Abstract

We observe that tunable wavelength converters (TWCs) that are traditionally installed in wavelength-routed (WR) networks for wavelength contention resolution can be further utilized to provide fast data switching between lightpaths. This allows us to route a data unit through a sequence of lightpaths from source to destination if a direct single lightpath connection is not available or if we want to minimize the overhead of setting up new lightpaths. Since TWCs have a tuning time of picoseconds, it may be possible to use the installed TWCs as lightpath data interchanges (LPIs) to improve the performance of WR networks without significant optical hardware upgrade. Compared with the multihop electronic grooming approach of lightpath networks, the LPI approach has a simpler WR node architecture, does not need expensive high-speed electrical multiplexers/routers, and does not sacrifice the bit-rate/format transparency of data between the source and destination. Our simulation results show that WR networks with LPIs can have much lower blocking probability than WR networks without LPIs if the traffic duration is short. We show that LPIs can also be used to provide new data transportation services such as optical time division multiplexing access (OTDMA) time-slotted service in WR networks.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription