Abstract

We propose an incoherent optical code-division multiple access (CDMA) ring network configured such that each node in the network includes all-optical add/drop multiplexers to provide truly asynchronous operation and a self-healing protection monitoring circuit to ensure service availability during link failure. We also analyze the performance of such a network considering the presence of multiple-access interference and noise from incomplete dropping of the desired data and accidental dropping of the undesired data. Furthermore, we experimentally demonstrate the proposed design with a two-node system operating at 2.5 Gbits/s. Error-free transmission is obtained and a 5.3 dB power penalty at a bit error rate of 10−9 is measured for the worst connection configuration. The complete optical CDMA ring network is successfully demonstrated in truly asynchronous operation.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Wilson, “The quantitative impact of survivable network architectures on service availability,” IEEE Commun. Mag., vol. 36, no. 5, pp. 122–126, May 1998.
    [CrossRef]
  2. V. Alwayn, Optical Network Design and Implementation. Indianapolis, IN: Cisco Press, 2004.
  3. S. Ayotte, M. Rochette, J. Magne, L. A. Rusch, S. LaRochelle, “Experimental demonstration and simulation results of frequency encoded optical CDMA,” in Proc. IEEE Int. Conf. Communication, June 2004, vol. 3, pp. 20–24.
  4. E. Park, A. J. Mendez, E. M. Garmire, “Temporal/spatial optical CDMA networks—design, demonstration, and comparison with temporal networks,” IEEE Photon. Technol. Lett., vol. 4, no. 10, pp. 1160–1162, Oct. 1992.
    [CrossRef]
  5. C.-S. Brès, Y.-K. Huang, I. Glesk, P. R. Prucnal, “Scalable and asynchronous incoherent optical CDMA,” J. Opt. Netw., vol. 6, no. 6, pp. 599–615, 2007.
    [CrossRef]
  6. P. R. Prucnal, ed., Optical Code Division Multiple Access: Fundamentals and Applications. New York: Taylor & Francis Ltd., 2006.
  7. C.-S. Brès, I. Glesk, R. J. Runser, P. R. Prucnal, “All-optical OCDMA code-drop unit for transparent ring networks,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1088–1090, Mar. 2005.
    [CrossRef]
  8. B. Chen, C. Guo, J. Chen, L. Zhang, Q. Jiang, S. He, “Add/drop multiplexing and TDM signal transmission in an optical CDMA ring network,” J. Opt. Netw., vol. 6, no. 8, pp. 969–974, 2007.
    [CrossRef]
  9. K. Kravtsov, P. R. Prucnal, M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express, vol. 15, no. 20, pp. 13,114–13,122, 2007.
    [CrossRef]
  10. K. Kravtsov, Y. Deng, P. R. Prucnal, “Self-clocked all-optical add/drop multiplexer for asynchronous CDMA ring networks,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 396–401, Apr. 2009.
    [CrossRef]
  11. A. Elrefaie, “Multiwavelength survivable ring network architecture,” in Proc. ICC, 1993, pp. 1245–1251.
  12. J. J. O. Pires, “Constraints on the design of 2-fiber bi-directional WDM rings with optical multiplex section protection,” 2001 IEEE/LEOS Summer Topical Meetings (Ultra Long Haul DWDM Transmission and Networking), 2001, pp. 13–14.
  13. N. J. Doran, D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett., vol. 13, no. 1, pp. 56–58, Jan. 1998.
    [CrossRef]
  14. G.-C. Yang, W. C. Kwong, Prime Codes With Applications to CDMA Optical and Wireless Networks. Boston, MA: Artech House, 2002.
  15. V. Baby, W. C. Kwong, C.-Y. Chang, G.-C. Yang, P. R. Prucnal, “Performance analysis of variable-weight, multilength optical codes for wavelength-time O-CDMA multimedia systems,” IEEE Trans. Commun., vol. 55, no. 7, pp. 1325–1333, July 2007.
    [CrossRef]
  16. V. Baby, C. Bres, I. Glesk, L. Xu, P. R. Prucnal, “Wavelength aware receiver for enhanced 2D OCDMA system performance,” in Conf. on Lasers and Electro-Optics/Int. Quantum Electronics Conf. and Photonic Applications Systems Technologies, 2004, paper CWH6.

2009 (1)

K. Kravtsov, Y. Deng, P. R. Prucnal, “Self-clocked all-optical add/drop multiplexer for asynchronous CDMA ring networks,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 396–401, Apr. 2009.
[CrossRef]

2007 (4)

V. Baby, W. C. Kwong, C.-Y. Chang, G.-C. Yang, P. R. Prucnal, “Performance analysis of variable-weight, multilength optical codes for wavelength-time O-CDMA multimedia systems,” IEEE Trans. Commun., vol. 55, no. 7, pp. 1325–1333, July 2007.
[CrossRef]

C.-S. Brès, Y.-K. Huang, I. Glesk, P. R. Prucnal, “Scalable and asynchronous incoherent optical CDMA,” J. Opt. Netw., vol. 6, no. 6, pp. 599–615, 2007.
[CrossRef]

B. Chen, C. Guo, J. Chen, L. Zhang, Q. Jiang, S. He, “Add/drop multiplexing and TDM signal transmission in an optical CDMA ring network,” J. Opt. Netw., vol. 6, no. 8, pp. 969–974, 2007.
[CrossRef]

K. Kravtsov, P. R. Prucnal, M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express, vol. 15, no. 20, pp. 13,114–13,122, 2007.
[CrossRef]

2005 (1)

C.-S. Brès, I. Glesk, R. J. Runser, P. R. Prucnal, “All-optical OCDMA code-drop unit for transparent ring networks,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1088–1090, Mar. 2005.
[CrossRef]

1998 (2)

M. R. Wilson, “The quantitative impact of survivable network architectures on service availability,” IEEE Commun. Mag., vol. 36, no. 5, pp. 122–126, May 1998.
[CrossRef]

N. J. Doran, D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett., vol. 13, no. 1, pp. 56–58, Jan. 1998.
[CrossRef]

1992 (1)

E. Park, A. J. Mendez, E. M. Garmire, “Temporal/spatial optical CDMA networks—design, demonstration, and comparison with temporal networks,” IEEE Photon. Technol. Lett., vol. 4, no. 10, pp. 1160–1162, Oct. 1992.
[CrossRef]

Alwayn, V.

V. Alwayn, Optical Network Design and Implementation. Indianapolis, IN: Cisco Press, 2004.

Ayotte, S.

S. Ayotte, M. Rochette, J. Magne, L. A. Rusch, S. LaRochelle, “Experimental demonstration and simulation results of frequency encoded optical CDMA,” in Proc. IEEE Int. Conf. Communication, June 2004, vol. 3, pp. 20–24.

Baby, V.

V. Baby, W. C. Kwong, C.-Y. Chang, G.-C. Yang, P. R. Prucnal, “Performance analysis of variable-weight, multilength optical codes for wavelength-time O-CDMA multimedia systems,” IEEE Trans. Commun., vol. 55, no. 7, pp. 1325–1333, July 2007.
[CrossRef]

V. Baby, C. Bres, I. Glesk, L. Xu, P. R. Prucnal, “Wavelength aware receiver for enhanced 2D OCDMA system performance,” in Conf. on Lasers and Electro-Optics/Int. Quantum Electronics Conf. and Photonic Applications Systems Technologies, 2004, paper CWH6.

Bres, C.

V. Baby, C. Bres, I. Glesk, L. Xu, P. R. Prucnal, “Wavelength aware receiver for enhanced 2D OCDMA system performance,” in Conf. on Lasers and Electro-Optics/Int. Quantum Electronics Conf. and Photonic Applications Systems Technologies, 2004, paper CWH6.

Brès, C.-S.

C.-S. Brès, Y.-K. Huang, I. Glesk, P. R. Prucnal, “Scalable and asynchronous incoherent optical CDMA,” J. Opt. Netw., vol. 6, no. 6, pp. 599–615, 2007.
[CrossRef]

C.-S. Brès, I. Glesk, R. J. Runser, P. R. Prucnal, “All-optical OCDMA code-drop unit for transparent ring networks,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1088–1090, Mar. 2005.
[CrossRef]

Bubnov, M. M.

K. Kravtsov, P. R. Prucnal, M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express, vol. 15, no. 20, pp. 13,114–13,122, 2007.
[CrossRef]

Chang, C.-Y.

V. Baby, W. C. Kwong, C.-Y. Chang, G.-C. Yang, P. R. Prucnal, “Performance analysis of variable-weight, multilength optical codes for wavelength-time O-CDMA multimedia systems,” IEEE Trans. Commun., vol. 55, no. 7, pp. 1325–1333, July 2007.
[CrossRef]

Chen, B.

Chen, J.

Deng, Y.

K. Kravtsov, Y. Deng, P. R. Prucnal, “Self-clocked all-optical add/drop multiplexer for asynchronous CDMA ring networks,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 396–401, Apr. 2009.
[CrossRef]

Doran, N. J.

Elrefaie, A.

A. Elrefaie, “Multiwavelength survivable ring network architecture,” in Proc. ICC, 1993, pp. 1245–1251.

Garmire, E. M.

E. Park, A. J. Mendez, E. M. Garmire, “Temporal/spatial optical CDMA networks—design, demonstration, and comparison with temporal networks,” IEEE Photon. Technol. Lett., vol. 4, no. 10, pp. 1160–1162, Oct. 1992.
[CrossRef]

Glesk, I.

C.-S. Brès, Y.-K. Huang, I. Glesk, P. R. Prucnal, “Scalable and asynchronous incoherent optical CDMA,” J. Opt. Netw., vol. 6, no. 6, pp. 599–615, 2007.
[CrossRef]

C.-S. Brès, I. Glesk, R. J. Runser, P. R. Prucnal, “All-optical OCDMA code-drop unit for transparent ring networks,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1088–1090, Mar. 2005.
[CrossRef]

V. Baby, C. Bres, I. Glesk, L. Xu, P. R. Prucnal, “Wavelength aware receiver for enhanced 2D OCDMA system performance,” in Conf. on Lasers and Electro-Optics/Int. Quantum Electronics Conf. and Photonic Applications Systems Technologies, 2004, paper CWH6.

Guo, C.

He, S.

Huang, Y.-K.

Jiang, Q.

Kravtsov, K.

K. Kravtsov, Y. Deng, P. R. Prucnal, “Self-clocked all-optical add/drop multiplexer for asynchronous CDMA ring networks,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 396–401, Apr. 2009.
[CrossRef]

K. Kravtsov, P. R. Prucnal, M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express, vol. 15, no. 20, pp. 13,114–13,122, 2007.
[CrossRef]

Kwong, W. C.

V. Baby, W. C. Kwong, C.-Y. Chang, G.-C. Yang, P. R. Prucnal, “Performance analysis of variable-weight, multilength optical codes for wavelength-time O-CDMA multimedia systems,” IEEE Trans. Commun., vol. 55, no. 7, pp. 1325–1333, July 2007.
[CrossRef]

G.-C. Yang, W. C. Kwong, Prime Codes With Applications to CDMA Optical and Wireless Networks. Boston, MA: Artech House, 2002.

LaRochelle, S.

S. Ayotte, M. Rochette, J. Magne, L. A. Rusch, S. LaRochelle, “Experimental demonstration and simulation results of frequency encoded optical CDMA,” in Proc. IEEE Int. Conf. Communication, June 2004, vol. 3, pp. 20–24.

Magne, J.

S. Ayotte, M. Rochette, J. Magne, L. A. Rusch, S. LaRochelle, “Experimental demonstration and simulation results of frequency encoded optical CDMA,” in Proc. IEEE Int. Conf. Communication, June 2004, vol. 3, pp. 20–24.

Mendez, A. J.

E. Park, A. J. Mendez, E. M. Garmire, “Temporal/spatial optical CDMA networks—design, demonstration, and comparison with temporal networks,” IEEE Photon. Technol. Lett., vol. 4, no. 10, pp. 1160–1162, Oct. 1992.
[CrossRef]

Park, E.

E. Park, A. J. Mendez, E. M. Garmire, “Temporal/spatial optical CDMA networks—design, demonstration, and comparison with temporal networks,” IEEE Photon. Technol. Lett., vol. 4, no. 10, pp. 1160–1162, Oct. 1992.
[CrossRef]

Pires, J. J. O.

J. J. O. Pires, “Constraints on the design of 2-fiber bi-directional WDM rings with optical multiplex section protection,” 2001 IEEE/LEOS Summer Topical Meetings (Ultra Long Haul DWDM Transmission and Networking), 2001, pp. 13–14.

Prucnal, P. R.

K. Kravtsov, Y. Deng, P. R. Prucnal, “Self-clocked all-optical add/drop multiplexer for asynchronous CDMA ring networks,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 396–401, Apr. 2009.
[CrossRef]

K. Kravtsov, P. R. Prucnal, M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express, vol. 15, no. 20, pp. 13,114–13,122, 2007.
[CrossRef]

V. Baby, W. C. Kwong, C.-Y. Chang, G.-C. Yang, P. R. Prucnal, “Performance analysis of variable-weight, multilength optical codes for wavelength-time O-CDMA multimedia systems,” IEEE Trans. Commun., vol. 55, no. 7, pp. 1325–1333, July 2007.
[CrossRef]

C.-S. Brès, Y.-K. Huang, I. Glesk, P. R. Prucnal, “Scalable and asynchronous incoherent optical CDMA,” J. Opt. Netw., vol. 6, no. 6, pp. 599–615, 2007.
[CrossRef]

C.-S. Brès, I. Glesk, R. J. Runser, P. R. Prucnal, “All-optical OCDMA code-drop unit for transparent ring networks,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1088–1090, Mar. 2005.
[CrossRef]

V. Baby, C. Bres, I. Glesk, L. Xu, P. R. Prucnal, “Wavelength aware receiver for enhanced 2D OCDMA system performance,” in Conf. on Lasers and Electro-Optics/Int. Quantum Electronics Conf. and Photonic Applications Systems Technologies, 2004, paper CWH6.

Rochette, M.

S. Ayotte, M. Rochette, J. Magne, L. A. Rusch, S. LaRochelle, “Experimental demonstration and simulation results of frequency encoded optical CDMA,” in Proc. IEEE Int. Conf. Communication, June 2004, vol. 3, pp. 20–24.

Runser, R. J.

C.-S. Brès, I. Glesk, R. J. Runser, P. R. Prucnal, “All-optical OCDMA code-drop unit for transparent ring networks,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1088–1090, Mar. 2005.
[CrossRef]

Rusch, L. A.

S. Ayotte, M. Rochette, J. Magne, L. A. Rusch, S. LaRochelle, “Experimental demonstration and simulation results of frequency encoded optical CDMA,” in Proc. IEEE Int. Conf. Communication, June 2004, vol. 3, pp. 20–24.

Wilson, M. R.

M. R. Wilson, “The quantitative impact of survivable network architectures on service availability,” IEEE Commun. Mag., vol. 36, no. 5, pp. 122–126, May 1998.
[CrossRef]

Wood, D.

Xu, L.

V. Baby, C. Bres, I. Glesk, L. Xu, P. R. Prucnal, “Wavelength aware receiver for enhanced 2D OCDMA system performance,” in Conf. on Lasers and Electro-Optics/Int. Quantum Electronics Conf. and Photonic Applications Systems Technologies, 2004, paper CWH6.

Yang, G.-C.

V. Baby, W. C. Kwong, C.-Y. Chang, G.-C. Yang, P. R. Prucnal, “Performance analysis of variable-weight, multilength optical codes for wavelength-time O-CDMA multimedia systems,” IEEE Trans. Commun., vol. 55, no. 7, pp. 1325–1333, July 2007.
[CrossRef]

G.-C. Yang, W. C. Kwong, Prime Codes With Applications to CDMA Optical and Wireless Networks. Boston, MA: Artech House, 2002.

Zhang, L.

IEEE Commun. Mag. (1)

M. R. Wilson, “The quantitative impact of survivable network architectures on service availability,” IEEE Commun. Mag., vol. 36, no. 5, pp. 122–126, May 1998.
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Kravtsov, Y. Deng, P. R. Prucnal, “Self-clocked all-optical add/drop multiplexer for asynchronous CDMA ring networks,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 396–401, Apr. 2009.
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C.-S. Brès, I. Glesk, R. J. Runser, P. R. Prucnal, “All-optical OCDMA code-drop unit for transparent ring networks,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1088–1090, Mar. 2005.
[CrossRef]

E. Park, A. J. Mendez, E. M. Garmire, “Temporal/spatial optical CDMA networks—design, demonstration, and comparison with temporal networks,” IEEE Photon. Technol. Lett., vol. 4, no. 10, pp. 1160–1162, Oct. 1992.
[CrossRef]

IEEE Trans. Commun. (1)

V. Baby, W. C. Kwong, C.-Y. Chang, G.-C. Yang, P. R. Prucnal, “Performance analysis of variable-weight, multilength optical codes for wavelength-time O-CDMA multimedia systems,” IEEE Trans. Commun., vol. 55, no. 7, pp. 1325–1333, July 2007.
[CrossRef]

J. Opt. Netw. (2)

Opt. Express (1)

K. Kravtsov, P. R. Prucnal, M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express, vol. 15, no. 20, pp. 13,114–13,122, 2007.
[CrossRef]

Opt. Lett. (1)

Other (7)

G.-C. Yang, W. C. Kwong, Prime Codes With Applications to CDMA Optical and Wireless Networks. Boston, MA: Artech House, 2002.

V. Baby, C. Bres, I. Glesk, L. Xu, P. R. Prucnal, “Wavelength aware receiver for enhanced 2D OCDMA system performance,” in Conf. on Lasers and Electro-Optics/Int. Quantum Electronics Conf. and Photonic Applications Systems Technologies, 2004, paper CWH6.

A. Elrefaie, “Multiwavelength survivable ring network architecture,” in Proc. ICC, 1993, pp. 1245–1251.

J. J. O. Pires, “Constraints on the design of 2-fiber bi-directional WDM rings with optical multiplex section protection,” 2001 IEEE/LEOS Summer Topical Meetings (Ultra Long Haul DWDM Transmission and Networking), 2001, pp. 13–14.

P. R. Prucnal, ed., Optical Code Division Multiple Access: Fundamentals and Applications. New York: Taylor & Francis Ltd., 2006.

V. Alwayn, Optical Network Design and Implementation. Indianapolis, IN: Cisco Press, 2004.

S. Ayotte, M. Rochette, J. Magne, L. A. Rusch, S. LaRochelle, “Experimental demonstration and simulation results of frequency encoded optical CDMA,” in Proc. IEEE Int. Conf. Communication, June 2004, vol. 3, pp. 20–24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Two-fiber bidirectional optical CDMA ring network.

Fig. 2
Fig. 2

Design of the optical CDMA and/drop nodes with protection-monitoring circuit and optical add/drop multiplexers on both links. SW, switch; LD, laser diode; OADM, optical add/drop multiplexer.

Fig. 3
Fig. 3

Schematic of the optical CDMA add/drop multiplexer. EDFA, erbium-doped fiber amplifier; TDL, tunable optical delay line; ATT, attenuator; PC, polarization controller; DSF, dispersion-shifted fiber.

Fig. 4
Fig. 4

Comparing the performance of the worst-case scenario for a ring network with ideal add/drop and a nonideal ring network with residual as a function of the number of nodes.

Fig. 5
Fig. 5

Performance of the ideal ring network carrying different types of data at each link (hollow data points), and the effect during link failure when traffic on both links are aggregated together (cross and star data points).

Fig. 6
Fig. 6

Experimental setup of a two-node ring network. LD, laser diode; EAM, electroabsorption modulator; Clk, clock; HDF, highly Ge O 2 -doped fiber; CDR, clock and data recovery unit; BERT, bit-error-rate tester.

Fig. 7
Fig. 7

Waveforms after nonlinear optical loop mirror dropping module. (a) Reflection port of the NOLM with undesired thru signal before restoration (cross-correlation peaks). (b) Restored thru signal. (c) Dropped desired signal (autocorrelation peaks).

Fig. 8
Fig. 8

Waveforms for direct dropping. (a) Signal on the thru link after node 1. (b) Dropped signal at node 1. (c) Signal on the thru link after node 2. (d) Dropped signal at node 2.

Fig. 9
Fig. 9

Waveforms for indirect dropping, after signal passing through one node. (a) Signal on the thru link after node. (b) Dropped signal at node 1. (c) Signal on the thru link after node 2. (d) Dropped signal at node 2.

Fig. 10
Fig. 10

Bit-error-rate measurements for the three types of configurations with and without a protection-monitoring circuit. Square data points: back-to-back; triangular data points: direct dropping where signal is dropped immediately at the next node in the ring network: circular data points: indirect dropping where signal is dropped after passing through one node. No circuit: signal does not go through protection circuit; east link: normal operation where signal goes through working link; west link failure operation where signal goes through backup link.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

F = N 2 1 4 .
q i = ω a ω i 2 max ( ω a , ω i ) N i ,
P ¯ 0 = i k i q i ,
P ¯ 1 = ω a + i k i q i ,
σ 0 2 = σ 1 2 = i k i q i ( 1 q i ) .
P e | G = Q ( 1 2 SNR ) = Q ( 1 2 ω a i k i q i ( 1 q i ) ) ,
where Q ( x ) = 1 2 π x e y 2 2 d y .
P ¯ 0 = i q i , j r c j ,
P ¯ 1 = ω a ( 1 r a ) r c j + i q i , j r c j ,
σ MAI 2 = i q i , j ( 1 q i , j ) r c j .
P e | G = Q ( ω a ( 1 r a ) r c j 2 σ MAI 2 ) .
η = N × B ω × Δ v BW ,