Abstract

Adaptive modulation and coding can provide robust and spectrally efficient transmission over terrestrial free-space optical channels. Three adaptive modulation schemes are considered in this paper: (i) variable-rate variable-power adaptation, (ii) channel inversion, and (iii) truncated channel inversion schemes. It is shown that a simple channel inversion scheme performs comparable to a variable-rate variable-power adaptation scheme in the weak turbulence regime but faces significant performance degradation in the strong turbulence regime. We further study adaptive coding based on large-girth quasi-cyclic low-density parity-check- (LDPC-) coded modulation. It is shown by simulation that deep fades of the order of 30dB and above in the regime of strong turbulence can be tolerated with the proposed scheme. It is demonstrated that communication in the saturation regime is possible with the proposed adaptive LDPC-coded modulation. We also determine the spectral efficiencies for the proposed adaptive modulation and adaptive coding schemes.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription