Abstract

We investigate the application of network coding to all-optical networks from both the algorithmic and infrastructural perspectives. We study the effectiveness of using network coding for optical-layer dedicated protection of multicast traffic that provides robustness against link failures in the network. We present a heuristic for solving this problem and compare it with both inefficient optimal methods and non-network-coding approaches. Our experiments show that our heuristic provides near-optimal performance while significantly outperforming existing approaches for dedicated multicast protection. We also propose architectures for specialized all-optical circuits capable of performing the processing required for network coding and show how these devices can be effectively deployed in an all-optical multicast network.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ahlswede, N. Cai, S.-Y. Li, R. Yeung, “Network information flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, July 2000.
    [CrossRef]
  2. L. Sahasrabuddhe, B. Mukherjee, “Light trees: optical multicasting for improved performance in wavelength routed networks,” IEEE Commun. Mag., vol. 37, no. 2, pp. 67–73, Feb. 1999.
    [CrossRef]
  3. D. Thaker, G. N. Rouskas, “Multi-destination communication in broadcast WDM networks: a survey,” Opt. Networks Mag., vol. 3, no. 1, pp. 34–44, Jan./Feb. 2002.
  4. Q. Qi, S. Shuangjin, Q. Kun, “An application of optical multicast technology,” in Int. Conf. on Communications, Circuits and Systems Proc., 2006, vol. 3, June 2006, pp. 1869–1871.
  5. W. Hu, Q. Zeng, “Multicasting optical cross connects employing splitter-and-delivery switch,” IEEE Photon. Technol. Lett., vol. 10, no. 7, pp. 970–972, July 1998.
    [CrossRef]
  6. M. Ali, J. S. Deogun, “Power-efficient design of multicast wavelength-routed networks,” IEEE J. Sel. Areas Commun., vol. 18, no. 10, pp. 1852–1862, Oct. 2000.
    [CrossRef]
  7. M. Ali, J. Deogun, “Cost-effective implementation of multicasting in wavelength-routed networks,” J. Lightwave Technol., vol. 18, no. 12, pp. 1628–1638, Dec. 2000.
    [CrossRef]
  8. S.-Y. R. Li, R. W. Yeung, N. Cai, “Linear network coding,” IEEE Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.
    [CrossRef]
  9. R. Koetter, M. Medard, “An algebraic approach to network coding,” IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.
    [CrossRef]
  10. T. Ho, R. Koetter, M. Medard, D. Karger, M. Effros, “The benefits of coding over routing in a randomized setting,” in Proc. of the IEEE Int. Symp. on Information Theory, June–July 2003, p. 442.
  11. S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, L. M. G. M. Tolhuizen, “Polynomial time algorithms for multicast network code construction,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 1973–1982, June 2005.
    [CrossRef]
  12. D. S. Lun, N. Ratnakar, R. Koetter, M. Medard, E. Ahmed, H. Lee, “Achieving minimum-cost multicast: a decentralized approach based on network coding,” in Proc. IEEE INFOCOM, vol. 3, Mar. 2005, pp. 1607–1617.
  13. C. Fragouli, E. Soljanin, “Information flow decomposition for network coding,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 829–848, Mar. 2006.
    [CrossRef]
  14. R. W. Yeung, S.-Y. R. Li, N. Cai, Z. Zhang, Network Coding Theory. Hanover, MA: now Publishers, 2006.
  15. G. Rouskas, “Optical layer multicast: rationale, building blocks, and challenges,” IEEE Netw., vol. 17, no. 1, pp. 60–65, Jan./Feb. 2003.
    [CrossRef]
  16. R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer Computations. New York: Plenum, 1972, pp. 85–103.
    [CrossRef]
  17. N. Singhal, B. Mukherjee, “Protecting multicast sessions in WDM optical mesh networks,” J. Lightwave Technol., vol. 21, no. 4, pp. 884–892, Apr. 2003.
    [CrossRef]
  18. T. Rahman, G. Ellinas, “Protection of multicast sessions in WDM mesh optical networks,” in Optical Fiber Communication Conf. (OFC/NFOEC), vol. 2, Mar. 2005.
  19. C. Boworntummarat, L. Wuttisittikulkij, S. Segkhoonthod, “Light-tree based protection strategies for multicast traffic in transport WDM mesh networks with multifiber systems,” in 2004 IEEE Int. Conf. on Communications, vol. 3, June 2004, pp. 1791–1795.
    [CrossRef]
  20. N. Singhal, L. Sahasrabuddhe, B. Mukherjee, “Provisioning of survivable multicast sessions against single link failures in optical WDM mesh networks,” J. Lightwave Technol., vol. 21, no. 11, pp. 2587–2594, Nov. 2003.
    [CrossRef]
  21. N. K. Singhal, C. Ou, B. Mukherjee, “Cross-sharing vs. self-sharing trees for protecting multicast sessions in mesh networks,” Comput. Netw., vol. 50, no. 2, pp. 200–206, 2006.
    [CrossRef]
  22. A. E. Kamal, “1+N protection in optical mesh networks using network coding on p-cycles,” in Proc. of IEEE GLOBECOM, 2006.
  23. A. E. Kamal, “1+N protection against multiple link failures in mesh networks,” in Proc. of the IEEE Int. Conf. on Communications (ICC), Glasgow, Scotland, UK, June 2007.
  24. A. E. Kamal, “GMPLS-based hybrid 1+N link protection over p-cycles: design and performance,” in Proc. of IEEE GLOBECOM, 2007.
  25. A. E. Kamal, “A generalized strategy for 1+N protection,” in Proc. of the IEEE Int. Conf. on Communications (ICC2008), 2008.
  26. A. Kamal, O. Al-Kofahi, “Toward an optimal 1+N protection strategy,” in 46th Annu. Allerton Conf. on Communication, Control, and Computing, Sept. 2008, pp. 162–169.
  27. O. M. Al-Kofahi, A. E. Kamal, “Network coding-based protection of many-to-one wireless flows,” IEEE J. Sel. Areas in Commun., vol. 27, no. 5, pp. 787–813, 2009.
    [CrossRef]
  28. A. E. Kamal, A. Ramamoorthy, “Overlay protection against link failures using network coding,” in Proc. of the Conf. on Information Sciences and Systems (CISS), 2008.
  29. R. Menendez, J. Gannet, “Efficient, fault-tolerant all-optical multicast networks via network coding,” in Conf. on Optical Fiber Communication/Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Feb. 2008, pp. 1–3.
  30. E. D. Manley, J. S. Deogun, L. Xu, “Network coding for optical-layer multicast,” in Proc. of the Fifth Int. Conf. on Broadband Communications (Broadnets), Sept. 2008.
  31. M. Kim, M. Médard, U.-M. O’Reilly, “Network coding and its implications on optical networking,” in Optical Fiber Communication Conf., 2009, paper OThO3.
  32. Z. Li, B. Li, L. C. Lau, “On achieving maximum multicast throughput in undirected networks,” IEEE/ACM Trans. Netw., vol. 14, no. SI, pp. 2467–2485, 2006.
  33. T. Rasmussen, J. K. Rasmussen, J. H. Povlsen, “Design and performance evaluation of 1-by-64 multimode interference power splitter for optical communications,” J. Lightwave Technol., vol. 13, no. 10, pp. 2069–2074, Oct. 1995.
    [CrossRef]
  34. D. Johnson, K. Hill, F. Bilodeau, S. Faucher, “New design concept for a narrowband wavelength-selective optical tap and combiner,” Electron. Lett., vol. 23, no. 13, pp. 668–669, 1987.
    [CrossRef]
  35. D. Francis, S. DiJaili, J. Walker, “A single-chip linear optical amplifier,” in Optical Fiber Communication Conf. and Exhibit (OFC), vol. 4, 2001, pp. PD13-1–PD13-3.
  36. R. Ramaswami, K. N. Sivarajan, Optical Networks: A Practical Perspective. San Francisco, CA: Morgan Kaufmann, 1998.
  37. A. Neukermans, R. Ramaswami, “MEMS technology for optical networking applications,” IEEE Commun. Mag., vol. 39, no. 1, pp. 62–69, Jan. 2001.
    [CrossRef]
  38. D. K. Hunter, M. C. Chia, I. Andonovic, “Buffering in optical packet switches,” J. Lightwave Technol., vol. 16, no. 12, pp. 2081–2094, Dec. 1998.
    [CrossRef]
  39. C. Chang-Hasnain, P.-C. Ku, J. Kim, S.-L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE, vol. 91, no. 11, pp. 1884–1897, Nov. 2003.
    [CrossRef]
  40. P. Ku, C. Chang-Hasnain, S. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett., vol. 38, pp. 1581–1583, Nov. 2002.
    [CrossRef]
  41. V. P. Heuring, H. F. Jordan, J. P. Pratt, “Bit-serial architecture for optical computing,” Appl. Opt., vol. 31, no. 17, pp. 3213–3224, 1992.
    [CrossRef] [PubMed]
  42. G. Theophilopoulos, K. Yiannopoulos, M. Kalyvas, C. Bintjas, G. Kalogerakis, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, R. Dall’Ara, “40 GHz all-optical XOR with UNI gate,” in Optical Fiber Communication Conf. and Exhibit (OFC), vol. 1, 2001, pp. MB2-1–MB-2-3.
  43. R. Webb, R. Manning, G. Maxwell, A. Poustie, “40 Gbit∕s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett., vol. 39, no. 1, pp. 79–81, Jan. 2003.
    [CrossRef]
  44. Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. Piccirilli, N. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 703–710, June 2004.
    [CrossRef]
  45. K. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron., vol. 6, no. 6, pp. 1428–1435, Nov./Dec. 2000.
    [CrossRef]
  46. M. Zhang, L. Wang, P. Ye, “All optical XOR logic gates: technologies and experiment demonstrations,” IEEE Commun. Mag., vol. 43, no. 5, pp. S19–S24, May 2005.
    [CrossRef]
  47. E. D. Manley, J. S. Deogun, L. Xu, D. R. Alexander, “Network coding for WDM all-optical multicast,” University of Nebraska—Lincoln, Tech. Rep. TR-UNL-CSE-2009-0007, Apr. 2009.
  48. L. Kou, G. Markowsky, L. Berman, “A fast algorithm for Steiner trees in graphs,” Acta Inf., vol. 15, pp. 141–145, 1981.
    [CrossRef]
  49. H. Takahashi, A. Matsuyama, “An approximate solution for the Steiner problem in graphs,” Math. Japonica, vol. 24, pp. 573–577, 1980.
  50. R. Bhandari, Survivable Networks: Algorithms for Diverse Routing. Norwell, MA: Kluwer Academic, 1998.
  51. M. Ali, Transmission-Efficient Design and Management of Wavelength-Routed Optical Networks. Norwell, MA: Kluwer Academic, 2001.
    [CrossRef]
  52. B. M. Waxman, “Routing of multipoint connections,” IEEE J. Sel. Areas Commun., vol. 6, pp. 1617–1622, Dec. 1988.
    [CrossRef]
  53. Z. Li, B. Li, “Network coding in undirected networks,” in Proc. of the 38th Annu. Conf. on Information Sciences, 2004.
  54. K. Chan, C.-K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-Gb∕s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 897–899, Mar. 2004.
    [CrossRef]
  55. S. Bharathwaj, K. Narasimhan, “An alternate approach to modular multiplication for finite fields GF(2m) using Itoh Tsujii algorithm,” in 3rd Int. IEEE-NEWCAS Conf., June 2005, pp. 103–105.
  56. T. Itoh, S. Tsujii, “A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases,” Inf. Comput., vol. 78, no. 3, pp. 171–177, 1988.
    [CrossRef]
  57. A. Tychopoulos, O. Koufopavlou, “Optimization of the ’FOCUS’ inband-FEC architecture for 10-Gbps SDH/SONET optical communication channels,” in Design, Automation & Test in Europe Conf. & Exhibition (DATE), Apr. 2007, pp. 1–6.
  58. A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography. CRC Press, 1996.
    [CrossRef]
  59. P. C. Sun, Y. T. Mazurenko, W. S. C. Chang, P. K. L. Yu, Y. Fainman, “All-optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett., vol. 20, no. 16, pp. 1728–1730, Aug. 1995.
    [CrossRef] [PubMed]
  60. R. Takahashi, T. Nakahara, H. Takenouchi, H. Suzuki, “40-Gbit∕s label recognition and 1×4 self-routing using self-serial-to-parallel conversion,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 692–694, Feb. 2004.
    [CrossRef]
  61. R. Takahashi, H. Suzuki, “1-Tb∕s 16-b all-optical serial-to-parallel conversion using a surface-reflection optical switch,” IEEE Photon. Technol. Lett., vol. 15, no. 2, pp. 287–289, Feb. 2003.
    [CrossRef]

2009 (1)

O. M. Al-Kofahi, A. E. Kamal, “Network coding-based protection of many-to-one wireless flows,” IEEE J. Sel. Areas in Commun., vol. 27, no. 5, pp. 787–813, 2009.
[CrossRef]

2006 (3)

Z. Li, B. Li, L. C. Lau, “On achieving maximum multicast throughput in undirected networks,” IEEE/ACM Trans. Netw., vol. 14, no. SI, pp. 2467–2485, 2006.

C. Fragouli, E. Soljanin, “Information flow decomposition for network coding,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 829–848, Mar. 2006.
[CrossRef]

N. K. Singhal, C. Ou, B. Mukherjee, “Cross-sharing vs. self-sharing trees for protecting multicast sessions in mesh networks,” Comput. Netw., vol. 50, no. 2, pp. 200–206, 2006.
[CrossRef]

2005 (2)

S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, L. M. G. M. Tolhuizen, “Polynomial time algorithms for multicast network code construction,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 1973–1982, June 2005.
[CrossRef]

M. Zhang, L. Wang, P. Ye, “All optical XOR logic gates: technologies and experiment demonstrations,” IEEE Commun. Mag., vol. 43, no. 5, pp. S19–S24, May 2005.
[CrossRef]

2004 (3)

K. Chan, C.-K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-Gb∕s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 897–899, Mar. 2004.
[CrossRef]

R. Takahashi, T. Nakahara, H. Takenouchi, H. Suzuki, “40-Gbit∕s label recognition and 1×4 self-routing using self-serial-to-parallel conversion,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 692–694, Feb. 2004.
[CrossRef]

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. Piccirilli, N. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 703–710, June 2004.
[CrossRef]

2003 (8)

C. Chang-Hasnain, P.-C. Ku, J. Kim, S.-L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE, vol. 91, no. 11, pp. 1884–1897, Nov. 2003.
[CrossRef]

R. Takahashi, H. Suzuki, “1-Tb∕s 16-b all-optical serial-to-parallel conversion using a surface-reflection optical switch,” IEEE Photon. Technol. Lett., vol. 15, no. 2, pp. 287–289, Feb. 2003.
[CrossRef]

R. Webb, R. Manning, G. Maxwell, A. Poustie, “40 Gbit∕s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett., vol. 39, no. 1, pp. 79–81, Jan. 2003.
[CrossRef]

G. Rouskas, “Optical layer multicast: rationale, building blocks, and challenges,” IEEE Netw., vol. 17, no. 1, pp. 60–65, Jan./Feb. 2003.
[CrossRef]

N. Singhal, B. Mukherjee, “Protecting multicast sessions in WDM optical mesh networks,” J. Lightwave Technol., vol. 21, no. 4, pp. 884–892, Apr. 2003.
[CrossRef]

N. Singhal, L. Sahasrabuddhe, B. Mukherjee, “Provisioning of survivable multicast sessions against single link failures in optical WDM mesh networks,” J. Lightwave Technol., vol. 21, no. 11, pp. 2587–2594, Nov. 2003.
[CrossRef]

S.-Y. R. Li, R. W. Yeung, N. Cai, “Linear network coding,” IEEE Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.
[CrossRef]

R. Koetter, M. Medard, “An algebraic approach to network coding,” IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.
[CrossRef]

2002 (2)

D. Thaker, G. N. Rouskas, “Multi-destination communication in broadcast WDM networks: a survey,” Opt. Networks Mag., vol. 3, no. 1, pp. 34–44, Jan./Feb. 2002.

P. Ku, C. Chang-Hasnain, S. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett., vol. 38, pp. 1581–1583, Nov. 2002.
[CrossRef]

2001 (1)

A. Neukermans, R. Ramaswami, “MEMS technology for optical networking applications,” IEEE Commun. Mag., vol. 39, no. 1, pp. 62–69, Jan. 2001.
[CrossRef]

2000 (4)

K. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron., vol. 6, no. 6, pp. 1428–1435, Nov./Dec. 2000.
[CrossRef]

R. Ahlswede, N. Cai, S.-Y. Li, R. Yeung, “Network information flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, July 2000.
[CrossRef]

M. Ali, J. S. Deogun, “Power-efficient design of multicast wavelength-routed networks,” IEEE J. Sel. Areas Commun., vol. 18, no. 10, pp. 1852–1862, Oct. 2000.
[CrossRef]

M. Ali, J. Deogun, “Cost-effective implementation of multicasting in wavelength-routed networks,” J. Lightwave Technol., vol. 18, no. 12, pp. 1628–1638, Dec. 2000.
[CrossRef]

1999 (1)

L. Sahasrabuddhe, B. Mukherjee, “Light trees: optical multicasting for improved performance in wavelength routed networks,” IEEE Commun. Mag., vol. 37, no. 2, pp. 67–73, Feb. 1999.
[CrossRef]

1998 (2)

W. Hu, Q. Zeng, “Multicasting optical cross connects employing splitter-and-delivery switch,” IEEE Photon. Technol. Lett., vol. 10, no. 7, pp. 970–972, July 1998.
[CrossRef]

D. K. Hunter, M. C. Chia, I. Andonovic, “Buffering in optical packet switches,” J. Lightwave Technol., vol. 16, no. 12, pp. 2081–2094, Dec. 1998.
[CrossRef]

1995 (2)

T. Rasmussen, J. K. Rasmussen, J. H. Povlsen, “Design and performance evaluation of 1-by-64 multimode interference power splitter for optical communications,” J. Lightwave Technol., vol. 13, no. 10, pp. 2069–2074, Oct. 1995.
[CrossRef]

P. C. Sun, Y. T. Mazurenko, W. S. C. Chang, P. K. L. Yu, Y. Fainman, “All-optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett., vol. 20, no. 16, pp. 1728–1730, Aug. 1995.
[CrossRef] [PubMed]

1992 (1)

1988 (2)

B. M. Waxman, “Routing of multipoint connections,” IEEE J. Sel. Areas Commun., vol. 6, pp. 1617–1622, Dec. 1988.
[CrossRef]

T. Itoh, S. Tsujii, “A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases,” Inf. Comput., vol. 78, no. 3, pp. 171–177, 1988.
[CrossRef]

1987 (1)

D. Johnson, K. Hill, F. Bilodeau, S. Faucher, “New design concept for a narrowband wavelength-selective optical tap and combiner,” Electron. Lett., vol. 23, no. 13, pp. 668–669, 1987.
[CrossRef]

1981 (1)

L. Kou, G. Markowsky, L. Berman, “A fast algorithm for Steiner trees in graphs,” Acta Inf., vol. 15, pp. 141–145, 1981.
[CrossRef]

1980 (1)

H. Takahashi, A. Matsuyama, “An approximate solution for the Steiner problem in graphs,” Math. Japonica, vol. 24, pp. 573–577, 1980.

Ahlswede, R.

R. Ahlswede, N. Cai, S.-Y. Li, R. Yeung, “Network information flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, July 2000.
[CrossRef]

Ahmed, E.

D. S. Lun, N. Ratnakar, R. Koetter, M. Medard, E. Ahmed, H. Lee, “Achieving minimum-cost multicast: a decentralized approach based on network coding,” in Proc. IEEE INFOCOM, vol. 3, Mar. 2005, pp. 1607–1617.

Alexander, D. R.

E. D. Manley, J. S. Deogun, L. Xu, D. R. Alexander, “Network coding for WDM all-optical multicast,” University of Nebraska—Lincoln, Tech. Rep. TR-UNL-CSE-2009-0007, Apr. 2009.

Ali, M.

M. Ali, J. S. Deogun, “Power-efficient design of multicast wavelength-routed networks,” IEEE J. Sel. Areas Commun., vol. 18, no. 10, pp. 1852–1862, Oct. 2000.
[CrossRef]

M. Ali, J. Deogun, “Cost-effective implementation of multicasting in wavelength-routed networks,” J. Lightwave Technol., vol. 18, no. 12, pp. 1628–1638, Dec. 2000.
[CrossRef]

M. Ali, Transmission-Efficient Design and Management of Wavelength-Routed Optical Networks. Norwell, MA: Kluwer Academic, 2001.
[CrossRef]

Al-Kofahi, O.

A. Kamal, O. Al-Kofahi, “Toward an optimal 1+N protection strategy,” in 46th Annu. Allerton Conf. on Communication, Control, and Computing, Sept. 2008, pp. 162–169.

Al-Kofahi, O. M.

O. M. Al-Kofahi, A. E. Kamal, “Network coding-based protection of many-to-one wireless flows,” IEEE J. Sel. Areas in Commun., vol. 27, no. 5, pp. 787–813, 2009.
[CrossRef]

Andonovic, I.

Avramopoulos, H.

G. Theophilopoulos, K. Yiannopoulos, M. Kalyvas, C. Bintjas, G. Kalogerakis, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, R. Dall’Ara, “40 GHz all-optical XOR with UNI gate,” in Optical Fiber Communication Conf. and Exhibit (OFC), vol. 1, 2001, pp. MB2-1–MB-2-3.

Berman, L.

L. Kou, G. Markowsky, L. Berman, “A fast algorithm for Steiner trees in graphs,” Acta Inf., vol. 15, pp. 141–145, 1981.
[CrossRef]

Bhandari, R.

R. Bhandari, Survivable Networks: Algorithms for Diverse Routing. Norwell, MA: Kluwer Academic, 1998.

Bharathwaj, S.

S. Bharathwaj, K. Narasimhan, “An alternate approach to modular multiplication for finite fields GF(2m) using Itoh Tsujii algorithm,” in 3rd Int. IEEE-NEWCAS Conf., June 2005, pp. 103–105.

Bilodeau, F.

D. Johnson, K. Hill, F. Bilodeau, S. Faucher, “New design concept for a narrowband wavelength-selective optical tap and combiner,” Electron. Lett., vol. 23, no. 13, pp. 668–669, 1987.
[CrossRef]

Bintjas, C.

G. Theophilopoulos, K. Yiannopoulos, M. Kalyvas, C. Bintjas, G. Kalogerakis, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, R. Dall’Ara, “40 GHz all-optical XOR with UNI gate,” in Optical Fiber Communication Conf. and Exhibit (OFC), vol. 1, 2001, pp. MB2-1–MB-2-3.

Boworntummarat, C.

C. Boworntummarat, L. Wuttisittikulkij, S. Segkhoonthod, “Light-tree based protection strategies for multicast traffic in transport WDM mesh networks with multifiber systems,” in 2004 IEEE Int. Conf. on Communications, vol. 3, June 2004, pp. 1791–1795.
[CrossRef]

Cai, N.

S.-Y. R. Li, R. W. Yeung, N. Cai, “Linear network coding,” IEEE Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.
[CrossRef]

R. Ahlswede, N. Cai, S.-Y. Li, R. Yeung, “Network information flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, July 2000.
[CrossRef]

R. W. Yeung, S.-Y. R. Li, N. Cai, Z. Zhang, Network Coding Theory. Hanover, MA: now Publishers, 2006.

Chan, C.-K.

K. Chan, C.-K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-Gb∕s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 897–899, Mar. 2004.
[CrossRef]

Chan, K.

K. Chan, C.-K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-Gb∕s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 897–899, Mar. 2004.
[CrossRef]

Chang, W. S. C.

Chang-Hasnain, C.

C. Chang-Hasnain, P.-C. Ku, J. Kim, S.-L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE, vol. 91, no. 11, pp. 1884–1897, Nov. 2003.
[CrossRef]

P. Ku, C. Chang-Hasnain, S. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett., vol. 38, pp. 1581–1583, Nov. 2002.
[CrossRef]

Chen, H.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. Piccirilli, N. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 703–710, June 2004.
[CrossRef]

Chen, L. K.

K. Chan, C.-K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-Gb∕s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 897–899, Mar. 2004.
[CrossRef]

Chia, M. C.

Chou, P. A.

S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, L. M. G. M. Tolhuizen, “Polynomial time algorithms for multicast network code construction,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 1973–1982, June 2005.
[CrossRef]

Chuang, S.

P. Ku, C. Chang-Hasnain, S. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett., vol. 38, pp. 1581–1583, Nov. 2002.
[CrossRef]

Chuang, S.-L.

C. Chang-Hasnain, P.-C. Ku, J. Kim, S.-L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE, vol. 91, no. 11, pp. 1884–1897, Nov. 2003.
[CrossRef]

Dall’Ara, R.

G. Theophilopoulos, K. Yiannopoulos, M. Kalyvas, C. Bintjas, G. Kalogerakis, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, R. Dall’Ara, “40 GHz all-optical XOR with UNI gate,” in Optical Fiber Communication Conf. and Exhibit (OFC), vol. 1, 2001, pp. MB2-1–MB-2-3.

Deogun, J.

Deogun, J. S.

M. Ali, J. S. Deogun, “Power-efficient design of multicast wavelength-routed networks,” IEEE J. Sel. Areas Commun., vol. 18, no. 10, pp. 1852–1862, Oct. 2000.
[CrossRef]

E. D. Manley, J. S. Deogun, L. Xu, D. R. Alexander, “Network coding for WDM all-optical multicast,” University of Nebraska—Lincoln, Tech. Rep. TR-UNL-CSE-2009-0007, Apr. 2009.

E. D. Manley, J. S. Deogun, L. Xu, “Network coding for optical-layer multicast,” in Proc. of the Fifth Int. Conf. on Broadband Communications (Broadnets), Sept. 2008.

DiJaili, S.

D. Francis, S. DiJaili, J. Walker, “A single-chip linear optical amplifier,” in Optical Fiber Communication Conf. and Exhibit (OFC), vol. 4, 2001, pp. PD13-1–PD13-3.

Dutta, N.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. Piccirilli, N. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 703–710, June 2004.
[CrossRef]

Effros, M.

S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, L. M. G. M. Tolhuizen, “Polynomial time algorithms for multicast network code construction,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 1973–1982, June 2005.
[CrossRef]

T. Ho, R. Koetter, M. Medard, D. Karger, M. Effros, “The benefits of coding over routing in a randomized setting,” in Proc. of the IEEE Int. Symp. on Information Theory, June–July 2003, p. 442.

Egner, S.

S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, L. M. G. M. Tolhuizen, “Polynomial time algorithms for multicast network code construction,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 1973–1982, June 2005.
[CrossRef]

Ellinas, G.

T. Rahman, G. Ellinas, “Protection of multicast sessions in WDM mesh optical networks,” in Optical Fiber Communication Conf. (OFC/NFOEC), vol. 2, Mar. 2005.

Fainman, Y.

Faucher, S.

D. Johnson, K. Hill, F. Bilodeau, S. Faucher, “New design concept for a narrowband wavelength-selective optical tap and combiner,” Electron. Lett., vol. 23, no. 13, pp. 668–669, 1987.
[CrossRef]

Fragouli, C.

C. Fragouli, E. Soljanin, “Information flow decomposition for network coding,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 829–848, Mar. 2006.
[CrossRef]

Francis, D.

D. Francis, S. DiJaili, J. Walker, “A single-chip linear optical amplifier,” in Optical Fiber Communication Conf. and Exhibit (OFC), vol. 4, 2001, pp. PD13-1–PD13-3.

Gannet, J.

R. Menendez, J. Gannet, “Efficient, fault-tolerant all-optical multicast networks via network coding,” in Conf. on Optical Fiber Communication/Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Feb. 2008, pp. 1–3.

Guekos, G.

G. Theophilopoulos, K. Yiannopoulos, M. Kalyvas, C. Bintjas, G. Kalogerakis, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, R. Dall’Ara, “40 GHz all-optical XOR with UNI gate,” in Optical Fiber Communication Conf. and Exhibit (OFC), vol. 1, 2001, pp. MB2-1–MB-2-3.

Hansmann, S.

G. Theophilopoulos, K. Yiannopoulos, M. Kalyvas, C. Bintjas, G. Kalogerakis, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, R. Dall’Ara, “40 GHz all-optical XOR with UNI gate,” in Optical Fiber Communication Conf. and Exhibit (OFC), vol. 1, 2001, pp. MB2-1–MB-2-3.

Heuring, V. P.

Hill, K.

D. Johnson, K. Hill, F. Bilodeau, S. Faucher, “New design concept for a narrowband wavelength-selective optical tap and combiner,” Electron. Lett., vol. 23, no. 13, pp. 668–669, 1987.
[CrossRef]

Ho, T.

T. Ho, R. Koetter, M. Medard, D. Karger, M. Effros, “The benefits of coding over routing in a randomized setting,” in Proc. of the IEEE Int. Symp. on Information Theory, June–July 2003, p. 442.

Hu, W.

W. Hu, Q. Zeng, “Multicasting optical cross connects employing splitter-and-delivery switch,” IEEE Photon. Technol. Lett., vol. 10, no. 7, pp. 970–972, July 1998.
[CrossRef]

Hunter, D. K.

Itoh, T.

T. Itoh, S. Tsujii, “A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases,” Inf. Comput., vol. 78, no. 3, pp. 171–177, 1988.
[CrossRef]

Jaggi, S.

S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, L. M. G. M. Tolhuizen, “Polynomial time algorithms for multicast network code construction,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 1973–1982, June 2005.
[CrossRef]

Jain, K.

S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, L. M. G. M. Tolhuizen, “Polynomial time algorithms for multicast network code construction,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 1973–1982, June 2005.
[CrossRef]

Jaques, J.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. Piccirilli, N. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 703–710, June 2004.
[CrossRef]

Johnson, D.

D. Johnson, K. Hill, F. Bilodeau, S. Faucher, “New design concept for a narrowband wavelength-selective optical tap and combiner,” Electron. Lett., vol. 23, no. 13, pp. 668–669, 1987.
[CrossRef]

Jordan, H. F.

Kalogerakis, G.

G. Theophilopoulos, K. Yiannopoulos, M. Kalyvas, C. Bintjas, G. Kalogerakis, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, R. Dall’Ara, “40 GHz all-optical XOR with UNI gate,” in Optical Fiber Communication Conf. and Exhibit (OFC), vol. 1, 2001, pp. MB2-1–MB-2-3.

Kalyvas, M.

G. Theophilopoulos, K. Yiannopoulos, M. Kalyvas, C. Bintjas, G. Kalogerakis, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, R. Dall’Ara, “40 GHz all-optical XOR with UNI gate,” in Optical Fiber Communication Conf. and Exhibit (OFC), vol. 1, 2001, pp. MB2-1–MB-2-3.

Kamal, A.

A. Kamal, O. Al-Kofahi, “Toward an optimal 1+N protection strategy,” in 46th Annu. Allerton Conf. on Communication, Control, and Computing, Sept. 2008, pp. 162–169.

Kamal, A. E.

O. M. Al-Kofahi, A. E. Kamal, “Network coding-based protection of many-to-one wireless flows,” IEEE J. Sel. Areas in Commun., vol. 27, no. 5, pp. 787–813, 2009.
[CrossRef]

A. E. Kamal, A. Ramamoorthy, “Overlay protection against link failures using network coding,” in Proc. of the Conf. on Information Sciences and Systems (CISS), 2008.

A. E. Kamal, “1+N protection in optical mesh networks using network coding on p-cycles,” in Proc. of IEEE GLOBECOM, 2006.

A. E. Kamal, “1+N protection against multiple link failures in mesh networks,” in Proc. of the IEEE Int. Conf. on Communications (ICC), Glasgow, Scotland, UK, June 2007.

A. E. Kamal, “GMPLS-based hybrid 1+N link protection over p-cycles: design and performance,” in Proc. of IEEE GLOBECOM, 2007.

A. E. Kamal, “A generalized strategy for 1+N protection,” in Proc. of the IEEE Int. Conf. on Communications (ICC2008), 2008.

Karger, D.

T. Ho, R. Koetter, M. Medard, D. Karger, M. Effros, “The benefits of coding over routing in a randomized setting,” in Proc. of the IEEE Int. Symp. on Information Theory, June–July 2003, p. 442.

Karp, R. M.

R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer Computations. New York: Plenum, 1972, pp. 85–103.
[CrossRef]

Kim, J.

C. Chang-Hasnain, P.-C. Ku, J. Kim, S.-L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE, vol. 91, no. 11, pp. 1884–1897, Nov. 2003.
[CrossRef]

Kim, M.

M. Kim, M. Médard, U.-M. O’Reilly, “Network coding and its implications on optical networking,” in Optical Fiber Communication Conf., 2009, paper OThO3.

Koetter, R.

R. Koetter, M. Medard, “An algebraic approach to network coding,” IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.
[CrossRef]

T. Ho, R. Koetter, M. Medard, D. Karger, M. Effros, “The benefits of coding over routing in a randomized setting,” in Proc. of the IEEE Int. Symp. on Information Theory, June–July 2003, p. 442.

D. S. Lun, N. Ratnakar, R. Koetter, M. Medard, E. Ahmed, H. Lee, “Achieving minimum-cost multicast: a decentralized approach based on network coding,” in Proc. IEEE INFOCOM, vol. 3, Mar. 2005, pp. 1607–1617.

Kou, L.

L. Kou, G. Markowsky, L. Berman, “A fast algorithm for Steiner trees in graphs,” Acta Inf., vol. 15, pp. 141–145, 1981.
[CrossRef]

Koufopavlou, O.

A. Tychopoulos, O. Koufopavlou, “Optimization of the ’FOCUS’ inband-FEC architecture for 10-Gbps SDH/SONET optical communication channels,” in Design, Automation & Test in Europe Conf. & Exhibition (DATE), Apr. 2007, pp. 1–6.

Ku, P.

P. Ku, C. Chang-Hasnain, S. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett., vol. 38, pp. 1581–1583, Nov. 2002.
[CrossRef]

Ku, P.-C.

C. Chang-Hasnain, P.-C. Ku, J. Kim, S.-L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE, vol. 91, no. 11, pp. 1884–1897, Nov. 2003.
[CrossRef]

Kun, Q.

Q. Qi, S. Shuangjin, Q. Kun, “An application of optical multicast technology,” in Int. Conf. on Communications, Circuits and Systems Proc., 2006, vol. 3, June 2006, pp. 1869–1871.

Lau, L. C.

Z. Li, B. Li, L. C. Lau, “On achieving maximum multicast throughput in undirected networks,” IEEE/ACM Trans. Netw., vol. 14, no. SI, pp. 2467–2485, 2006.

Lee, H.

D. S. Lun, N. Ratnakar, R. Koetter, M. Medard, E. Ahmed, H. Lee, “Achieving minimum-cost multicast: a decentralized approach based on network coding,” in Proc. IEEE INFOCOM, vol. 3, Mar. 2005, pp. 1607–1617.

Leuthold, J.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. Piccirilli, N. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 703–710, June 2004.
[CrossRef]

Li, B.

Z. Li, B. Li, L. C. Lau, “On achieving maximum multicast throughput in undirected networks,” IEEE/ACM Trans. Netw., vol. 14, no. SI, pp. 2467–2485, 2006.

Z. Li, B. Li, “Network coding in undirected networks,” in Proc. of the 38th Annu. Conf. on Information Sciences, 2004.

Li, S.-Y.

R. Ahlswede, N. Cai, S.-Y. Li, R. Yeung, “Network information flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, July 2000.
[CrossRef]

Li, S.-Y. R.

S.-Y. R. Li, R. W. Yeung, N. Cai, “Linear network coding,” IEEE Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.
[CrossRef]

R. W. Yeung, S.-Y. R. Li, N. Cai, Z. Zhang, Network Coding Theory. Hanover, MA: now Publishers, 2006.

Li, Z.

Z. Li, B. Li, L. C. Lau, “On achieving maximum multicast throughput in undirected networks,” IEEE/ACM Trans. Netw., vol. 14, no. SI, pp. 2467–2485, 2006.

Z. Li, B. Li, “Network coding in undirected networks,” in Proc. of the 38th Annu. Conf. on Information Sciences, 2004.

Lun, D. S.

D. S. Lun, N. Ratnakar, R. Koetter, M. Medard, E. Ahmed, H. Lee, “Achieving minimum-cost multicast: a decentralized approach based on network coding,” in Proc. IEEE INFOCOM, vol. 3, Mar. 2005, pp. 1607–1617.

Manley, E. D.

E. D. Manley, J. S. Deogun, L. Xu, “Network coding for optical-layer multicast,” in Proc. of the Fifth Int. Conf. on Broadband Communications (Broadnets), Sept. 2008.

E. D. Manley, J. S. Deogun, L. Xu, D. R. Alexander, “Network coding for WDM all-optical multicast,” University of Nebraska—Lincoln, Tech. Rep. TR-UNL-CSE-2009-0007, Apr. 2009.

Manning, R.

R. Webb, R. Manning, G. Maxwell, A. Poustie, “40 Gbit∕s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett., vol. 39, no. 1, pp. 79–81, Jan. 2003.
[CrossRef]

Markowsky, G.

L. Kou, G. Markowsky, L. Berman, “A fast algorithm for Steiner trees in graphs,” Acta Inf., vol. 15, pp. 141–145, 1981.
[CrossRef]

Matsuyama, A.

H. Takahashi, A. Matsuyama, “An approximate solution for the Steiner problem in graphs,” Math. Japonica, vol. 24, pp. 573–577, 1980.

Maxwell, G.

R. Webb, R. Manning, G. Maxwell, A. Poustie, “40 Gbit∕s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett., vol. 39, no. 1, pp. 79–81, Jan. 2003.
[CrossRef]

Mazurenko, Y. T.

Medard, M.

R. Koetter, M. Medard, “An algebraic approach to network coding,” IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.
[CrossRef]

T. Ho, R. Koetter, M. Medard, D. Karger, M. Effros, “The benefits of coding over routing in a randomized setting,” in Proc. of the IEEE Int. Symp. on Information Theory, June–July 2003, p. 442.

D. S. Lun, N. Ratnakar, R. Koetter, M. Medard, E. Ahmed, H. Lee, “Achieving minimum-cost multicast: a decentralized approach based on network coding,” in Proc. IEEE INFOCOM, vol. 3, Mar. 2005, pp. 1607–1617.

Médard, M.

M. Kim, M. Médard, U.-M. O’Reilly, “Network coding and its implications on optical networking,” in Optical Fiber Communication Conf., 2009, paper OThO3.

Menendez, R.

R. Menendez, J. Gannet, “Efficient, fault-tolerant all-optical multicast networks via network coding,” in Conf. on Optical Fiber Communication/Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Feb. 2008, pp. 1–3.

Menezes, A.

A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography. CRC Press, 1996.
[CrossRef]

Mukherjee, B.

N. K. Singhal, C. Ou, B. Mukherjee, “Cross-sharing vs. self-sharing trees for protecting multicast sessions in mesh networks,” Comput. Netw., vol. 50, no. 2, pp. 200–206, 2006.
[CrossRef]

N. Singhal, B. Mukherjee, “Protecting multicast sessions in WDM optical mesh networks,” J. Lightwave Technol., vol. 21, no. 4, pp. 884–892, Apr. 2003.
[CrossRef]

N. Singhal, L. Sahasrabuddhe, B. Mukherjee, “Provisioning of survivable multicast sessions against single link failures in optical WDM mesh networks,” J. Lightwave Technol., vol. 21, no. 11, pp. 2587–2594, Nov. 2003.
[CrossRef]

L. Sahasrabuddhe, B. Mukherjee, “Light trees: optical multicasting for improved performance in wavelength routed networks,” IEEE Commun. Mag., vol. 37, no. 2, pp. 67–73, Feb. 1999.
[CrossRef]

Nakahara, T.

R. Takahashi, T. Nakahara, H. Takenouchi, H. Suzuki, “40-Gbit∕s label recognition and 1×4 self-routing using self-serial-to-parallel conversion,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 692–694, Feb. 2004.
[CrossRef]

Narasimhan, K.

S. Bharathwaj, K. Narasimhan, “An alternate approach to modular multiplication for finite fields GF(2m) using Itoh Tsujii algorithm,” in 3rd Int. IEEE-NEWCAS Conf., June 2005, pp. 103–105.

Neukermans, A.

A. Neukermans, R. Ramaswami, “MEMS technology for optical networking applications,” IEEE Commun. Mag., vol. 39, no. 1, pp. 62–69, Jan. 2001.
[CrossRef]

O’Reilly, U.-M.

M. Kim, M. Médard, U.-M. O’Reilly, “Network coding and its implications on optical networking,” in Optical Fiber Communication Conf., 2009, paper OThO3.

Occhi, L.

G. Theophilopoulos, K. Yiannopoulos, M. Kalyvas, C. Bintjas, G. Kalogerakis, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, R. Dall’Ara, “40 GHz all-optical XOR with UNI gate,” in Optical Fiber Communication Conf. and Exhibit (OFC), vol. 1, 2001, pp. MB2-1–MB-2-3.

Ou, C.

N. K. Singhal, C. Ou, B. Mukherjee, “Cross-sharing vs. self-sharing trees for protecting multicast sessions in mesh networks,” Comput. Netw., vol. 50, no. 2, pp. 200–206, 2006.
[CrossRef]

Piccirilli, A.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. Piccirilli, N. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 703–710, June 2004.
[CrossRef]

Poustie, A.

R. Webb, R. Manning, G. Maxwell, A. Poustie, “40 Gbit∕s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett., vol. 39, no. 1, pp. 79–81, Jan. 2003.
[CrossRef]

Povlsen, J. H.

T. Rasmussen, J. K. Rasmussen, J. H. Povlsen, “Design and performance evaluation of 1-by-64 multimode interference power splitter for optical communications,” J. Lightwave Technol., vol. 13, no. 10, pp. 2069–2074, Oct. 1995.
[CrossRef]

Pratt, J. P.

Qi, Q.

Q. Qi, S. Shuangjin, Q. Kun, “An application of optical multicast technology,” in Int. Conf. on Communications, Circuits and Systems Proc., 2006, vol. 3, June 2006, pp. 1869–1871.

Rahman, T.

T. Rahman, G. Ellinas, “Protection of multicast sessions in WDM mesh optical networks,” in Optical Fiber Communication Conf. (OFC/NFOEC), vol. 2, Mar. 2005.

Ramamoorthy, A.

A. E. Kamal, A. Ramamoorthy, “Overlay protection against link failures using network coding,” in Proc. of the Conf. on Information Sciences and Systems (CISS), 2008.

Ramaswami, R.

A. Neukermans, R. Ramaswami, “MEMS technology for optical networking applications,” IEEE Commun. Mag., vol. 39, no. 1, pp. 62–69, Jan. 2001.
[CrossRef]

R. Ramaswami, K. N. Sivarajan, Optical Networks: A Practical Perspective. San Francisco, CA: Morgan Kaufmann, 1998.

Rasmussen, J. K.

T. Rasmussen, J. K. Rasmussen, J. H. Povlsen, “Design and performance evaluation of 1-by-64 multimode interference power splitter for optical communications,” J. Lightwave Technol., vol. 13, no. 10, pp. 2069–2074, Oct. 1995.
[CrossRef]

Rasmussen, T.

T. Rasmussen, J. K. Rasmussen, J. H. Povlsen, “Design and performance evaluation of 1-by-64 multimode interference power splitter for optical communications,” J. Lightwave Technol., vol. 13, no. 10, pp. 2069–2074, Oct. 1995.
[CrossRef]

Ratnakar, N.

D. S. Lun, N. Ratnakar, R. Koetter, M. Medard, E. Ahmed, H. Lee, “Achieving minimum-cost multicast: a decentralized approach based on network coding,” in Proc. IEEE INFOCOM, vol. 3, Mar. 2005, pp. 1607–1617.

Rouskas, G.

G. Rouskas, “Optical layer multicast: rationale, building blocks, and challenges,” IEEE Netw., vol. 17, no. 1, pp. 60–65, Jan./Feb. 2003.
[CrossRef]

Rouskas, G. N.

D. Thaker, G. N. Rouskas, “Multi-destination communication in broadcast WDM networks: a survey,” Opt. Networks Mag., vol. 3, no. 1, pp. 34–44, Jan./Feb. 2002.

Sahasrabuddhe, L.

N. Singhal, L. Sahasrabuddhe, B. Mukherjee, “Provisioning of survivable multicast sessions against single link failures in optical WDM mesh networks,” J. Lightwave Technol., vol. 21, no. 11, pp. 2587–2594, Nov. 2003.
[CrossRef]

L. Sahasrabuddhe, B. Mukherjee, “Light trees: optical multicasting for improved performance in wavelength routed networks,” IEEE Commun. Mag., vol. 37, no. 2, pp. 67–73, Feb. 1999.
[CrossRef]

Sanders, P.

S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, L. M. G. M. Tolhuizen, “Polynomial time algorithms for multicast network code construction,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 1973–1982, June 2005.
[CrossRef]

Schares, L.

G. Theophilopoulos, K. Yiannopoulos, M. Kalyvas, C. Bintjas, G. Kalogerakis, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, R. Dall’Ara, “40 GHz all-optical XOR with UNI gate,” in Optical Fiber Communication Conf. and Exhibit (OFC), vol. 1, 2001, pp. MB2-1–MB-2-3.

Segkhoonthod, S.

C. Boworntummarat, L. Wuttisittikulkij, S. Segkhoonthod, “Light-tree based protection strategies for multicast traffic in transport WDM mesh networks with multifiber systems,” in 2004 IEEE Int. Conf. on Communications, vol. 3, June 2004, pp. 1791–1795.
[CrossRef]

Shuangjin, S.

Q. Qi, S. Shuangjin, Q. Kun, “An application of optical multicast technology,” in Int. Conf. on Communications, Circuits and Systems Proc., 2006, vol. 3, June 2006, pp. 1869–1871.

Singhal, N.

Singhal, N. K.

N. K. Singhal, C. Ou, B. Mukherjee, “Cross-sharing vs. self-sharing trees for protecting multicast sessions in mesh networks,” Comput. Netw., vol. 50, no. 2, pp. 200–206, 2006.
[CrossRef]

Sivarajan, K. N.

R. Ramaswami, K. N. Sivarajan, Optical Networks: A Practical Perspective. San Francisco, CA: Morgan Kaufmann, 1998.

Soljanin, E.

C. Fragouli, E. Soljanin, “Information flow decomposition for network coding,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 829–848, Mar. 2006.
[CrossRef]

Stubkjaer, K.

K. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron., vol. 6, no. 6, pp. 1428–1435, Nov./Dec. 2000.
[CrossRef]

Sun, P. C.

Suzuki, H.

R. Takahashi, T. Nakahara, H. Takenouchi, H. Suzuki, “40-Gbit∕s label recognition and 1×4 self-routing using self-serial-to-parallel conversion,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 692–694, Feb. 2004.
[CrossRef]

R. Takahashi, H. Suzuki, “1-Tb∕s 16-b all-optical serial-to-parallel conversion using a surface-reflection optical switch,” IEEE Photon. Technol. Lett., vol. 15, no. 2, pp. 287–289, Feb. 2003.
[CrossRef]

Takahashi, H.

H. Takahashi, A. Matsuyama, “An approximate solution for the Steiner problem in graphs,” Math. Japonica, vol. 24, pp. 573–577, 1980.

Takahashi, R.

R. Takahashi, T. Nakahara, H. Takenouchi, H. Suzuki, “40-Gbit∕s label recognition and 1×4 self-routing using self-serial-to-parallel conversion,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 692–694, Feb. 2004.
[CrossRef]

R. Takahashi, H. Suzuki, “1-Tb∕s 16-b all-optical serial-to-parallel conversion using a surface-reflection optical switch,” IEEE Photon. Technol. Lett., vol. 15, no. 2, pp. 287–289, Feb. 2003.
[CrossRef]

Takenouchi, H.

R. Takahashi, T. Nakahara, H. Takenouchi, H. Suzuki, “40-Gbit∕s label recognition and 1×4 self-routing using self-serial-to-parallel conversion,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 692–694, Feb. 2004.
[CrossRef]

Thaker, D.

D. Thaker, G. N. Rouskas, “Multi-destination communication in broadcast WDM networks: a survey,” Opt. Networks Mag., vol. 3, no. 1, pp. 34–44, Jan./Feb. 2002.

Theophilopoulos, G.

G. Theophilopoulos, K. Yiannopoulos, M. Kalyvas, C. Bintjas, G. Kalogerakis, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, R. Dall’Ara, “40 GHz all-optical XOR with UNI gate,” in Optical Fiber Communication Conf. and Exhibit (OFC), vol. 1, 2001, pp. MB2-1–MB-2-3.

Tolhuizen, L. M. G. M.

S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, L. M. G. M. Tolhuizen, “Polynomial time algorithms for multicast network code construction,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 1973–1982, June 2005.
[CrossRef]

Tong, F.

K. Chan, C.-K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-Gb∕s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 897–899, Mar. 2004.
[CrossRef]

Tsujii, S.

T. Itoh, S. Tsujii, “A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases,” Inf. Comput., vol. 78, no. 3, pp. 171–177, 1988.
[CrossRef]

Tychopoulos, A.

A. Tychopoulos, O. Koufopavlou, “Optimization of the ’FOCUS’ inband-FEC architecture for 10-Gbps SDH/SONET optical communication channels,” in Design, Automation & Test in Europe Conf. & Exhibition (DATE), Apr. 2007, pp. 1–6.

van Oorschot, P.

A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography. CRC Press, 1996.
[CrossRef]

Vanstone, S.

A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography. CRC Press, 1996.
[CrossRef]

Walker, J.

D. Francis, S. DiJaili, J. Walker, “A single-chip linear optical amplifier,” in Optical Fiber Communication Conf. and Exhibit (OFC), vol. 4, 2001, pp. PD13-1–PD13-3.

Wang, L.

M. Zhang, L. Wang, P. Ye, “All optical XOR logic gates: technologies and experiment demonstrations,” IEEE Commun. Mag., vol. 43, no. 5, pp. S19–S24, May 2005.
[CrossRef]

Wang, Q.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. Piccirilli, N. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 703–710, June 2004.
[CrossRef]

Waxman, B. M.

B. M. Waxman, “Routing of multipoint connections,” IEEE J. Sel. Areas Commun., vol. 6, pp. 1617–1622, Dec. 1988.
[CrossRef]

Webb, R.

R. Webb, R. Manning, G. Maxwell, A. Poustie, “40 Gbit∕s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett., vol. 39, no. 1, pp. 79–81, Jan. 2003.
[CrossRef]

Wuttisittikulkij, L.

C. Boworntummarat, L. Wuttisittikulkij, S. Segkhoonthod, “Light-tree based protection strategies for multicast traffic in transport WDM mesh networks with multifiber systems,” in 2004 IEEE Int. Conf. on Communications, vol. 3, June 2004, pp. 1791–1795.
[CrossRef]

Xu, L.

E. D. Manley, J. S. Deogun, L. Xu, D. R. Alexander, “Network coding for WDM all-optical multicast,” University of Nebraska—Lincoln, Tech. Rep. TR-UNL-CSE-2009-0007, Apr. 2009.

E. D. Manley, J. S. Deogun, L. Xu, “Network coding for optical-layer multicast,” in Proc. of the Fifth Int. Conf. on Broadband Communications (Broadnets), Sept. 2008.

Ye, P.

M. Zhang, L. Wang, P. Ye, “All optical XOR logic gates: technologies and experiment demonstrations,” IEEE Commun. Mag., vol. 43, no. 5, pp. S19–S24, May 2005.
[CrossRef]

Yeung, R.

R. Ahlswede, N. Cai, S.-Y. Li, R. Yeung, “Network information flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, July 2000.
[CrossRef]

Yeung, R. W.

S.-Y. R. Li, R. W. Yeung, N. Cai, “Linear network coding,” IEEE Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.
[CrossRef]

R. W. Yeung, S.-Y. R. Li, N. Cai, Z. Zhang, Network Coding Theory. Hanover, MA: now Publishers, 2006.

Yiannopoulos, K.

G. Theophilopoulos, K. Yiannopoulos, M. Kalyvas, C. Bintjas, G. Kalogerakis, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, R. Dall’Ara, “40 GHz all-optical XOR with UNI gate,” in Optical Fiber Communication Conf. and Exhibit (OFC), vol. 1, 2001, pp. MB2-1–MB-2-3.

Yu, P. K. L.

Zeng, Q.

W. Hu, Q. Zeng, “Multicasting optical cross connects employing splitter-and-delivery switch,” IEEE Photon. Technol. Lett., vol. 10, no. 7, pp. 970–972, July 1998.
[CrossRef]

Zhang, M.

M. Zhang, L. Wang, P. Ye, “All optical XOR logic gates: technologies and experiment demonstrations,” IEEE Commun. Mag., vol. 43, no. 5, pp. S19–S24, May 2005.
[CrossRef]

Zhang, Z.

R. W. Yeung, S.-Y. R. Li, N. Cai, Z. Zhang, Network Coding Theory. Hanover, MA: now Publishers, 2006.

Zhu, G.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. Piccirilli, N. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 703–710, June 2004.
[CrossRef]

Acta Inf. (1)

L. Kou, G. Markowsky, L. Berman, “A fast algorithm for Steiner trees in graphs,” Acta Inf., vol. 15, pp. 141–145, 1981.
[CrossRef]

Appl. Opt. (1)

Comput. Netw. (1)

N. K. Singhal, C. Ou, B. Mukherjee, “Cross-sharing vs. self-sharing trees for protecting multicast sessions in mesh networks,” Comput. Netw., vol. 50, no. 2, pp. 200–206, 2006.
[CrossRef]

Electron. Lett. (3)

D. Johnson, K. Hill, F. Bilodeau, S. Faucher, “New design concept for a narrowband wavelength-selective optical tap and combiner,” Electron. Lett., vol. 23, no. 13, pp. 668–669, 1987.
[CrossRef]

P. Ku, C. Chang-Hasnain, S. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett., vol. 38, pp. 1581–1583, Nov. 2002.
[CrossRef]

R. Webb, R. Manning, G. Maxwell, A. Poustie, “40 Gbit∕s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett., vol. 39, no. 1, pp. 79–81, Jan. 2003.
[CrossRef]

IEEE Commun. Mag. (3)

M. Zhang, L. Wang, P. Ye, “All optical XOR logic gates: technologies and experiment demonstrations,” IEEE Commun. Mag., vol. 43, no. 5, pp. S19–S24, May 2005.
[CrossRef]

A. Neukermans, R. Ramaswami, “MEMS technology for optical networking applications,” IEEE Commun. Mag., vol. 39, no. 1, pp. 62–69, Jan. 2001.
[CrossRef]

L. Sahasrabuddhe, B. Mukherjee, “Light trees: optical multicasting for improved performance in wavelength routed networks,” IEEE Commun. Mag., vol. 37, no. 2, pp. 67–73, Feb. 1999.
[CrossRef]

IEEE J. Quantum Electron. (1)

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. Piccirilli, N. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 703–710, June 2004.
[CrossRef]

IEEE J. Sel. Areas Commun. (2)

B. M. Waxman, “Routing of multipoint connections,” IEEE J. Sel. Areas Commun., vol. 6, pp. 1617–1622, Dec. 1988.
[CrossRef]

M. Ali, J. S. Deogun, “Power-efficient design of multicast wavelength-routed networks,” IEEE J. Sel. Areas Commun., vol. 18, no. 10, pp. 1852–1862, Oct. 2000.
[CrossRef]

IEEE J. Sel. Areas in Commun. (1)

O. M. Al-Kofahi, A. E. Kamal, “Network coding-based protection of many-to-one wireless flows,” IEEE J. Sel. Areas in Commun., vol. 27, no. 5, pp. 787–813, 2009.
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron., vol. 6, no. 6, pp. 1428–1435, Nov./Dec. 2000.
[CrossRef]

IEEE Netw. (1)

G. Rouskas, “Optical layer multicast: rationale, building blocks, and challenges,” IEEE Netw., vol. 17, no. 1, pp. 60–65, Jan./Feb. 2003.
[CrossRef]

IEEE Photon. Technol. Lett. (4)

W. Hu, Q. Zeng, “Multicasting optical cross connects employing splitter-and-delivery switch,” IEEE Photon. Technol. Lett., vol. 10, no. 7, pp. 970–972, July 1998.
[CrossRef]

K. Chan, C.-K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-Gb∕s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 897–899, Mar. 2004.
[CrossRef]

R. Takahashi, T. Nakahara, H. Takenouchi, H. Suzuki, “40-Gbit∕s label recognition and 1×4 self-routing using self-serial-to-parallel conversion,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 692–694, Feb. 2004.
[CrossRef]

R. Takahashi, H. Suzuki, “1-Tb∕s 16-b all-optical serial-to-parallel conversion using a surface-reflection optical switch,” IEEE Photon. Technol. Lett., vol. 15, no. 2, pp. 287–289, Feb. 2003.
[CrossRef]

IEEE Trans. Inf. Theory (4)

R. Ahlswede, N. Cai, S.-Y. Li, R. Yeung, “Network information flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, July 2000.
[CrossRef]

S.-Y. R. Li, R. W. Yeung, N. Cai, “Linear network coding,” IEEE Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.
[CrossRef]

S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, L. M. G. M. Tolhuizen, “Polynomial time algorithms for multicast network code construction,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 1973–1982, June 2005.
[CrossRef]

C. Fragouli, E. Soljanin, “Information flow decomposition for network coding,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 829–848, Mar. 2006.
[CrossRef]

IEEE/ACM Trans. Netw. (2)

R. Koetter, M. Medard, “An algebraic approach to network coding,” IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.
[CrossRef]

Z. Li, B. Li, L. C. Lau, “On achieving maximum multicast throughput in undirected networks,” IEEE/ACM Trans. Netw., vol. 14, no. SI, pp. 2467–2485, 2006.

Inf. Comput. (1)

T. Itoh, S. Tsujii, “A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases,” Inf. Comput., vol. 78, no. 3, pp. 171–177, 1988.
[CrossRef]

J. Lightwave Technol. (5)

Math. Japonica (1)

H. Takahashi, A. Matsuyama, “An approximate solution for the Steiner problem in graphs,” Math. Japonica, vol. 24, pp. 573–577, 1980.

Opt. Lett. (1)

Opt. Networks Mag. (1)

D. Thaker, G. N. Rouskas, “Multi-destination communication in broadcast WDM networks: a survey,” Opt. Networks Mag., vol. 3, no. 1, pp. 34–44, Jan./Feb. 2002.

Proc. IEEE (1)

C. Chang-Hasnain, P.-C. Ku, J. Kim, S.-L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE, vol. 91, no. 11, pp. 1884–1897, Nov. 2003.
[CrossRef]

Other (26)

D. Francis, S. DiJaili, J. Walker, “A single-chip linear optical amplifier,” in Optical Fiber Communication Conf. and Exhibit (OFC), vol. 4, 2001, pp. PD13-1–PD13-3.

R. Ramaswami, K. N. Sivarajan, Optical Networks: A Practical Perspective. San Francisco, CA: Morgan Kaufmann, 1998.

A. E. Kamal, A. Ramamoorthy, “Overlay protection against link failures using network coding,” in Proc. of the Conf. on Information Sciences and Systems (CISS), 2008.

R. Menendez, J. Gannet, “Efficient, fault-tolerant all-optical multicast networks via network coding,” in Conf. on Optical Fiber Communication/Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Feb. 2008, pp. 1–3.

E. D. Manley, J. S. Deogun, L. Xu, “Network coding for optical-layer multicast,” in Proc. of the Fifth Int. Conf. on Broadband Communications (Broadnets), Sept. 2008.

M. Kim, M. Médard, U.-M. O’Reilly, “Network coding and its implications on optical networking,” in Optical Fiber Communication Conf., 2009, paper OThO3.

A. E. Kamal, “1+N protection in optical mesh networks using network coding on p-cycles,” in Proc. of IEEE GLOBECOM, 2006.

A. E. Kamal, “1+N protection against multiple link failures in mesh networks,” in Proc. of the IEEE Int. Conf. on Communications (ICC), Glasgow, Scotland, UK, June 2007.

A. E. Kamal, “GMPLS-based hybrid 1+N link protection over p-cycles: design and performance,” in Proc. of IEEE GLOBECOM, 2007.

A. E. Kamal, “A generalized strategy for 1+N protection,” in Proc. of the IEEE Int. Conf. on Communications (ICC2008), 2008.

A. Kamal, O. Al-Kofahi, “Toward an optimal 1+N protection strategy,” in 46th Annu. Allerton Conf. on Communication, Control, and Computing, Sept. 2008, pp. 162–169.

Q. Qi, S. Shuangjin, Q. Kun, “An application of optical multicast technology,” in Int. Conf. on Communications, Circuits and Systems Proc., 2006, vol. 3, June 2006, pp. 1869–1871.

T. Ho, R. Koetter, M. Medard, D. Karger, M. Effros, “The benefits of coding over routing in a randomized setting,” in Proc. of the IEEE Int. Symp. on Information Theory, June–July 2003, p. 442.

T. Rahman, G. Ellinas, “Protection of multicast sessions in WDM mesh optical networks,” in Optical Fiber Communication Conf. (OFC/NFOEC), vol. 2, Mar. 2005.

C. Boworntummarat, L. Wuttisittikulkij, S. Segkhoonthod, “Light-tree based protection strategies for multicast traffic in transport WDM mesh networks with multifiber systems,” in 2004 IEEE Int. Conf. on Communications, vol. 3, June 2004, pp. 1791–1795.
[CrossRef]

R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer Computations. New York: Plenum, 1972, pp. 85–103.
[CrossRef]

R. W. Yeung, S.-Y. R. Li, N. Cai, Z. Zhang, Network Coding Theory. Hanover, MA: now Publishers, 2006.

D. S. Lun, N. Ratnakar, R. Koetter, M. Medard, E. Ahmed, H. Lee, “Achieving minimum-cost multicast: a decentralized approach based on network coding,” in Proc. IEEE INFOCOM, vol. 3, Mar. 2005, pp. 1607–1617.

R. Bhandari, Survivable Networks: Algorithms for Diverse Routing. Norwell, MA: Kluwer Academic, 1998.

M. Ali, Transmission-Efficient Design and Management of Wavelength-Routed Optical Networks. Norwell, MA: Kluwer Academic, 2001.
[CrossRef]

G. Theophilopoulos, K. Yiannopoulos, M. Kalyvas, C. Bintjas, G. Kalogerakis, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, R. Dall’Ara, “40 GHz all-optical XOR with UNI gate,” in Optical Fiber Communication Conf. and Exhibit (OFC), vol. 1, 2001, pp. MB2-1–MB-2-3.

A. Tychopoulos, O. Koufopavlou, “Optimization of the ’FOCUS’ inband-FEC architecture for 10-Gbps SDH/SONET optical communication channels,” in Design, Automation & Test in Europe Conf. & Exhibition (DATE), Apr. 2007, pp. 1–6.

A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography. CRC Press, 1996.
[CrossRef]

S. Bharathwaj, K. Narasimhan, “An alternate approach to modular multiplication for finite fields GF(2m) using Itoh Tsujii algorithm,” in 3rd Int. IEEE-NEWCAS Conf., June 2005, pp. 103–105.

Z. Li, B. Li, “Network coding in undirected networks,” in Proc. of the 38th Annu. Conf. on Information Sciences, 2004.

E. D. Manley, J. S. Deogun, L. Xu, D. R. Alexander, “Network coding for WDM all-optical multicast,” University of Nebraska—Lincoln, Tech. Rep. TR-UNL-CSE-2009-0007, Apr. 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Static network code robust against a single link failure.

Fig. 2
Fig. 2

Multicast-capable OXC.

Fig. 3
Fig. 3

Topologies used in the simulations.

Fig. 4
Fig. 4

For the Pacific Bell network, (a) the algorithm blocking rate for each of the naive heuristic, MCCR heuristic, and our RCM coding heuristic, and (b) the amount of additional bandwidth needed by the naive heuristic (respectively MCCR heuristic) for those sessions in which both the naive and coding heuristics (respectively MCCR and coding heuristics) found a valid solution.

Fig. 5
Fig. 5

For the Italian network, (a) the algorithm blocking rate for each of the naive heuristic, MCCR heuristic, and our RCM coding heuristic, and (b) the amount of additional bandwidth needed by the naive heuristic (respectively MCCR heuristic) for those sessions in which both the naive and coding heuristics (respectively MCCR and coding heuristics) found a valid solution.

Fig. 6
Fig. 6

For the random 50-node network, (a) the algorithm blocking rate for each of the naive heuristic, MCCR heuristic, and our RCM coding heuristic, and (b) the amount of additional bandwidth needed by the naive heuristic (respectively MCCR heuristic) for those sessions in which both the naive and coding heuristics (respectively MCCR and coding heuristics) found a valid solution.

Fig. 7
Fig. 7

For the Pacific Bell Network, (a) the mean cost of the RCM heuristic solution and (b) the mean experimental running time of the RCM heuristic solution compared with the mean optimal static network coding solution over 1000 different multicast sessions for each group size.

Fig. 8
Fig. 8

For the Italian Network, (a) the mean cost of the RCM heuristic solution and (b) the mean experimental running time of the RCM heuristic solution compared with the mean optimal static network coding solution over 1000 different multicast sessions for each group size.

Fig. 9
Fig. 9

For the random 50-node network, (a) the mean cost of the RCM heuristic solution and (b) the mean experimental running time of the RCM heuristic solution compared with the mean optimal static network coding solution over 50 different multicast sessions for each group size.

Fig. 10
Fig. 10

Multicast-capable W λ ( F × F ) switch with full network coding capability. Each wavelength converter (WC) is a fixed wavelength converter for converting from one specific wavelength to another specific wavelength. Lighter ellipses indicate a repetition of W copies of the pattern while the heavier ellipses indicate an F-copy repetition. Amplifiers that may be needed after power splitting the signal are not shown.

Fig. 11
Fig. 11

Multicast-capable W λ ( F × F ) switch with limited network coding capability. We have not shown the details of the switching fabric, which may be any fully wavelength-convertible multicast switch. The switching ports leading to and from the network coding circuitry will all be converted to a common wavelength λ n c .

Fig. 12
Fig. 12

Overview of the architecture for an all-optical coding unit.

Fig. 13
Fig. 13

All-optical circuit for scalar multiplication and addition in GF ( 2 m ) .

Fig. 14
Fig. 14

Serial all-optical circuit for normalization in GF ( 2 m ) when the reducing polynomial is x m + x + 1 (Note: This is only valid for m in which x m + x + 1 is reducible).

Tables (4)

Tables Icon

Table 1 Algorithm 1 RCM: Robust Coded Multicast

Tables Icon

Table 1 Comparison of the Complexity of the Full Network Coding Capability OXC With the Limited Coding Capability OXC

Tables Icon

Table 2 Comparison of the Complexity of the Full Network Coding Capability OXC With the Limited Coding Capability OXC in Terms of Total Number of SOAs, Buffers, and Two-Input XOR a

Tables Icon

Table 3 Comparison of the Proposed Serial Normalization Unit With Parallel Normalization

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

minimize ( i , j ) k E w ( i , j ) k x ( i , j ) k
( i , j ) k E x ( i , j ) k t ( j , i ) k E x ( j , i ) k t = { 2 if i = s 2 if i = t 0 otherwise }
i V , t T ,
x ( i , j ) k x ( i , j ) k t ( i , j ) k E , t T ,
1 x ( i , j ) k t 0 ( i , j ) k E , t T ,
1 x ( i , j ) k 0 ( i , j ) k E ,
( i , j ) k E x ( i , j ) k t 1 i , j V s.t. ( i , j ) 1 E , t T .
β nc β c β c × 100 ,
x m = x + 1 ,
x m + 1 = x 2 + x ,
x m + 2 = x 3 + x 2 ,
x 2 m 4 = x m 3 + x m 4 ,
x 2 m 3 = x m 2 + x m 3 ,
x 2 m 2 = x m 1 + x m 2 .
r 0 = d 0 d m ,
r 1 = d 1 d m + 1 d m ,
r 2 = d 2 d m + 2 d m + 1 ,
r 3 = d 3 d m + 3 d m + 2 ,
r m 3 = d m 3 d 2 m 3 d 2 m 4 ,
r m 2 = d m 2 d 2 m 2 d 2 m 3 ,
r m 1 = d m 1 d 2 m 2 .
R 0 = ( C A A 0 + C B B 0 ) mod ( x m + x + 1 )
( C A A 0 ) mod ( x m + x + 1 ) ,
( C A A 1 ) mod ( x m + x + 1 ) ,
( C A A 2 ) mod ( x m + x + 1 ) , .