Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

All-Digital Timing Recovery and Adaptive Equalization for 112 Gbit s POLMUX-NRZ-DQPSK Optical Coherent Receivers

Not Accessible

Your library or personal account may give you access

Abstract

An all-digital timing recovery loop is employed in optical coherent receivers, which depends on the number-controlled oscillator and the interpolator to complete timing adjustment in an all-digital way instead of the traditional hybrid way using an analog device (a voltage-controlled oscillator) to adjust the sampling frequency. Therefore it avoids introducing the nonideal characteristics of an analog device and is beneficial to all-digital implementation of optical coherent receivers. Furthermore, in order to meet the requirements of low complexity and sampling rate, the Gardner timing error detector is adopted in the all-digital timing recovery loop. However, it has low tolerance of dispersion, which requires another device to compensate the large residual dispersion prior to it. Although the adaptive equalizer can compensate signal for dispersion impairment, its effective operation must rely upon synchronized signals. For solving the incompatible problem without any extra cost, a joint scheme that embeds an adaptive equalizer into the all-digital timing recovery loop is proposed to accomplish synchronization and compensation of linear transmission impairments. Finally, the feasibility and effectiveness of the proposed scheme are demonstrated in a 112Gbits polarization-multiplexing non-return-to-zero differential-quadrature phase-shift-keying (POLMUX-NRZ-DQPSK) optical coherent receiver by simulation.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Simultaneous clock recovery and dispersion, OSNR monitoring for 112-Gbit/s NRZ-DQPSK using frequency down-conversion electro-optical phase-locked loop

He Wen, Lin Cheng, Jinxin Liao, Xiaoping Zheng, Hanyi Zhang, Yili Guo, and Bingkun Zhou
Opt. Express 19(26) B687-B701 (2011)

Joint clock recovery and feed-forward equalization for PAM4 transmission

Honghang Zhou, Yan Li, Dan Lu, Lei Yue, Chao Gao, Yuyang Liu, Ruibin Hao, Zhixi Zhao, Wei Li, Jifang Qiu, Xiaobin Hong, Hongxiang Guo, Yong Zuo, and Jian Wu
Opt. Express 27(8) 11385-11395 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved