Abstract

In this paper, a study on the end-to-end performance of multihop free-space optical wireless systems over turbulence-induced fading channels, modeled by the gamma-gamma distribution, is presented. Our analysis is carried out for systems employing amplify-and-forward channel-state-information-assisted or fixed-gain relays. To assess the statistical properties of the end-to-end signal-to-noise ratio for both considered systems, we derive novel closed-form expressions for the moment-generating function, the probability density function, and the cumulative distribution function of the product of rational powers of statistically independent squared gamma-gamma random variables. These statistical results are then applied to studying the outage probability and the average bit error probability of binary modulation schemes. Also, for the case of channel-state-information-assisted relays, an accurate asymptotic performance analysis at high SNR values is presented. Numerical examples compare analytical and simulation results, verifying the correctness of the proposed mathematical analysis.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Capacity Analysis of Dual Amplify-and-Forward Relayed Free-Space Optical Communication Systems Over Turbulence Channels With Pointing Errors

Kostas P. Peppas, Argyris N. Stassinakis, Hector E. Nistazakis, and George S. Tombras
J. Opt. Commun. Netw. 5(9) 1032-1042 (2013)

Performance of multi-hop parallel free-space optical communication over gamma–gamma fading channel with pointing errors

Zhengguang Gao, Hongzhan Liu, Xiaoping Ma, and Wei Lu
Appl. Opt. 55(32) 9178-9184 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (44)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription