Abstract

An enhanced media access control (MAC) layer protocol that uses the signaling method benefits of the physical layer in order to provide different levels of quality to different users in optical code-division multiple-access (OCDMA) packet networks is presented. In the proposed network architecture the users are categorized into two classes of service, one having a higher quality level and the other having a lower quality level. Users of each class transmit at the same power level and different from the other classes’ users. Also, the MAC of each user estimates the amount of interference on the channel and adjusts the packet transmission’s time to improve network performance. Through simulation it is shown that the combination of appropriate power assignment to users and proper MAC algorithm parameters can provide various quality of service (QoS) metric levels on metrics such as normalized throughput and packet error rate. This is achieved by dividing the available resources of the OCDMA network between the users of each class. To make the QoS provider method more practical in data communication networks, we have studied the fairness issue by defining two parameters related to the normalized throughput of each class.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Salehi, “Code division multiple-access techniques in optical fiber network—Part I: Fundamental principles,” IEEE Trans. Commun., vol. 37, pp. 824–833, Aug. 1989.
    [CrossRef]
  2. J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol., vol. 8, pp. 478–491, Mar. 1990.
    [CrossRef]
  3. C. H. Lee, W. V. Sorin, B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave Technol., vol. 24, pp. 4568–4583, Dec. 2006.
    [CrossRef]
  4. B. T. Coonen, “Fiber to the home/fiber to the premises: what, where, and when?,” Proc. IEEE, vol. 94, pp. 911–934, May 2006.
    [CrossRef]
  5. J. A. Salehi, “Emerging OCDMA communication systems and data networks (invited),” J. Opt. Netw., vol. 6, pp. 1138–1178, Sept. 2007.
    [CrossRef]
  6. S. Khaleghi, S. Khaleghi, K. Jamshidi, “Analysis of throughput and delay in a spectrally phase-encoded optical CDMA packet network,” in Proc. IEEE Int. Conf. Wireless and Optical Communications Networks (WOCN ’07), July 2007, pp. 1–5.
  7. H. M. H. Shalaby, “Optical CDMA random access protocols with and without pretransmission coordination,” J. Lightwave Technol., vol. 21, pp. 2455–2462, Nov. 2003.
    [CrossRef]
  8. R. Raad, E. Inaty, P. Fortier, H. M. H. Shalaby, “Optical S-ALOHA/CDMA systems for multirate applications: architecture, performance evaluation, and system stability,” J. Lightwave Technol., vol. 24, pp. 1968–1977, May 2006.
    [CrossRef]
  9. M. A. A. Mohamed, H. M. H. Shalaby, E.-S. A.-M. El-Badawy, “Performance analysis of an optical CDMA MAC protocol with variable-size sliding window,” J. Lightwave Technol., vol. 24, pp. 3590–3597, May 2006.
    [CrossRef]
  10. P. Kamath, J. D. Touch, J. A. Bannister, “Algorithms for interference sensing in optical CDMA networks,” in Proc. IEEE Int. Conf. Communications (ICC ’04), June 2004, pp. 1720–1724.
  11. P. Kamath, J. D. Touch, J. A. Bannister, “The need for media access control in optical CDMA networks,” in Proc. IEEE Conf. Computer Communications (Infocom ’04), Mar. 2004, pp. 2208–2219.
  12. S. Khaleghi, S. Khaleghi, K. Jamshidi, “Power performance analysis of spectrally phase-encoded optical CDMA packet networks,” in Proc. IEEE Int. Conf. Signal Processing and Communications (ICSPC’07), Nov. 2007, pp. 1–4.
  13. B. M. Ghaffari, J. A. Salehi, “Multiclass, multistage, and multilevel fiber-optic CDMA signaling techniques based on advanced binary optical logic gate elements,” IEEE Trans. Commun., vol. 57, pp. 1424–1432, May 2009.
    [CrossRef]
  14. W. C. Kwong, G. C. Yang, “Design of multi-length optical orthogonal codes for optical CDMA multimedia networks,” IEEE Trans. Commun., vol. 50, pp. 1258–1265, Aug. 2002.
    [CrossRef]
  15. N. Tarhuni, T. Korhonen, E. Mutafungwa, M. Elmusrati, “Multiclass optical orthogonal codes for multiservice optical CDMA networks,” J. Lightwave Technol., vol. 24, pp. 694–704, Feb. 2006.
    [CrossRef]
  16. S. V. Maric, V. K. Lau, “Multirate fiber-optic CDMA: system design and performance analysis,” J. Lightwave Technol., vol. 16, pp. 9–17, Jan. 1998.
    [CrossRef]
  17. S. Khaleghi, M. Pakravan, H. Goudarzi, “Providing multiclass of services in optical CDMA packet networks,” in Proc. 4th IEEE Int. Conf. Internet (ICI’08), Sept. 2008, pp. 1–6.
  18. S. Khaleghi, S. Khaleghi, K. Jamshidi, “Performance analysis of a spectrally phase-encoded optical code division multiple access packet network,” J. Opt. Commun. Netw., vol. 1, pp. 213–221, Aug. 2009.
    [CrossRef]
  19. H. Chung, J. Salehi, V. Wei, “Optical orthogonal codes: design, analysis, and applications,” IEEE Trans. Inf. Theory, vol. 35, pp. 595–605, May 1989.
    [CrossRef]

2009 (2)

B. M. Ghaffari, J. A. Salehi, “Multiclass, multistage, and multilevel fiber-optic CDMA signaling techniques based on advanced binary optical logic gate elements,” IEEE Trans. Commun., vol. 57, pp. 1424–1432, May 2009.
[CrossRef]

S. Khaleghi, S. Khaleghi, K. Jamshidi, “Performance analysis of a spectrally phase-encoded optical code division multiple access packet network,” J. Opt. Commun. Netw., vol. 1, pp. 213–221, Aug. 2009.
[CrossRef]

2007 (1)

2006 (5)

2003 (1)

2002 (1)

W. C. Kwong, G. C. Yang, “Design of multi-length optical orthogonal codes for optical CDMA multimedia networks,” IEEE Trans. Commun., vol. 50, pp. 1258–1265, Aug. 2002.
[CrossRef]

1998 (1)

1990 (1)

J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol., vol. 8, pp. 478–491, Mar. 1990.
[CrossRef]

1989 (2)

J. A. Salehi, “Code division multiple-access techniques in optical fiber network—Part I: Fundamental principles,” IEEE Trans. Commun., vol. 37, pp. 824–833, Aug. 1989.
[CrossRef]

H. Chung, J. Salehi, V. Wei, “Optical orthogonal codes: design, analysis, and applications,” IEEE Trans. Inf. Theory, vol. 35, pp. 595–605, May 1989.
[CrossRef]

Bannister, J. A.

P. Kamath, J. D. Touch, J. A. Bannister, “Algorithms for interference sensing in optical CDMA networks,” in Proc. IEEE Int. Conf. Communications (ICC ’04), June 2004, pp. 1720–1724.

P. Kamath, J. D. Touch, J. A. Bannister, “The need for media access control in optical CDMA networks,” in Proc. IEEE Conf. Computer Communications (Infocom ’04), Mar. 2004, pp. 2208–2219.

Chung, H.

H. Chung, J. Salehi, V. Wei, “Optical orthogonal codes: design, analysis, and applications,” IEEE Trans. Inf. Theory, vol. 35, pp. 595–605, May 1989.
[CrossRef]

Coonen, B. T.

B. T. Coonen, “Fiber to the home/fiber to the premises: what, where, and when?,” Proc. IEEE, vol. 94, pp. 911–934, May 2006.
[CrossRef]

El-Badawy, E.-S. A.-M.

Elmusrati, M.

Fortier, P.

Ghaffari, B. M.

B. M. Ghaffari, J. A. Salehi, “Multiclass, multistage, and multilevel fiber-optic CDMA signaling techniques based on advanced binary optical logic gate elements,” IEEE Trans. Commun., vol. 57, pp. 1424–1432, May 2009.
[CrossRef]

Goudarzi, H.

S. Khaleghi, M. Pakravan, H. Goudarzi, “Providing multiclass of services in optical CDMA packet networks,” in Proc. 4th IEEE Int. Conf. Internet (ICI’08), Sept. 2008, pp. 1–6.

Heritage, J. P.

J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol., vol. 8, pp. 478–491, Mar. 1990.
[CrossRef]

Inaty, E.

Jamshidi, K.

S. Khaleghi, S. Khaleghi, K. Jamshidi, “Performance analysis of a spectrally phase-encoded optical code division multiple access packet network,” J. Opt. Commun. Netw., vol. 1, pp. 213–221, Aug. 2009.
[CrossRef]

S. Khaleghi, S. Khaleghi, K. Jamshidi, “Analysis of throughput and delay in a spectrally phase-encoded optical CDMA packet network,” in Proc. IEEE Int. Conf. Wireless and Optical Communications Networks (WOCN ’07), July 2007, pp. 1–5.

S. Khaleghi, S. Khaleghi, K. Jamshidi, “Power performance analysis of spectrally phase-encoded optical CDMA packet networks,” in Proc. IEEE Int. Conf. Signal Processing and Communications (ICSPC’07), Nov. 2007, pp. 1–4.

Kamath, P.

P. Kamath, J. D. Touch, J. A. Bannister, “Algorithms for interference sensing in optical CDMA networks,” in Proc. IEEE Int. Conf. Communications (ICC ’04), June 2004, pp. 1720–1724.

P. Kamath, J. D. Touch, J. A. Bannister, “The need for media access control in optical CDMA networks,” in Proc. IEEE Conf. Computer Communications (Infocom ’04), Mar. 2004, pp. 2208–2219.

Khaleghi, S.

S. Khaleghi, S. Khaleghi, K. Jamshidi, “Performance analysis of a spectrally phase-encoded optical code division multiple access packet network,” J. Opt. Commun. Netw., vol. 1, pp. 213–221, Aug. 2009.
[CrossRef]

S. Khaleghi, S. Khaleghi, K. Jamshidi, “Performance analysis of a spectrally phase-encoded optical code division multiple access packet network,” J. Opt. Commun. Netw., vol. 1, pp. 213–221, Aug. 2009.
[CrossRef]

S. Khaleghi, M. Pakravan, H. Goudarzi, “Providing multiclass of services in optical CDMA packet networks,” in Proc. 4th IEEE Int. Conf. Internet (ICI’08), Sept. 2008, pp. 1–6.

S. Khaleghi, S. Khaleghi, K. Jamshidi, “Power performance analysis of spectrally phase-encoded optical CDMA packet networks,” in Proc. IEEE Int. Conf. Signal Processing and Communications (ICSPC’07), Nov. 2007, pp. 1–4.

S. Khaleghi, S. Khaleghi, K. Jamshidi, “Power performance analysis of spectrally phase-encoded optical CDMA packet networks,” in Proc. IEEE Int. Conf. Signal Processing and Communications (ICSPC’07), Nov. 2007, pp. 1–4.

S. Khaleghi, S. Khaleghi, K. Jamshidi, “Analysis of throughput and delay in a spectrally phase-encoded optical CDMA packet network,” in Proc. IEEE Int. Conf. Wireless and Optical Communications Networks (WOCN ’07), July 2007, pp. 1–5.

S. Khaleghi, S. Khaleghi, K. Jamshidi, “Analysis of throughput and delay in a spectrally phase-encoded optical CDMA packet network,” in Proc. IEEE Int. Conf. Wireless and Optical Communications Networks (WOCN ’07), July 2007, pp. 1–5.

Kim, B. Y.

Korhonen, T.

Kwong, W. C.

W. C. Kwong, G. C. Yang, “Design of multi-length optical orthogonal codes for optical CDMA multimedia networks,” IEEE Trans. Commun., vol. 50, pp. 1258–1265, Aug. 2002.
[CrossRef]

Lau, V. K.

Lee, C. H.

Maric, S. V.

Mohamed, M. A. A.

Mutafungwa, E.

Pakravan, M.

S. Khaleghi, M. Pakravan, H. Goudarzi, “Providing multiclass of services in optical CDMA packet networks,” in Proc. 4th IEEE Int. Conf. Internet (ICI’08), Sept. 2008, pp. 1–6.

Raad, R.

Salehi, J.

H. Chung, J. Salehi, V. Wei, “Optical orthogonal codes: design, analysis, and applications,” IEEE Trans. Inf. Theory, vol. 35, pp. 595–605, May 1989.
[CrossRef]

Salehi, J. A.

B. M. Ghaffari, J. A. Salehi, “Multiclass, multistage, and multilevel fiber-optic CDMA signaling techniques based on advanced binary optical logic gate elements,” IEEE Trans. Commun., vol. 57, pp. 1424–1432, May 2009.
[CrossRef]

J. A. Salehi, “Emerging OCDMA communication systems and data networks (invited),” J. Opt. Netw., vol. 6, pp. 1138–1178, Sept. 2007.
[CrossRef]

J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol., vol. 8, pp. 478–491, Mar. 1990.
[CrossRef]

J. A. Salehi, “Code division multiple-access techniques in optical fiber network—Part I: Fundamental principles,” IEEE Trans. Commun., vol. 37, pp. 824–833, Aug. 1989.
[CrossRef]

Shalaby, H. M. H.

Sorin, W. V.

Tarhuni, N.

Touch, J. D.

P. Kamath, J. D. Touch, J. A. Bannister, “Algorithms for interference sensing in optical CDMA networks,” in Proc. IEEE Int. Conf. Communications (ICC ’04), June 2004, pp. 1720–1724.

P. Kamath, J. D. Touch, J. A. Bannister, “The need for media access control in optical CDMA networks,” in Proc. IEEE Conf. Computer Communications (Infocom ’04), Mar. 2004, pp. 2208–2219.

Wei, V.

H. Chung, J. Salehi, V. Wei, “Optical orthogonal codes: design, analysis, and applications,” IEEE Trans. Inf. Theory, vol. 35, pp. 595–605, May 1989.
[CrossRef]

Weiner, A. M.

J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol., vol. 8, pp. 478–491, Mar. 1990.
[CrossRef]

Yang, G. C.

W. C. Kwong, G. C. Yang, “Design of multi-length optical orthogonal codes for optical CDMA multimedia networks,” IEEE Trans. Commun., vol. 50, pp. 1258–1265, Aug. 2002.
[CrossRef]

IEEE Trans. Commun. (3)

J. A. Salehi, “Code division multiple-access techniques in optical fiber network—Part I: Fundamental principles,” IEEE Trans. Commun., vol. 37, pp. 824–833, Aug. 1989.
[CrossRef]

B. M. Ghaffari, J. A. Salehi, “Multiclass, multistage, and multilevel fiber-optic CDMA signaling techniques based on advanced binary optical logic gate elements,” IEEE Trans. Commun., vol. 57, pp. 1424–1432, May 2009.
[CrossRef]

W. C. Kwong, G. C. Yang, “Design of multi-length optical orthogonal codes for optical CDMA multimedia networks,” IEEE Trans. Commun., vol. 50, pp. 1258–1265, Aug. 2002.
[CrossRef]

IEEE Trans. Inf. Theory (1)

H. Chung, J. Salehi, V. Wei, “Optical orthogonal codes: design, analysis, and applications,” IEEE Trans. Inf. Theory, vol. 35, pp. 595–605, May 1989.
[CrossRef]

J. Lightwave Technol. (7)

J. Opt. Commun. Netw. (1)

J. Opt. Netw. (1)

Proc. IEEE (1)

B. T. Coonen, “Fiber to the home/fiber to the premises: what, where, and when?,” Proc. IEEE, vol. 94, pp. 911–934, May 2006.
[CrossRef]

Other (5)

S. Khaleghi, S. Khaleghi, K. Jamshidi, “Analysis of throughput and delay in a spectrally phase-encoded optical CDMA packet network,” in Proc. IEEE Int. Conf. Wireless and Optical Communications Networks (WOCN ’07), July 2007, pp. 1–5.

P. Kamath, J. D. Touch, J. A. Bannister, “Algorithms for interference sensing in optical CDMA networks,” in Proc. IEEE Int. Conf. Communications (ICC ’04), June 2004, pp. 1720–1724.

P. Kamath, J. D. Touch, J. A. Bannister, “The need for media access control in optical CDMA networks,” in Proc. IEEE Conf. Computer Communications (Infocom ’04), Mar. 2004, pp. 2208–2219.

S. Khaleghi, S. Khaleghi, K. Jamshidi, “Power performance analysis of spectrally phase-encoded optical CDMA packet networks,” in Proc. IEEE Int. Conf. Signal Processing and Communications (ICSPC’07), Nov. 2007, pp. 1–4.

S. Khaleghi, M. Pakravan, H. Goudarzi, “Providing multiclass of services in optical CDMA packet networks,” in Proc. 4th IEEE Int. Conf. Internet (ICI’08), Sept. 2008, pp. 1–6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

OCDMA packet network architecture with QoS provisioning feature.

Fig. 2
Fig. 2

Interference pattern of 4 users, thresholder output, and correlator output in an OCDMA packet network: (a) User #4 sends 0 bit, (b) User #4 sends 1 bit, (c) User #4 sends 0 bit with one chip delay, and (d) User #4 sends 1 bit with one chip delay.

Fig. 3
Fig. 3

Proposed architecture of the transceiver in OCDMA packet networks with QoS providing feature.

Fig. 4
Fig. 4

Channel states for the QoS provider algorithm before and after putting the packet on the channel, in class 1 and class 2.

Fig. 5
Fig. 5

Comparison of the Aloha-OCDMA algorithm for different transmission power of class 2’s users.

Fig. 6
Fig. 6

Performance of the QoS provisioning algorithm: (a) normalized throughput in class 1, (b) normalized throughput in class 2, (c) packet error rate in class 1, (d) packet error rate in class 2, (e) average number of simultaneous active users in class 1, and (f) average number of simultaneous active users in class 2.

Fig. 7
Fig. 7

Performance of the QoS provisioning algorithm versus different interference parameter values for a full offered load: (a) normalized throughput in low QoS class, (b) normalized throughput in high QoS class.

Fig. 8
Fig. 8

Overall normalized throughput of OCDMA network versus different interference parameter values for a full offered load.

Tables (2)

Tables Icon

Table 1 MAC Algorithm With QoS Providing Feature

Tables Icon

Table 2 QoS Ratio Parameter