Abstract

We propose newly constructed two-dimensional hybrid codes (2-D hybrid codes) and the corresponding system architecture for a spectral/spatial optical code division multiple access (OCDMA) system. We employ unidimensional (1-D) integer lattice codes and 1-D perfect difference codes to construct the 2-D hybrid codes. This proposed system can suppress the phase-induced intensity noise (PIIN) and has the multiuser interference (MUI) cancellation property. In comparison with the other systems using the 2-D maximal-area matrices codes (2-D MM codes), the 2-D perfect difference codes (2-D PD codes), and the 2-D spatial division multiplexing balanced incomplete block design codes (2-D S-BIBD codes), the numerical results show that the proposed system has the superior performance.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. Prucnal, M. A. Santoro, T. R. Fan, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol., vol. 4, no. 5, pp. 547–554, May 1986.
    [CrossRef]
  2. W. C. Kwong, P. A. Perrier, P. R. Prucnal, “Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiber-optic local area networks,” IEEE Trans. Commun., vol. 39, no. 11, pp. 1625–1634, Nov. 1991.
    [CrossRef]
  3. C.-S. Weng, J.-S. Wu, “Perfect difference codes for synchronous fiber-optic CDMA communication systems,” J. Lightwave Technol., vol. 19, no. 2, pp. 186–194, Feb. 2001.
    [CrossRef]
  4. J. A. Salehi, “Code division multiple-access techniques in optical fiber networks—Part I: Fundamental principles,” IEEE Trans. Commun., vol. 37, no. 8, pp. 824–833, Aug. 1989.
    [CrossRef]
  5. F. R. K. Chung, J. A. Salehi, V. K. Wei, “Optical orthogonal codes: design, analysis, and applications,” IEEE Trans. Inf. Theory, vol. 35, no. 3, pp. 595–604, May 1989.
    [CrossRef]
  6. H. Fathallah, L. A. Rusch, S. LaRochelle, “Passive optical fast frequency-hop CDMA communications system,” J. Lightwave Technol., vol. 17, no. 3, pp. 397–405, Mar. 1999.
    [CrossRef]
  7. E. Inaty, H. M. H. Shalaby, P. Fortier, “On the cutoff rates of a multiclass OFFH-CDMA system,” IEEE Trans. Commun., vol. 53, no. 2, pp. 323–334, Feb. 2005.
    [CrossRef]
  8. M. Kavehrad, D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources,” J. Lightwave Technol., vol. 13, no. 3, pp. 534–545, Mar. 1995.
    [CrossRef]
  9. E. D. J. Smith, R. J. Blaikie, D. P. Taylor, “Performance enhancement of spectral amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun., vol. 46, no. 3, pp. 1176–1185, Sept. 1998.
    [CrossRef]
  10. X. Zhou, H. H. M. Shalaby, C. Lu, T. Cheng, “Code for spectral amplitude coding optical CDMA systems,” Electron. Lett., vol. 36, no. 8, pp. 728–729, Apr. 2000.
    [CrossRef]
  11. Z. Wei, H. M. H. Shalaby, H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” J. Lightwave Technol., vol. 19, no. 9, pp. 1274–1281, Sept. 2001.
    [CrossRef]
  12. J.-F. Huang, Y.-T. Chang, “Incoherent hybrid spectral polarization and amplitude coding implemented with specified orthogonal ternary code over balanced photo-detectors,” in Proc. of the 4th Annu. Communications Networks and Services Research Conf., 2006, pp. 8–52.
  13. J.-F. Huang, C.-T. Yen, C.-M. Tsai, F.-Y. Jiang, “Multilevel optical CDMA network coding with embedded orthogonal polarizations to reduce phase noises,” in 5th Int. Conf. on Information, Communications and Signal Processing, 2005, pp. 1191–1196.
  14. C.-C. Yang, J.-F. Huang, “Two-dimensional M-matrices coding in spatial/frequency optical CDMA networks,” IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 168–170, Jan. 2003.
    [CrossRef]
  15. C.-H. Lin, J.-S. Wu, C.-L. Yang, “Noncoherent spatial/spectral optical CDMA system with two-dimensional perfect difference codes,” J. Lightwave Technol., vol. 23, no. 12, pp. 3966–3980, Dec. 2005.
    [CrossRef]
  16. C.-C. Yang, “The application of spectral-amplitude-coding optical CDMA in passive optical networks,” Opt. Fiber Technol., vol. 14, pp. 134–142, 2008.
    [CrossRef]
  17. I. B. Djordjevic, B. Vasic, “Novel combinatorial constructions of optical orthogonal codes for incoherent optical CDMA systems,” J. Lightwave Technol., vol. 21, no. 9, pp. 1869–1875, Sept. 2003.
    [CrossRef]
  18. J. Singer, “A theorem in finite projective geometry and some applications to number theory,” Trans. Am. Math. Soc., vol. 43, no. 3, pp. 377–385, 1938.
    [CrossRef]
  19. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol., vol. 15, no. 8, pp. 1277–1294, Aug. 1997.
    [CrossRef]
  20. J. W. Goodman, Statistical Optics. New York: Wiley, 1985.
  21. A. Meijerink, G. H. L. M. Heideman, W. C. v. Etten, “A generalization of a coherence multiplexing system,” in Symp. on Communications and Vehicular Technology, 2000, pp. 6–13.
  22. C.-H. Lin, J.-S. Wu, H.-W. Tsao, C.-L. Yang, “Spectral amplitude-coding optical CDMA system using Mach–Zehnder interferometers,” J. Lightwave Technol., vol. 23, no. 4, pp. 1543–1555.
  23. G. Keiser, Optical Fiber Communications, 3rd ed. Boston: McGraw-Hill, pp. 498–502, 2000.

2008

C.-C. Yang, “The application of spectral-amplitude-coding optical CDMA in passive optical networks,” Opt. Fiber Technol., vol. 14, pp. 134–142, 2008.
[CrossRef]

2005

C.-H. Lin, J.-S. Wu, C.-L. Yang, “Noncoherent spatial/spectral optical CDMA system with two-dimensional perfect difference codes,” J. Lightwave Technol., vol. 23, no. 12, pp. 3966–3980, Dec. 2005.
[CrossRef]

E. Inaty, H. M. H. Shalaby, P. Fortier, “On the cutoff rates of a multiclass OFFH-CDMA system,” IEEE Trans. Commun., vol. 53, no. 2, pp. 323–334, Feb. 2005.
[CrossRef]

2003

C.-C. Yang, J.-F. Huang, “Two-dimensional M-matrices coding in spatial/frequency optical CDMA networks,” IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 168–170, Jan. 2003.
[CrossRef]

I. B. Djordjevic, B. Vasic, “Novel combinatorial constructions of optical orthogonal codes for incoherent optical CDMA systems,” J. Lightwave Technol., vol. 21, no. 9, pp. 1869–1875, Sept. 2003.
[CrossRef]

2001

2000

X. Zhou, H. H. M. Shalaby, C. Lu, T. Cheng, “Code for spectral amplitude coding optical CDMA systems,” Electron. Lett., vol. 36, no. 8, pp. 728–729, Apr. 2000.
[CrossRef]

1999

1998

E. D. J. Smith, R. J. Blaikie, D. P. Taylor, “Performance enhancement of spectral amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun., vol. 46, no. 3, pp. 1176–1185, Sept. 1998.
[CrossRef]

1997

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol., vol. 15, no. 8, pp. 1277–1294, Aug. 1997.
[CrossRef]

1995

M. Kavehrad, D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources,” J. Lightwave Technol., vol. 13, no. 3, pp. 534–545, Mar. 1995.
[CrossRef]

1991

W. C. Kwong, P. A. Perrier, P. R. Prucnal, “Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiber-optic local area networks,” IEEE Trans. Commun., vol. 39, no. 11, pp. 1625–1634, Nov. 1991.
[CrossRef]

1989

J. A. Salehi, “Code division multiple-access techniques in optical fiber networks—Part I: Fundamental principles,” IEEE Trans. Commun., vol. 37, no. 8, pp. 824–833, Aug. 1989.
[CrossRef]

F. R. K. Chung, J. A. Salehi, V. K. Wei, “Optical orthogonal codes: design, analysis, and applications,” IEEE Trans. Inf. Theory, vol. 35, no. 3, pp. 595–604, May 1989.
[CrossRef]

1986

P. R. Prucnal, M. A. Santoro, T. R. Fan, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol., vol. 4, no. 5, pp. 547–554, May 1986.
[CrossRef]

1938

J. Singer, “A theorem in finite projective geometry and some applications to number theory,” Trans. Am. Math. Soc., vol. 43, no. 3, pp. 377–385, 1938.
[CrossRef]

Blaikie, R. J.

E. D. J. Smith, R. J. Blaikie, D. P. Taylor, “Performance enhancement of spectral amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun., vol. 46, no. 3, pp. 1176–1185, Sept. 1998.
[CrossRef]

Chang, Y.-T.

J.-F. Huang, Y.-T. Chang, “Incoherent hybrid spectral polarization and amplitude coding implemented with specified orthogonal ternary code over balanced photo-detectors,” in Proc. of the 4th Annu. Communications Networks and Services Research Conf., 2006, pp. 8–52.

Cheng, T.

X. Zhou, H. H. M. Shalaby, C. Lu, T. Cheng, “Code for spectral amplitude coding optical CDMA systems,” Electron. Lett., vol. 36, no. 8, pp. 728–729, Apr. 2000.
[CrossRef]

Chung, F. R. K.

F. R. K. Chung, J. A. Salehi, V. K. Wei, “Optical orthogonal codes: design, analysis, and applications,” IEEE Trans. Inf. Theory, vol. 35, no. 3, pp. 595–604, May 1989.
[CrossRef]

Djordjevic, I. B.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol., vol. 15, no. 8, pp. 1277–1294, Aug. 1997.
[CrossRef]

Etten, W. C. v.

A. Meijerink, G. H. L. M. Heideman, W. C. v. Etten, “A generalization of a coherence multiplexing system,” in Symp. on Communications and Vehicular Technology, 2000, pp. 6–13.

Fan, T. R.

P. R. Prucnal, M. A. Santoro, T. R. Fan, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol., vol. 4, no. 5, pp. 547–554, May 1986.
[CrossRef]

Fathallah, H.

Fortier, P.

E. Inaty, H. M. H. Shalaby, P. Fortier, “On the cutoff rates of a multiclass OFFH-CDMA system,” IEEE Trans. Commun., vol. 53, no. 2, pp. 323–334, Feb. 2005.
[CrossRef]

Ghafouri-Shiraz, H.

Goodman, J. W.

J. W. Goodman, Statistical Optics. New York: Wiley, 1985.

Heideman, G. H. L. M.

A. Meijerink, G. H. L. M. Heideman, W. C. v. Etten, “A generalization of a coherence multiplexing system,” in Symp. on Communications and Vehicular Technology, 2000, pp. 6–13.

Huang, J.-F.

C.-C. Yang, J.-F. Huang, “Two-dimensional M-matrices coding in spatial/frequency optical CDMA networks,” IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 168–170, Jan. 2003.
[CrossRef]

J.-F. Huang, C.-T. Yen, C.-M. Tsai, F.-Y. Jiang, “Multilevel optical CDMA network coding with embedded orthogonal polarizations to reduce phase noises,” in 5th Int. Conf. on Information, Communications and Signal Processing, 2005, pp. 1191–1196.

J.-F. Huang, Y.-T. Chang, “Incoherent hybrid spectral polarization and amplitude coding implemented with specified orthogonal ternary code over balanced photo-detectors,” in Proc. of the 4th Annu. Communications Networks and Services Research Conf., 2006, pp. 8–52.

Inaty, E.

E. Inaty, H. M. H. Shalaby, P. Fortier, “On the cutoff rates of a multiclass OFFH-CDMA system,” IEEE Trans. Commun., vol. 53, no. 2, pp. 323–334, Feb. 2005.
[CrossRef]

Jiang, F.-Y.

J.-F. Huang, C.-T. Yen, C.-M. Tsai, F.-Y. Jiang, “Multilevel optical CDMA network coding with embedded orthogonal polarizations to reduce phase noises,” in 5th Int. Conf. on Information, Communications and Signal Processing, 2005, pp. 1191–1196.

Kavehrad, M.

M. Kavehrad, D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources,” J. Lightwave Technol., vol. 13, no. 3, pp. 534–545, Mar. 1995.
[CrossRef]

Keiser, G.

G. Keiser, Optical Fiber Communications, 3rd ed. Boston: McGraw-Hill, pp. 498–502, 2000.

Kwong, W. C.

W. C. Kwong, P. A. Perrier, P. R. Prucnal, “Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiber-optic local area networks,” IEEE Trans. Commun., vol. 39, no. 11, pp. 1625–1634, Nov. 1991.
[CrossRef]

LaRochelle, S.

Lin, C.-H.

Lu, C.

X. Zhou, H. H. M. Shalaby, C. Lu, T. Cheng, “Code for spectral amplitude coding optical CDMA systems,” Electron. Lett., vol. 36, no. 8, pp. 728–729, Apr. 2000.
[CrossRef]

Meijerink, A.

A. Meijerink, G. H. L. M. Heideman, W. C. v. Etten, “A generalization of a coherence multiplexing system,” in Symp. on Communications and Vehicular Technology, 2000, pp. 6–13.

Perrier, P. A.

W. C. Kwong, P. A. Perrier, P. R. Prucnal, “Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiber-optic local area networks,” IEEE Trans. Commun., vol. 39, no. 11, pp. 1625–1634, Nov. 1991.
[CrossRef]

Prucnal, P. R.

W. C. Kwong, P. A. Perrier, P. R. Prucnal, “Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiber-optic local area networks,” IEEE Trans. Commun., vol. 39, no. 11, pp. 1625–1634, Nov. 1991.
[CrossRef]

P. R. Prucnal, M. A. Santoro, T. R. Fan, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol., vol. 4, no. 5, pp. 547–554, May 1986.
[CrossRef]

Rusch, L. A.

Salehi, J. A.

J. A. Salehi, “Code division multiple-access techniques in optical fiber networks—Part I: Fundamental principles,” IEEE Trans. Commun., vol. 37, no. 8, pp. 824–833, Aug. 1989.
[CrossRef]

F. R. K. Chung, J. A. Salehi, V. K. Wei, “Optical orthogonal codes: design, analysis, and applications,” IEEE Trans. Inf. Theory, vol. 35, no. 3, pp. 595–604, May 1989.
[CrossRef]

Santoro, M. A.

P. R. Prucnal, M. A. Santoro, T. R. Fan, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol., vol. 4, no. 5, pp. 547–554, May 1986.
[CrossRef]

Shalaby, H. H. M.

X. Zhou, H. H. M. Shalaby, C. Lu, T. Cheng, “Code for spectral amplitude coding optical CDMA systems,” Electron. Lett., vol. 36, no. 8, pp. 728–729, Apr. 2000.
[CrossRef]

Shalaby, H. M. H.

Singer, J.

J. Singer, “A theorem in finite projective geometry and some applications to number theory,” Trans. Am. Math. Soc., vol. 43, no. 3, pp. 377–385, 1938.
[CrossRef]

Smith, E. D. J.

E. D. J. Smith, R. J. Blaikie, D. P. Taylor, “Performance enhancement of spectral amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun., vol. 46, no. 3, pp. 1176–1185, Sept. 1998.
[CrossRef]

Taylor, D. P.

E. D. J. Smith, R. J. Blaikie, D. P. Taylor, “Performance enhancement of spectral amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun., vol. 46, no. 3, pp. 1176–1185, Sept. 1998.
[CrossRef]

Tsai, C.-M.

J.-F. Huang, C.-T. Yen, C.-M. Tsai, F.-Y. Jiang, “Multilevel optical CDMA network coding with embedded orthogonal polarizations to reduce phase noises,” in 5th Int. Conf. on Information, Communications and Signal Processing, 2005, pp. 1191–1196.

Tsao, H.-W.

Vasic, B.

Wei, V. K.

F. R. K. Chung, J. A. Salehi, V. K. Wei, “Optical orthogonal codes: design, analysis, and applications,” IEEE Trans. Inf. Theory, vol. 35, no. 3, pp. 595–604, May 1989.
[CrossRef]

Wei, Z.

Weng, C.-S.

Wu, J.-S.

Yang, C.-C.

C.-C. Yang, “The application of spectral-amplitude-coding optical CDMA in passive optical networks,” Opt. Fiber Technol., vol. 14, pp. 134–142, 2008.
[CrossRef]

C.-C. Yang, J.-F. Huang, “Two-dimensional M-matrices coding in spatial/frequency optical CDMA networks,” IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 168–170, Jan. 2003.
[CrossRef]

Yang, C.-L.

Yen, C.-T.

J.-F. Huang, C.-T. Yen, C.-M. Tsai, F.-Y. Jiang, “Multilevel optical CDMA network coding with embedded orthogonal polarizations to reduce phase noises,” in 5th Int. Conf. on Information, Communications and Signal Processing, 2005, pp. 1191–1196.

Zaccarin, D.

M. Kavehrad, D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources,” J. Lightwave Technol., vol. 13, no. 3, pp. 534–545, Mar. 1995.
[CrossRef]

Zhou, X.

X. Zhou, H. H. M. Shalaby, C. Lu, T. Cheng, “Code for spectral amplitude coding optical CDMA systems,” Electron. Lett., vol. 36, no. 8, pp. 728–729, Apr. 2000.
[CrossRef]

Electron. Lett.

X. Zhou, H. H. M. Shalaby, C. Lu, T. Cheng, “Code for spectral amplitude coding optical CDMA systems,” Electron. Lett., vol. 36, no. 8, pp. 728–729, Apr. 2000.
[CrossRef]

IEEE Photon. Technol. Lett.

C.-C. Yang, J.-F. Huang, “Two-dimensional M-matrices coding in spatial/frequency optical CDMA networks,” IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 168–170, Jan. 2003.
[CrossRef]

IEEE Trans. Commun.

E. D. J. Smith, R. J. Blaikie, D. P. Taylor, “Performance enhancement of spectral amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun., vol. 46, no. 3, pp. 1176–1185, Sept. 1998.
[CrossRef]

W. C. Kwong, P. A. Perrier, P. R. Prucnal, “Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiber-optic local area networks,” IEEE Trans. Commun., vol. 39, no. 11, pp. 1625–1634, Nov. 1991.
[CrossRef]

J. A. Salehi, “Code division multiple-access techniques in optical fiber networks—Part I: Fundamental principles,” IEEE Trans. Commun., vol. 37, no. 8, pp. 824–833, Aug. 1989.
[CrossRef]

E. Inaty, H. M. H. Shalaby, P. Fortier, “On the cutoff rates of a multiclass OFFH-CDMA system,” IEEE Trans. Commun., vol. 53, no. 2, pp. 323–334, Feb. 2005.
[CrossRef]

IEEE Trans. Inf. Theory

F. R. K. Chung, J. A. Salehi, V. K. Wei, “Optical orthogonal codes: design, analysis, and applications,” IEEE Trans. Inf. Theory, vol. 35, no. 3, pp. 595–604, May 1989.
[CrossRef]

J. Lightwave Technol.

M. Kavehrad, D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources,” J. Lightwave Technol., vol. 13, no. 3, pp. 534–545, Mar. 1995.
[CrossRef]

P. R. Prucnal, M. A. Santoro, T. R. Fan, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol., vol. 4, no. 5, pp. 547–554, May 1986.
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol., vol. 15, no. 8, pp. 1277–1294, Aug. 1997.
[CrossRef]

C.-S. Weng, J.-S. Wu, “Perfect difference codes for synchronous fiber-optic CDMA communication systems,” J. Lightwave Technol., vol. 19, no. 2, pp. 186–194, Feb. 2001.
[CrossRef]

H. Fathallah, L. A. Rusch, S. LaRochelle, “Passive optical fast frequency-hop CDMA communications system,” J. Lightwave Technol., vol. 17, no. 3, pp. 397–405, Mar. 1999.
[CrossRef]

Z. Wei, H. M. H. Shalaby, H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” J. Lightwave Technol., vol. 19, no. 9, pp. 1274–1281, Sept. 2001.
[CrossRef]

I. B. Djordjevic, B. Vasic, “Novel combinatorial constructions of optical orthogonal codes for incoherent optical CDMA systems,” J. Lightwave Technol., vol. 21, no. 9, pp. 1869–1875, Sept. 2003.
[CrossRef]

C.-H. Lin, J.-S. Wu, H.-W. Tsao, C.-L. Yang, “Spectral amplitude-coding optical CDMA system using Mach–Zehnder interferometers,” J. Lightwave Technol., vol. 23, no. 4, pp. 1543–1555.

C.-H. Lin, J.-S. Wu, C.-L. Yang, “Noncoherent spatial/spectral optical CDMA system with two-dimensional perfect difference codes,” J. Lightwave Technol., vol. 23, no. 12, pp. 3966–3980, Dec. 2005.
[CrossRef]

Opt. Fiber Technol.

C.-C. Yang, “The application of spectral-amplitude-coding optical CDMA in passive optical networks,” Opt. Fiber Technol., vol. 14, pp. 134–142, 2008.
[CrossRef]

Trans. Am. Math. Soc.

J. Singer, “A theorem in finite projective geometry and some applications to number theory,” Trans. Am. Math. Soc., vol. 43, no. 3, pp. 377–385, 1938.
[CrossRef]

Other

J. W. Goodman, Statistical Optics. New York: Wiley, 1985.

A. Meijerink, G. H. L. M. Heideman, W. C. v. Etten, “A generalization of a coherence multiplexing system,” in Symp. on Communications and Vehicular Technology, 2000, pp. 6–13.

J.-F. Huang, Y.-T. Chang, “Incoherent hybrid spectral polarization and amplitude coding implemented with specified orthogonal ternary code over balanced photo-detectors,” in Proc. of the 4th Annu. Communications Networks and Services Research Conf., 2006, pp. 8–52.

J.-F. Huang, C.-T. Yen, C.-M. Tsai, F.-Y. Jiang, “Multilevel optical CDMA network coding with embedded orthogonal polarizations to reduce phase noises,” in 5th Int. Conf. on Information, Communications and Signal Processing, 2005, pp. 1191–1196.

G. Keiser, Optical Fiber Communications, 3rd ed. Boston: McGraw-Hill, pp. 498–502, 2000.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of a 2-D hybrid spectral/spatial OCDMA network.

Fig. 2
Fig. 2

Transmitter structure of the proposed 2-D hybrid spectral/spatial OCDMA system.

Fig. 3
Fig. 3

Receiver structure of the proposed 2-D hybrid spectral/spatial OCDMA system.

Fig. 4
Fig. 4

Number of simultaneous users versus BER with similar code lengths and effective source power of 0 dBm at a data transmission rate of 5 Gbps .

Fig. 5
Fig. 5

Number of simultaneous users versus BER with similar code lengths and effective source power of 0 dBm at a data transmission rate of 10 Gbps .

Fig. 6
Fig. 6

Data transmission rate versus BER with similar code lengths when the number of simultaneous users is about 128 and the effective source power is 0 dBm .

Fig. 7
Fig. 7

Effective source power versus BER with similar code lengths when the number of simultaneous users is about 128 and the data transmission rate of each user is 10 Gbps .

Tables (4)

Tables Icon

Table 1 m s -LENGTH CYCLICALLY SHIFTING X Lattice

Tables Icon

Table 2 Two-Dimensional Hybrid Codes for s = 1 , m s = 3 , k Lattice = 2 , k PD = 2 , M = 6 , and P = 3

Tables Icon

Table 3 Cross Correlations of the 2-D Hybrid Codes

Tables Icon

Table 4 Parameters Used in the Numerical Calculation

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

C s , m = { c s , m , 0 , c s , m , 1 , , , c s , m , i , , c s , m , M 1 } ,
CROSS s , m 1 , m 2 = i = 0 M 1 c s , m 1 , i c s , m 2 , i = { k Lattice , m 1 = m 2 0 , otherwise } .
d j d l b ( mod v ) .
c τ , e = { 1 , for e D τ 0 , otherwise } ,
CROSS τ 1 , τ 2 = e = 0 v 1 c τ 1 , e c τ 2 , e = { k PD , τ 1 = τ 2 1 , otherwise } .
A ( 0 ) = X T Y , A ( 2 ) = X ¯ T Y ,
A ( 1 ) = X T Y ¯ , A ( 3 ) = X ¯ T Y ¯ ,
R ( d ) ( g , h ) = j = 0 P 1 i = 0 M 1 a i , j ( d ) a i , j ,
R ( 0 ) ( g , h ) R ( 1 ) ( g , h ) ( K 2 1 ) = { k Lattice k PD , for g = 0 , h = 0 0 , otherwise . }
i noise 2 = i PIIN 2 + i shot 2 + i thermal 2 = I r 2 B r τ r + 2 e I total B r + 4 K b T n B r R L ,
τ r = 0 S 2 ( f ) d f [ 0 S ( f ) d f ] 2 ,
F ( f , i ) = { u [ f f o Δ f 2 M ( M + 2 i ) ] u [ f f o Δ f 2 M ( M + 2 i + 2 ) ] } ,
u ( f ) = { 1 , f 0 0 , f < 0 } .
r ( f ) = P s r k PD Δ f w = 1 W d ( w ) i = 0 M 1 j = 0 P 1 a i j ( w ) × F ( f , i ) ,
G 0 ( f ) = P s r k PD Δ f w = 1 W d ( w ) i = 0 M 1 j = 0 P 1 a i j ( 0 ) a i j ( w ) × { u [ f f o Δ f 2 M ( M + 2 i ) ] u [ f f o Δ f 2 M ( M + 2 i + 2 ) ] } ,
G 1 ( f ) = P s r ( k PD 1 ) k PD Δ f w = 1 W d ( w ) i = 0 M 1 j = 0 P 1 a i j ( 1 ) a i j ( w ) × { u [ f f o Δ f 2 M ( M + 2 i ) ] u [ f f o Δ f 2 M ( M + 2 i + 2 ) ] } .
I 0 = R 0 G 0 ( f ) d f = R P s r k PD Δ f Δ f m s k Lattice { k Lattice k PD + k Lattice ( W 1 ) ( P 1 ) ( m s P 1 ) } = R P s r k PD m s k Lattice { k Lattice k PD + k Lattice ( W 1 ) ( P 1 ) ( m s P 1 ) } ,
I 1 = R 0 G 1 ( f ) d f = R P s r ( k PD 1 ) k PD Δ f Δ f m s k Lattice { k Lattice ( k PD 1 ) ( W 1 ) ( P 1 ) ( m s P 1 ) } = R P s r k PD m s k Lattice { k Lattice ( W 1 ) ( P 1 ) ( m s P 1 ) } ,
I r = R 0 [ G 0 ( f ) G 1 ( f ) ] d f = R P s r m s .
i PIIN 2 = B r I r 2 τ r = B r R 2 0 [ G 0 2 ( f ) 2 G 0 ( f ) G 1 ( f ) + G 1 2 ( f ) ] d f = B r R 2 { m s I 0 2 R 2 Δ f 2 m s I 0 I 1 R 2 Δ f + m s I 1 2 R 2 Δ f } = B r R 2 P s r 2 m s Δ f .
i PIIN 2 = B r R 2 P s r 2 2 m s Δ f .
i shot 2 = 2 e B r I total = 2 e B r ( I 0 + I 1 ) = 2 e B r R P s r k PD m s k Lattice { k Lattice k PD + 2 k Lattice ( W 1 ) ( P 1 ) ( m s P 1 ) } .
i shot 2 = e B r R P s r k PD m s k Lattice { k Lattice k PD + 2 k Lattice ( W 1 ) ( P 1 ) ( m s P 1 ) } .
i thermal 2 = 4 K b T n B r R L .
SNR = I r 2 i noise 2 = I r 2 i PIIN 2 + i shot 2 + i thermal 2 = ( R P s r m s ) 2 B r R 2 P s r 2 2 m s Δ f + e B r R P s r k PD m s k Lattice { k Lattice k PD + 2 k Lattice ( W 1 ) ( P 1 ) ( m s P 1 ) } + 4 K b T n B r R L .
I r , APDs = G R P s r m s .
i noise , APDs 2 = B r G 2 R 2 P s r 2 2 m s Δ f + e B r G F e G R P s r k PD m s k Lattice { k Lattice k PD + 2 k Lattice ( W 1 ) ( P 1 ) ( m s P 1 ) } + 4 K b T n B r R L ,
SNR APDs = { G R P s r m s } 2 B r G 2 R 2 P s r 2 2 m s Δ f + e B r G F e G R P s r k PD m s k Lattice { k Lattice k PD + 2 k Lattice ( W 1 ) ( P 1 ) ( m s P 1 ) } + 4 K b T n B r R L .
BER = 1 2 erfc ( SNR or SNR APDs 8 ) ,
erfc ( x ) = 2 π x exp ( z 2 ) d z .
X 0 T = [ 1 0 0 0 1 0 ]
[ 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 ]
[ 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 ]
[ 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 ]
X 1 T = [ 0 1 0 0 0 1 ]
[ 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 ]
[ 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 ]
[ 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 ]
X 2 T = [ 0 0 1 1 0 0 ]
[ 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 ]
[ 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 ]
[ 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 ]