Abstract

The high data rates employed by wavelength division multiplexing transparent optical networks make them most suitable for today’s growing network traffic demands. However, their transparency imposes several vulnerabilities in network security, enabling malicious signals to propagate from the source to other parts of the network without losing their attacking capabilities. Furthermore, detecting, locating the source, and localizing the spreading of such physical-layer attacks is more difficult since monitoring must be performed in the optical domain. While most failure and attack management approaches focus on network recovery after a fault or an attack has already occurred, we suggest a novel safety strategy, proposing a prevention-oriented method to aid attack localization and source identification in the planning phase. In this paper, we propose attack-aware wavelength assignment that minimizes the worst-case potential propagation of in-band crosstalk jamming attacks. We define a new objective criterion for the wavelength assignment (WA) problem, called the propagating crosstalk attack radius (P-CAR), and develop heuristic algorithms aimed at minimizing both the P-CAR and the number of wavelengths used. Our aim is to achieve better protection, but without the need for extra resources. We compare our algorithms with existing WA approaches, illustrating their benefits with respect to transparent optical networks’ security, as well as the associated wavelength utilization.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ramaswami, K. N. Sivarajan, “WDM network design,” in Optical Networks: A Practical Perspective, R. Adams, Ed., 2nd ed. San Diego: Academic Press, 2002, pp. 437–488.
    [CrossRef]
  2. C. Mas, I. Tomkos, O. K. Tonguz, “Failure location algorithm for transparent optical networks,” IEEE J. Sel. Areas Commun., vol. 23, no. 8, pp. 1508–1519, Aug. 2005.
    [CrossRef]
  3. M. Médard, D. Marquis, R. A. Barry, S. G. Finn, “Security issues in all-optical networks,” IEEE Network, vol. 11, no. 3, pp. 42–48, May 1997.
    [CrossRef]
  4. M. Médard, D. Marquis, S. R. Chinn, “Attack detection methods for all-optical networks,” in Proc. of Network and Distributed Systems Security Symp., San Diego, CA, 1998, Session 3, paper 2.
  5. T. Wu, A. K. Somani, “Cross-talk attack monitoring and localization in all-optical networks,” IEEE/ACM Trans. Netw., vol. 13, pp. 1390–1401, 2005.
    [CrossRef]
  6. T. Y. Chai, T. H. Cheng, Y. Ye, Q. Liu, “Inband crosstalk analysis of optical cross-connect architectures,” J. Lightwave Technol., vol. 23, no. 2, pp. 688–701, Feb. 2005.
    [CrossRef]
  7. P. Gil Arbués, C. Mas Machuca, A. Tzanakaki, “Comparative study of existing OADM and OXC architectures and technologies from the failure behavior perspective,” J. Opt. Netw., vol. 6, no. 2, pp. 123–133, Feb. 2007.
    [CrossRef]
  8. C. Liu, C. Ji, “Resilience of all-optical network architectures under in-band crosstalk attacks: a probabilistic graphical model approach,” IEEE J. Sel. Areas Commun., vol. 25, no. 3, pp. 2–17, 2007.
    [CrossRef]
  9. H. Zang, J. P. Jue, B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Opt. Networks Mag., vol. 1, pp. 47–60, Jan. 2000.
  10. S. Azodomolky, M. Klinkowski, E. Marin, D. Careglio, J. Solé Pareta, I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw., vol. 53, no. 7, pp. 926–944, May 2009.
    [CrossRef]
  11. R. Rejeb, M. S. Leeson, R. J. Green, “Fault and attack management in all-optical networks,” IEEE Commun. Mag., vol. 44, no. 11, pp. 79–86, Nov. 2006.
    [CrossRef]
  12. J. K. Patel, S. U. Kim, D. H. Su, S. Subramaniam, H.-A. Choi, “A framework for managing faults and attacks in WDM optical networks,” Proc. of the DARPA Information Survivability Conf. and Expo., Anaheim, CA, 2001.
  13. R. Bergman, M. Médard, S. Chan, “Distributed algorithms for attack localization in all-optical networks,” in Network and Distributed Systems Symp., San Diego, CA, 1998.
  14. R. Rejeb, M. S. Leeson, R. J. Green, “Multiple attack localization and identification in all-optical networks,” Opt. Switching Networking, vol. 3, no. 1, pp. 41–49, 2006.
    [CrossRef]
  15. A. Jedidi, M. Abid, “Optimal crosstalk monitoring and identification method,” IFIP Int. Conf. on Wireless and Optical Communication Networks (WOCN’09), 2009, pp. 1–5.
  16. N. Skorin-Kapov, J. Chen, L. Wosinska, “A new approach to optical networks security: attack-aware routing and wavelength assignment,” IEEE/ACM Trans. Netw., vol. 18, no. 3, pp. 750–760, June 2010.
    [CrossRef]
  17. N. Skorin-Kapov, M. Furdek, “Limiting the propagation of intra-channel crosstalk attacks in optical networks through wavelength assignment,” in Optical Fiber Communication Conf. and Expo. (OFC) and the Nat. Fiber Optic Engineers Conf. (NFOEC), 2009, paper JWA65.
  18. M. Furdek, N. Skorin-Kapov, “A scalable wavelength assignment approach for preventive crosstalk localization in optical networks,” in Proc. of the 10th Int. Conf. on Telecommunications (ConTEL), Zagreb, Croatia, 2009, pp. 311–318.
  19. N. Skorin-Kapov, “Routing and wavelength assignment in optical networks using bin packing based algorithms,” Eur. J. Oper. Res., vol. 177, pp. 1167–1179, 2007.
    [CrossRef]
  20. M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: Freeman, 1979.
  21. M. Kubale, Graph Colorings. American Mathematical Society, 2004.
    [CrossRef]
  22. D. Kirovski, M. Potkonjak, “Efficient coloring of a large spectrum of graphs,” in Proc. 35th Conf. Design Automation, San Francisco, CA, 1998, pp. 427–432.
  23. R. Inkret, A. Kuchar, B. Mikac, “Advanced infrastructure for photonic networks: extended final report of COST action 266,” Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia, 2003, pp. 19–27.
  24. R. S. Cahn, Wide Area Network Design. Concepts and Tools for Optimization. Morgan Kaufmann Publishers, 1998.
  25. T. Brinkhoff. “City population” [Online]. Available: www.citypopulation.de
  26. D. Banerjee, B. Mukherjee, “Wavelength-routed optical networks: linear formulation, resource budgeting trade-offs, and a reconfiguration study,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 598–607, Oct. 2000.
    [CrossRef]

2010 (1)

N. Skorin-Kapov, J. Chen, L. Wosinska, “A new approach to optical networks security: attack-aware routing and wavelength assignment,” IEEE/ACM Trans. Netw., vol. 18, no. 3, pp. 750–760, June 2010.
[CrossRef]

2009 (1)

S. Azodomolky, M. Klinkowski, E. Marin, D. Careglio, J. Solé Pareta, I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw., vol. 53, no. 7, pp. 926–944, May 2009.
[CrossRef]

2007 (3)

P. Gil Arbués, C. Mas Machuca, A. Tzanakaki, “Comparative study of existing OADM and OXC architectures and technologies from the failure behavior perspective,” J. Opt. Netw., vol. 6, no. 2, pp. 123–133, Feb. 2007.
[CrossRef]

C. Liu, C. Ji, “Resilience of all-optical network architectures under in-band crosstalk attacks: a probabilistic graphical model approach,” IEEE J. Sel. Areas Commun., vol. 25, no. 3, pp. 2–17, 2007.
[CrossRef]

N. Skorin-Kapov, “Routing and wavelength assignment in optical networks using bin packing based algorithms,” Eur. J. Oper. Res., vol. 177, pp. 1167–1179, 2007.
[CrossRef]

2006 (2)

R. Rejeb, M. S. Leeson, R. J. Green, “Fault and attack management in all-optical networks,” IEEE Commun. Mag., vol. 44, no. 11, pp. 79–86, Nov. 2006.
[CrossRef]

R. Rejeb, M. S. Leeson, R. J. Green, “Multiple attack localization and identification in all-optical networks,” Opt. Switching Networking, vol. 3, no. 1, pp. 41–49, 2006.
[CrossRef]

2005 (3)

C. Mas, I. Tomkos, O. K. Tonguz, “Failure location algorithm for transparent optical networks,” IEEE J. Sel. Areas Commun., vol. 23, no. 8, pp. 1508–1519, Aug. 2005.
[CrossRef]

T. Wu, A. K. Somani, “Cross-talk attack monitoring and localization in all-optical networks,” IEEE/ACM Trans. Netw., vol. 13, pp. 1390–1401, 2005.
[CrossRef]

T. Y. Chai, T. H. Cheng, Y. Ye, Q. Liu, “Inband crosstalk analysis of optical cross-connect architectures,” J. Lightwave Technol., vol. 23, no. 2, pp. 688–701, Feb. 2005.
[CrossRef]

2000 (2)

H. Zang, J. P. Jue, B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Opt. Networks Mag., vol. 1, pp. 47–60, Jan. 2000.

D. Banerjee, B. Mukherjee, “Wavelength-routed optical networks: linear formulation, resource budgeting trade-offs, and a reconfiguration study,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 598–607, Oct. 2000.
[CrossRef]

1997 (1)

M. Médard, D. Marquis, R. A. Barry, S. G. Finn, “Security issues in all-optical networks,” IEEE Network, vol. 11, no. 3, pp. 42–48, May 1997.
[CrossRef]

Abid, M.

A. Jedidi, M. Abid, “Optimal crosstalk monitoring and identification method,” IFIP Int. Conf. on Wireless and Optical Communication Networks (WOCN’09), 2009, pp. 1–5.

Azodomolky, S.

S. Azodomolky, M. Klinkowski, E. Marin, D. Careglio, J. Solé Pareta, I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw., vol. 53, no. 7, pp. 926–944, May 2009.
[CrossRef]

Banerjee, D.

D. Banerjee, B. Mukherjee, “Wavelength-routed optical networks: linear formulation, resource budgeting trade-offs, and a reconfiguration study,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 598–607, Oct. 2000.
[CrossRef]

Barry, R. A.

M. Médard, D. Marquis, R. A. Barry, S. G. Finn, “Security issues in all-optical networks,” IEEE Network, vol. 11, no. 3, pp. 42–48, May 1997.
[CrossRef]

Bergman, R.

R. Bergman, M. Médard, S. Chan, “Distributed algorithms for attack localization in all-optical networks,” in Network and Distributed Systems Symp., San Diego, CA, 1998.

Brinkhoff, T.

T. Brinkhoff. “City population” [Online]. Available: www.citypopulation.de

Cahn, R. S.

R. S. Cahn, Wide Area Network Design. Concepts and Tools for Optimization. Morgan Kaufmann Publishers, 1998.

Careglio, D.

S. Azodomolky, M. Klinkowski, E. Marin, D. Careglio, J. Solé Pareta, I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw., vol. 53, no. 7, pp. 926–944, May 2009.
[CrossRef]

Chai, T. Y.

Chan, S.

R. Bergman, M. Médard, S. Chan, “Distributed algorithms for attack localization in all-optical networks,” in Network and Distributed Systems Symp., San Diego, CA, 1998.

Chen, J.

N. Skorin-Kapov, J. Chen, L. Wosinska, “A new approach to optical networks security: attack-aware routing and wavelength assignment,” IEEE/ACM Trans. Netw., vol. 18, no. 3, pp. 750–760, June 2010.
[CrossRef]

Cheng, T. H.

Chinn, S. R.

M. Médard, D. Marquis, S. R. Chinn, “Attack detection methods for all-optical networks,” in Proc. of Network and Distributed Systems Security Symp., San Diego, CA, 1998, Session 3, paper 2.

Choi, H.-A.

J. K. Patel, S. U. Kim, D. H. Su, S. Subramaniam, H.-A. Choi, “A framework for managing faults and attacks in WDM optical networks,” Proc. of the DARPA Information Survivability Conf. and Expo., Anaheim, CA, 2001.

Finn, S. G.

M. Médard, D. Marquis, R. A. Barry, S. G. Finn, “Security issues in all-optical networks,” IEEE Network, vol. 11, no. 3, pp. 42–48, May 1997.
[CrossRef]

Furdek, M.

N. Skorin-Kapov, M. Furdek, “Limiting the propagation of intra-channel crosstalk attacks in optical networks through wavelength assignment,” in Optical Fiber Communication Conf. and Expo. (OFC) and the Nat. Fiber Optic Engineers Conf. (NFOEC), 2009, paper JWA65.

M. Furdek, N. Skorin-Kapov, “A scalable wavelength assignment approach for preventive crosstalk localization in optical networks,” in Proc. of the 10th Int. Conf. on Telecommunications (ConTEL), Zagreb, Croatia, 2009, pp. 311–318.

Garey, M. R.

M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: Freeman, 1979.

Gil Arbués, P.

Green, R. J.

R. Rejeb, M. S. Leeson, R. J. Green, “Fault and attack management in all-optical networks,” IEEE Commun. Mag., vol. 44, no. 11, pp. 79–86, Nov. 2006.
[CrossRef]

R. Rejeb, M. S. Leeson, R. J. Green, “Multiple attack localization and identification in all-optical networks,” Opt. Switching Networking, vol. 3, no. 1, pp. 41–49, 2006.
[CrossRef]

Inkret, R.

R. Inkret, A. Kuchar, B. Mikac, “Advanced infrastructure for photonic networks: extended final report of COST action 266,” Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia, 2003, pp. 19–27.

Jedidi, A.

A. Jedidi, M. Abid, “Optimal crosstalk monitoring and identification method,” IFIP Int. Conf. on Wireless and Optical Communication Networks (WOCN’09), 2009, pp. 1–5.

Ji, C.

C. Liu, C. Ji, “Resilience of all-optical network architectures under in-band crosstalk attacks: a probabilistic graphical model approach,” IEEE J. Sel. Areas Commun., vol. 25, no. 3, pp. 2–17, 2007.
[CrossRef]

Johnson, D. S.

M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: Freeman, 1979.

Jue, J. P.

H. Zang, J. P. Jue, B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Opt. Networks Mag., vol. 1, pp. 47–60, Jan. 2000.

Kim, S. U.

J. K. Patel, S. U. Kim, D. H. Su, S. Subramaniam, H.-A. Choi, “A framework for managing faults and attacks in WDM optical networks,” Proc. of the DARPA Information Survivability Conf. and Expo., Anaheim, CA, 2001.

Kirovski, D.

D. Kirovski, M. Potkonjak, “Efficient coloring of a large spectrum of graphs,” in Proc. 35th Conf. Design Automation, San Francisco, CA, 1998, pp. 427–432.

Klinkowski, M.

S. Azodomolky, M. Klinkowski, E. Marin, D. Careglio, J. Solé Pareta, I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw., vol. 53, no. 7, pp. 926–944, May 2009.
[CrossRef]

Kubale, M.

M. Kubale, Graph Colorings. American Mathematical Society, 2004.
[CrossRef]

Kuchar, A.

R. Inkret, A. Kuchar, B. Mikac, “Advanced infrastructure for photonic networks: extended final report of COST action 266,” Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia, 2003, pp. 19–27.

Leeson, M. S.

R. Rejeb, M. S. Leeson, R. J. Green, “Multiple attack localization and identification in all-optical networks,” Opt. Switching Networking, vol. 3, no. 1, pp. 41–49, 2006.
[CrossRef]

R. Rejeb, M. S. Leeson, R. J. Green, “Fault and attack management in all-optical networks,” IEEE Commun. Mag., vol. 44, no. 11, pp. 79–86, Nov. 2006.
[CrossRef]

Liu, C.

C. Liu, C. Ji, “Resilience of all-optical network architectures under in-band crosstalk attacks: a probabilistic graphical model approach,” IEEE J. Sel. Areas Commun., vol. 25, no. 3, pp. 2–17, 2007.
[CrossRef]

Liu, Q.

Marin, E.

S. Azodomolky, M. Klinkowski, E. Marin, D. Careglio, J. Solé Pareta, I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw., vol. 53, no. 7, pp. 926–944, May 2009.
[CrossRef]

Marquis, D.

M. Médard, D. Marquis, R. A. Barry, S. G. Finn, “Security issues in all-optical networks,” IEEE Network, vol. 11, no. 3, pp. 42–48, May 1997.
[CrossRef]

M. Médard, D. Marquis, S. R. Chinn, “Attack detection methods for all-optical networks,” in Proc. of Network and Distributed Systems Security Symp., San Diego, CA, 1998, Session 3, paper 2.

Mas, C.

C. Mas, I. Tomkos, O. K. Tonguz, “Failure location algorithm for transparent optical networks,” IEEE J. Sel. Areas Commun., vol. 23, no. 8, pp. 1508–1519, Aug. 2005.
[CrossRef]

Mas Machuca, C.

Médard, M.

M. Médard, D. Marquis, R. A. Barry, S. G. Finn, “Security issues in all-optical networks,” IEEE Network, vol. 11, no. 3, pp. 42–48, May 1997.
[CrossRef]

M. Médard, D. Marquis, S. R. Chinn, “Attack detection methods for all-optical networks,” in Proc. of Network and Distributed Systems Security Symp., San Diego, CA, 1998, Session 3, paper 2.

R. Bergman, M. Médard, S. Chan, “Distributed algorithms for attack localization in all-optical networks,” in Network and Distributed Systems Symp., San Diego, CA, 1998.

Mikac, B.

R. Inkret, A. Kuchar, B. Mikac, “Advanced infrastructure for photonic networks: extended final report of COST action 266,” Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia, 2003, pp. 19–27.

Mukherjee, B.

D. Banerjee, B. Mukherjee, “Wavelength-routed optical networks: linear formulation, resource budgeting trade-offs, and a reconfiguration study,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 598–607, Oct. 2000.
[CrossRef]

H. Zang, J. P. Jue, B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Opt. Networks Mag., vol. 1, pp. 47–60, Jan. 2000.

Patel, J. K.

J. K. Patel, S. U. Kim, D. H. Su, S. Subramaniam, H.-A. Choi, “A framework for managing faults and attacks in WDM optical networks,” Proc. of the DARPA Information Survivability Conf. and Expo., Anaheim, CA, 2001.

Potkonjak, M.

D. Kirovski, M. Potkonjak, “Efficient coloring of a large spectrum of graphs,” in Proc. 35th Conf. Design Automation, San Francisco, CA, 1998, pp. 427–432.

Ramaswami, R.

R. Ramaswami, K. N. Sivarajan, “WDM network design,” in Optical Networks: A Practical Perspective, R. Adams, Ed., 2nd ed. San Diego: Academic Press, 2002, pp. 437–488.
[CrossRef]

Rejeb, R.

R. Rejeb, M. S. Leeson, R. J. Green, “Fault and attack management in all-optical networks,” IEEE Commun. Mag., vol. 44, no. 11, pp. 79–86, Nov. 2006.
[CrossRef]

R. Rejeb, M. S. Leeson, R. J. Green, “Multiple attack localization and identification in all-optical networks,” Opt. Switching Networking, vol. 3, no. 1, pp. 41–49, 2006.
[CrossRef]

Sivarajan, K. N.

R. Ramaswami, K. N. Sivarajan, “WDM network design,” in Optical Networks: A Practical Perspective, R. Adams, Ed., 2nd ed. San Diego: Academic Press, 2002, pp. 437–488.
[CrossRef]

Skorin-Kapov, N.

N. Skorin-Kapov, J. Chen, L. Wosinska, “A new approach to optical networks security: attack-aware routing and wavelength assignment,” IEEE/ACM Trans. Netw., vol. 18, no. 3, pp. 750–760, June 2010.
[CrossRef]

N. Skorin-Kapov, “Routing and wavelength assignment in optical networks using bin packing based algorithms,” Eur. J. Oper. Res., vol. 177, pp. 1167–1179, 2007.
[CrossRef]

N. Skorin-Kapov, M. Furdek, “Limiting the propagation of intra-channel crosstalk attacks in optical networks through wavelength assignment,” in Optical Fiber Communication Conf. and Expo. (OFC) and the Nat. Fiber Optic Engineers Conf. (NFOEC), 2009, paper JWA65.

M. Furdek, N. Skorin-Kapov, “A scalable wavelength assignment approach for preventive crosstalk localization in optical networks,” in Proc. of the 10th Int. Conf. on Telecommunications (ConTEL), Zagreb, Croatia, 2009, pp. 311–318.

Solé Pareta, J.

S. Azodomolky, M. Klinkowski, E. Marin, D. Careglio, J. Solé Pareta, I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw., vol. 53, no. 7, pp. 926–944, May 2009.
[CrossRef]

Somani, A. K.

T. Wu, A. K. Somani, “Cross-talk attack monitoring and localization in all-optical networks,” IEEE/ACM Trans. Netw., vol. 13, pp. 1390–1401, 2005.
[CrossRef]

Su, D. H.

J. K. Patel, S. U. Kim, D. H. Su, S. Subramaniam, H.-A. Choi, “A framework for managing faults and attacks in WDM optical networks,” Proc. of the DARPA Information Survivability Conf. and Expo., Anaheim, CA, 2001.

Subramaniam, S.

J. K. Patel, S. U. Kim, D. H. Su, S. Subramaniam, H.-A. Choi, “A framework for managing faults and attacks in WDM optical networks,” Proc. of the DARPA Information Survivability Conf. and Expo., Anaheim, CA, 2001.

Tomkos, I.

S. Azodomolky, M. Klinkowski, E. Marin, D. Careglio, J. Solé Pareta, I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw., vol. 53, no. 7, pp. 926–944, May 2009.
[CrossRef]

C. Mas, I. Tomkos, O. K. Tonguz, “Failure location algorithm for transparent optical networks,” IEEE J. Sel. Areas Commun., vol. 23, no. 8, pp. 1508–1519, Aug. 2005.
[CrossRef]

Tonguz, O. K.

C. Mas, I. Tomkos, O. K. Tonguz, “Failure location algorithm for transparent optical networks,” IEEE J. Sel. Areas Commun., vol. 23, no. 8, pp. 1508–1519, Aug. 2005.
[CrossRef]

Tzanakaki, A.

Wosinska, L.

N. Skorin-Kapov, J. Chen, L. Wosinska, “A new approach to optical networks security: attack-aware routing and wavelength assignment,” IEEE/ACM Trans. Netw., vol. 18, no. 3, pp. 750–760, June 2010.
[CrossRef]

Wu, T.

T. Wu, A. K. Somani, “Cross-talk attack monitoring and localization in all-optical networks,” IEEE/ACM Trans. Netw., vol. 13, pp. 1390–1401, 2005.
[CrossRef]

Ye, Y.

Zang, H.

H. Zang, J. P. Jue, B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Opt. Networks Mag., vol. 1, pp. 47–60, Jan. 2000.

Comput. Netw. (1)

S. Azodomolky, M. Klinkowski, E. Marin, D. Careglio, J. Solé Pareta, I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw., vol. 53, no. 7, pp. 926–944, May 2009.
[CrossRef]

Eur. J. Oper. Res. (1)

N. Skorin-Kapov, “Routing and wavelength assignment in optical networks using bin packing based algorithms,” Eur. J. Oper. Res., vol. 177, pp. 1167–1179, 2007.
[CrossRef]

IEEE Commun. Mag. (1)

R. Rejeb, M. S. Leeson, R. J. Green, “Fault and attack management in all-optical networks,” IEEE Commun. Mag., vol. 44, no. 11, pp. 79–86, Nov. 2006.
[CrossRef]

IEEE J. Sel. Areas Commun. (2)

C. Mas, I. Tomkos, O. K. Tonguz, “Failure location algorithm for transparent optical networks,” IEEE J. Sel. Areas Commun., vol. 23, no. 8, pp. 1508–1519, Aug. 2005.
[CrossRef]

C. Liu, C. Ji, “Resilience of all-optical network architectures under in-band crosstalk attacks: a probabilistic graphical model approach,” IEEE J. Sel. Areas Commun., vol. 25, no. 3, pp. 2–17, 2007.
[CrossRef]

IEEE Network (1)

M. Médard, D. Marquis, R. A. Barry, S. G. Finn, “Security issues in all-optical networks,” IEEE Network, vol. 11, no. 3, pp. 42–48, May 1997.
[CrossRef]

IEEE/ACM Trans. Netw. (3)

T. Wu, A. K. Somani, “Cross-talk attack monitoring and localization in all-optical networks,” IEEE/ACM Trans. Netw., vol. 13, pp. 1390–1401, 2005.
[CrossRef]

N. Skorin-Kapov, J. Chen, L. Wosinska, “A new approach to optical networks security: attack-aware routing and wavelength assignment,” IEEE/ACM Trans. Netw., vol. 18, no. 3, pp. 750–760, June 2010.
[CrossRef]

D. Banerjee, B. Mukherjee, “Wavelength-routed optical networks: linear formulation, resource budgeting trade-offs, and a reconfiguration study,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 598–607, Oct. 2000.
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Netw. (1)

Opt. Networks Mag. (1)

H. Zang, J. P. Jue, B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Opt. Networks Mag., vol. 1, pp. 47–60, Jan. 2000.

Opt. Switching Networking (1)

R. Rejeb, M. S. Leeson, R. J. Green, “Multiple attack localization and identification in all-optical networks,” Opt. Switching Networking, vol. 3, no. 1, pp. 41–49, 2006.
[CrossRef]

Other (13)

A. Jedidi, M. Abid, “Optimal crosstalk monitoring and identification method,” IFIP Int. Conf. on Wireless and Optical Communication Networks (WOCN’09), 2009, pp. 1–5.

M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: Freeman, 1979.

M. Kubale, Graph Colorings. American Mathematical Society, 2004.
[CrossRef]

D. Kirovski, M. Potkonjak, “Efficient coloring of a large spectrum of graphs,” in Proc. 35th Conf. Design Automation, San Francisco, CA, 1998, pp. 427–432.

R. Inkret, A. Kuchar, B. Mikac, “Advanced infrastructure for photonic networks: extended final report of COST action 266,” Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia, 2003, pp. 19–27.

R. S. Cahn, Wide Area Network Design. Concepts and Tools for Optimization. Morgan Kaufmann Publishers, 1998.

T. Brinkhoff. “City population” [Online]. Available: www.citypopulation.de

M. Médard, D. Marquis, S. R. Chinn, “Attack detection methods for all-optical networks,” in Proc. of Network and Distributed Systems Security Symp., San Diego, CA, 1998, Session 3, paper 2.

J. K. Patel, S. U. Kim, D. H. Su, S. Subramaniam, H.-A. Choi, “A framework for managing faults and attacks in WDM optical networks,” Proc. of the DARPA Information Survivability Conf. and Expo., Anaheim, CA, 2001.

R. Bergman, M. Médard, S. Chan, “Distributed algorithms for attack localization in all-optical networks,” in Network and Distributed Systems Symp., San Diego, CA, 1998.

R. Ramaswami, K. N. Sivarajan, “WDM network design,” in Optical Networks: A Practical Perspective, R. Adams, Ed., 2nd ed. San Diego: Academic Press, 2002, pp. 437–488.
[CrossRef]

N. Skorin-Kapov, M. Furdek, “Limiting the propagation of intra-channel crosstalk attacks in optical networks through wavelength assignment,” in Optical Fiber Communication Conf. and Expo. (OFC) and the Nat. Fiber Optic Engineers Conf. (NFOEC), 2009, paper JWA65.

M. Furdek, N. Skorin-Kapov, “A scalable wavelength assignment approach for preventive crosstalk localization in optical networks,” in Proc. of the 10th Int. Conf. on Telecommunications (ConTEL), Zagreb, Croatia, 2009, pp. 311–318.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

In-band crosstalk attack propagation. The attacker can affect User 2’s and User 3’s signal even though they do not share any common physical components.

Fig. 2
Fig. 2

An example RWA scheme.

Fig. 3
Fig. 3

Switches in the example RWA scheme traversed by more than one lightpath on λ 1 , i.e., potential points of in-band crosstalk attacks.

Fig. 4
Fig. 4

The (a) attack- and (b) switch-based conflict graph for wavelength λ 1 in the example RWA scheme.

Fig. 5
Fig. 5

The attack matrix A λ 1 for wavelength λ 1 in the example RWA scheme.

Fig. 6
Fig. 6

The (a) link-based and (b) link-and-switch-based conflict graph for the example RWA scheme.

Fig. 7
Fig. 7

The maximum P-CAR values obtained by the GGC_LSCG, GGC_LCG, FFD_WA, and BFD _ PCAR _ WA ( * ) algorithms.

Fig. 8
Fig. 8

The average P-CAR per lightpath obtained by the GGC_LSCG, GGC_LCG, FFD_WA, and BFD _ PCAR _ WA ( * ) algorithms.

Fig. 9
Fig. 9

The maximum P-CAR values obtained by the proposed algorithms that consider the upper bound (UB) and the actual P-CAR with and without postprocessing.

Fig. 10
Fig. 10

The average P-CAR per lightpath obtained by the proposed algorithms that consider the upper bound (UB) and the actual P-CAR with and without postprocessing.

Fig. 11
Fig. 11

The average execution times obtained by the proposed algorithms that consider the upper bound (UB) and the actual P-CAR with and without postprocessing.

Fig. 12
Fig. 12

The trade-off between the number of used wavelengths and the average P-CAR per lightpath obtained by the GGC_LSCG, GGC_LCG, FFD_WA, BFD_PCAR_WA, and BFD _ PCAR _ WA ( * ) algorithms for a dense test scenario TS 2 .

Fig. 13
Fig. 13

The trade-off between the number of used wavelengths and the average P-CAR per lightpath obtained by the GGC_LSCG, GGC_LCG, FFD_WA, BFD_PCAR_WA, and BFD _ PCAR _ WA ( * ) algorithms for a sparse test scenario TS 5 .

Tables (2)

Tables Icon

Table 1 Test Scenarios Used in the Simulations

Tables Icon

Table 2 Number of Wavelengths Used by the GGC_LSCG and BFD _ PCAR _ WA ( * ) Algorithms

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P - CAR ( λ ) = max i = 1 , , n { P - CAR ( LP i ) } , LP i routed on λ .
P - CAR = max λ = 1 , , W { P - CAR ( λ ) } .
LP 1 ( A , F ) is routed via nodes A - B - F ,
LP 2 ( I , K ) is routed via nodes I - B - C - D - K ,
LP 3 ( J , G ) is routed via nodes J - C - G ,
LP 4 ( H , E ) is routed via nodes H - D - E , and
LP 5 ( B , E ) is routed via nodes B - C - D - E .