Abstract

Coherent optical orthogonal frequency-division multiplexed (OFDM) systems must be carefully designed to minimize the detrimental impact of fiber nonlinearity manifested through four-wave mixing (FWM). Because of the small subcarrier spacing associated with OFDM, a significant fraction of FWM processes is well matched, resulting in a rapid buildup of FWM light with propagation distance. In this paper, we consider optical phase conjugation (OPC) as an approach to suppress such well-matched FWM processes. An analytical formula accurately predicting the degree of suppression is derived and discussed. It is shown that when combined with the methods previously proposed in the literature, the application of OPC can dramatically reduce the overall FWM power accumulated within the link for a wide range of crucial design parameters.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription