, 1999, vol. 1, pp. 604–608.

J. B. Carruthers, J. M. Kahn, “Angle diversity for non-directed wireless infrared communication,” in IEEE Int. Conf. on Communication, Atlanta, 1998, vol. 3, pp. 1665–1670.

A. G. Al-Ghamdi, J. M. H. Elmirghani, “Characterization of mobile spot diffusing optical wireless systems with diversity receiver,” in IEEE Int. Conf. on Communication, 2004, pp. 133–138.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Physical structure of an imaging receiver that utilizes a single imaging lens and a photodetector segmented into multiple pixels.

Fig. 2
Fig. 2

Two cases of reception area distribution associated with the photodetector array at three different places: ceiling, x z wall, and y z wall at two different imaging receiver positions. (a) The imaging receiver is at ( 2 m , 4 m , 1 m ) . (b) The imaging receiver is at ( 1 m , 1 m , 1 m ) .

Fig. 3
Fig. 3

LSMS mobile configuration when the transmitter is placed at two positions: ( 1 m , 1 m , 1 m ) and ( 2 m , 7 m , 1 m ) .

Fig. 4
Fig. 4

Two cases of spot distribution at two different locations: ceiling and wall for two different transmitter positions.

Fig. 5
Fig. 5

Flow chart of the adaptive algorithm.

Fig. 6
Fig. 6

Delay spread distribution of four OW systems: CDS with a single nonimaging receiver, CDS, LSMS, and ALSMS in conjunction with an imaging receiver based on SB, when the transmitter is placed at the room corner ( 1 m , 1 m , 1 m ) and the receiver is at constant x = 2 m and along the y-axis.

Fig. 7
Fig. 7

SNR of CDS system in conjunction with a single nonimaging receiver, a single imaging receiver, and imaging diversity receivers when the transmitter is placed at ( 2 m , 7 m , 1 m ) and the receiver moves along the x = 1 m line.

Fig. 8
Fig. 8

SNR of the proposed systems operating at 30 Mbits s when the receiver moves along the x = 1 m line and the transmitter is placed at (a) the center of the room ( 2 m , 4 m , 1 m ) and (b) ( 2 m , 7 m , 1 m ) .

Fig. 9
Fig. 9

SNR of the proposed imaging systems operating at 2.5 Gbits s when the transmitter is placed at ( 2 m , 7 m , 1 m ) and the receiver moves along the x = 1 m line.

Tables (2)

Tables Icon

Table 1 Parameter Used For Simulation

Tables Icon

Table 2 A 3 dB Bandwidth of the Proposed Imaging Systems and Comparsion With Nonimaging CDS

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = R x ( t ) h ( t ) + n ( t ) ,
T c , NIMG ( δ ) = T [ 1 + ( δ ψ a ) 2 R ] 1 ,
T c , IMG ( δ ) = 0.1982 δ 2 + 0.0425 δ + 0.8778 ,
α x = tan 1 ( d x h ) and α y = tan 1 ( d y h ) ,
z y = y r tan α y and z x = x r tan α x ,
β i = tan 1 ( ( y t y i ) ( z i z CF ) ) , 1 i N s ,
z i = y t tan β i + z C F .
D = ( t μ ) 2 h 2 ( t ) d t h 2 ( t ) d t , μ = t h 2 ( t ) d t h 2 ( t ) d t .
P e = Q ( SNR ) ,
SNR = ( R × ( P s 1 P s 0 ) σ t ) 2 ,
σ pr 2 = 4 k T R F I 2 B + 16 π 2 k T Γ g m ( C d + C g ) 2 I 3 B 3 .
σ pr 2 = 8 π k T G η A I 2 B 2 + 16 π 2 k T Γ g m η 2 A 2 I 3 B 3 .
σ bn = 2 q R P bn I 2 B ,
σ 0 = σ pr 2 + σ bn 2 + σ s 0 2 and σ 1 = σ pr 2 + σ bn 2 + σ s 1 2 .
SNR = ( R × ( P s 1 P s 0 ) σ pr 2 + σ bn 2 + σ s 0 2 + σ pr 2 + σ bn 2 + σ s 1 2 ) 2 .
SNR IMG , SB = max j ( R × ( P s 1 j P s 0 j ) σ 0 j + σ 1 j ) 2 , 1 j J ,
SNR IMG , MRC = ( j = 1 L R ( P s 1 j P s 0 j ) w j ) 2 j = 1 J ( σ 0 j + σ 1 j ) 2 w j 2 ,
SNR IMG , MRC = ( j = 1 J R ( P s 1 j P s 0 j ) R ( P s 1 j P s 0 j ) ( σ 0 j + σ 1 j ) 2 ) 2 j = 1 J ( R ( P s 1 j P s 0 j ) ( σ 0 j + σ 1 j ) 2 ) 2 ( σ 0 j + σ 1 j ) 2 = j = 1 J ( R ( P s 1 j P s 0 j ) ( σ 0 j + σ 1 j ) ) 2 = j J SNR j .