Abstract

We propose a technique to electronically postcompensate fiber nonlinearity in 40Gbits long-haul WDM transmission systems. We have analyzed this technique for return-to-zero and carrier-suppressed return-to-zero modulation formats using two different dispersion maps. Our analysis shows that the proposed technique can increase the overall system margin by more than 1.0dB in 40Gbits long-haul WDM transmission systems.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimum dispersion mapping of single-channel 40 Gbit/s return-to-zero differential phase-shift keying transmission systems

Fan Zhang, Christian-A. Bunge, Klaus Petermann, and Andre Richter
Opt. Express 14(15) 6613-6618 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription